Multi-modal Mu-calculus Semantics for Knowledge Construction

Susumu Yamasaki\(^1\) and Mariko Sasakura\(^2\)

\(^1\)HCI Group, Okayama University, Okayama, Japan
\(^2\)Department of Computer Science, Okayama University, Okayama, Japan

Keywords: Multi-modal Logic Semantics, Action Logic, Knowledge Construction.

Abstract: This position paper aims at setting a new semantics for multi-modal mu-calculus to represent interactive states where abstract actions may be applied to. A least fixed point formula may be available to denote states allowing interaction. A simple algebraic representation for interactive states can be definable. For communication between human and machinery, a modality is reserved. In applicative task domains, knowledge construction is focused on with respect to interactive action applications through communications. Panel touch behaviour on iDevice as practice, URL references as functions and grammatical rule applications for sequential effects are studied, as knowledge construction technologies. These views coherent with abstract state machine are finally related to recent trends as semiring in algebraic structure and coalgebra for streams as sequential knowledge structures. A refinement of interactive techniques is positioned into a formal approach to multi-modal logic, applicable to some practices.

1 INTRODUCTION

This positioning is motivated by an intention to present the unified machinery framework of action in knowledge construction and interactive communication with human ideas, for a human machine interaction as illustrated below, where the environments of human and machinery are virtually regarded as states.

As actions of both artistic and technological methods with respect to knowledge engineering in interactive artificial intelligence, this positioning supposes working (action as reasoning) in (i) design of paper folding to make some forms, (ii) knowledge acquisition by references to URLs, and (iii) grammatical rule application for language learnings, as case studies.

As the book (Jackson, 1989) describes, the art of paper folding is rich enough in terms of simple and beautiful fascinations. Anyone can do anywhere, anytime by means of papers which are also attractive in practices as well as fine displays. With respect to interactive computing and convenience, iDevice panel touch, as action, may be interesting for the art. Compared with the paper as a medium, 2D panel touch is simpler even for knowledge construction to the 3D form made by paper medium. However, simplicity of panel touch may cause difficulty in graphical visualizations. This is regarded as trade off for simplicity and compactness automated by modeling and mechanized panel touch. This positioning aims at design for implementation methods and tools as reasoning aspects, in respect to machanized action and interaction with human.

As regards URLs, it may involve knowledge construction by means of location references such that acquisition of knowledge can be implemented as actions to have insights into contexts. Observing and enjoying knowledge construction can be interactive to human behaviours with automated eInfrastructure.

Concerning language learning, grammatical rule applications are respected as in case of recovery from language incapability written in the book (Chapey, 2001). The cognitive process of clients often needs interactions to other human, whose work may be partially realized by machine intelligences. To recover language capability or to learn more, the cognitive process must be supported with respect to and consistently by formally grammatical rules.

For a method of unifying machinery with actions and interaction to human communication, we refine multi-modal logic as representation of moni-
We here have a (standard) prefix modality \(\langle \cdot \rangle \) (for communication), a postfix one \(\cdot \alpha \) (for action), and a negation (sign) \(\sim \) as regards incapability of interaction, in addition to standard propositions \(p \), the logical negation \(\sim \) and a least fixed point operator \(\mu \).

The semantics for formulas are definable on the basis of a transition system, which is modified and extended for denoting “interaction” states where some implementation and action are available. The transition system is

\[
S = (S, C, Ac, Re, Rel, V_{pos}, V_{neg}, V_{inter}),
\]

where:

(i) \(S \) is a set of states.

(ii) \(C \) is a set of labels for communications.

(iii) \(Ac \) is a set of actions.

(iv) \(Re \) maps to each \(c \in C \) a relation \(Re(c) \) on \(S \).

(v) \(Rel \) maps to each \(a \in A \) a relation \(Rel(a) \) on \(S \).

(vi) \(V_{pos}, V_{neg}, V_{inter} : Prop \rightarrow 2^S \), map to each proposition (variable) a set of states, respectively.

The reason why 3 assignments of \(V_{pos}, V_{neg} \) and \(V_{inter} \) are adopted comes from a motivation to introduce an assignment for monitoring interaction and the existence of negation “\(\sim \)”. Given a transition system \(S \), the functions \([\]_{pos}, [\]_{neg}, [\]_{inter} : \Phi \rightarrow 2^S \) are defined such that

(i) \([\Phi]_{pos} \cup [\Phi]_{neg} \cup [\Phi]_{inter} = S \), and

(ii) \([\Phi]_{pos}, [\Phi]_{neg} \) and \([\Phi]_{inter} \) are mutually disjoint, for \(\Phi \in \Phi \), while \([\sim \Phi]_{inter} = \emptyset \).

to demonstrate that the formula (process) denotation, the state set for interaction, is empty.

Meaning concerned with two modalities \((\cdot), \cdot \alpha \): (1) \([tt]_{pos} = S \), \([tt]_{neg} = \emptyset \), and \([tt]_{inter} = \emptyset \).

(2) \([p]_{pos} = V_{pos}(p) \), \([p]_{neg} = V_{neg}(p) \), and \([p]_{inter} = V_{inter}(p) = S \setminus ([p]_{pos} \cup [p]_{neg}) \).

(3) \([\sim \Phi]_{pos} = [\Phi]_{neg}, \sim [\Phi]_{neg} = [\Phi]_{pos} \), and \([\Phi]_{inter} = [\Phi]_{inter} \).

(4) \([\sim \Phi]_{neg} = [\Phi]_{neg}, \sim [\Phi]_{neg} = [\Phi]_{pos} \cup [\Phi]_{inter} \) (\(\sim [\sim \Phi]_{inter} = \emptyset \)).

(5) \([\Phi_1 \lor \Phi_2]_{pos} = [\Phi_1]_{pos} \cup [\Phi_2]_{pos} \), \([\Phi_1 \lor \Phi_2]_{neg} = \Phi_1 \lor [\Phi_2]_{neg} \), and \([\Phi_1 \lor [\Phi_2]_{inter} = S \setminus ([\Phi_1 \lor [\Phi_2]_{neg}) \cup ([\Phi_1 \lor [\Phi_2]_{inter}) \).

(6) \([\cdot \alpha]_{pos} = \{ s \in S : \exists s'. s Re(c) s' \land s' \in [\Phi]_{pos} \}, \]

\([\cdot \alpha]_{neg} = \{ s \in S : \forall s'. s Re(c) s' \Rightarrow s' \in [\Phi]_{neg} \}, \)

and \([\cdot \alpha]_{inter} = S \setminus ([\cdot \alpha]_{pos} \cup [\cdot \alpha]_{neg}) \).

Multi-modal Mu-calculus Semantics for Knowledge Construction
(7) $(\mu x.\varphi)_{\text{pos}}\cap(\mu x.\varphi)_{\text{neg}}$
\[=\bigcap\{(T_{\text{pos}}, T_{\text{neg}}) \subseteq S \times S | (\varphi)_{\text{pos}}[x := T_{\text{pos}}], (\varphi)_{\text{neg}}[x := T_{\text{neg}}]) \subseteq (T_{\text{pos}}, T_{\text{neg}})\},\]
and $(\mu x.\varphi)_{\text{inter}} = S \setminus ((\mu x.\varphi)_{\text{pos}} \cup (\mu x.\varphi)_{\text{neg}})$,
where every free occurrence of x in φ is positive.

(8) $(\varphi)[a]_{\text{pos}}$
\[= \{s' \in S | \forall s. s \text{ Rel}(a)s' \Rightarrow s \in (\varphi)[a]_{\text{pos}}\},\]
$(\varphi)[a]_{\text{neg}}$
\[= \{s' \in S | \forall s. s \text{ Rel}(a)s' \Rightarrow s \in (\varphi)[a]_{\text{neg}}\},\]
$(\varphi)[a]_{\text{inter}} = S \setminus ((\varphi)[a]_{\text{pos}} \cup (\varphi)[a]_{\text{neg}})$.

(Note) Implementation sense of modality (c) is from communication labelled by c, like the standard modality. Modality $\langle a \rangle$ possibly comes from actions which machinery virtually causes. When it is applied to a state s, it conceives a relation Rel(a).

By the definition for $[\varphi]_{\text{inter}}$, to be concerned with denoting admissible interaction, we can see that:

$(\varphi)[a]_{\text{inter}} = \{s' \in S | \exists s. \text{ Rel}(a)ss' \wedge s \in (\varphi)[a]_{\text{inter}}\}.$

Some algebraic treatments are available with respect to denoting interactive states.

(A1) We have Heyting algebra

$\mathcal{H} = (\{0,1,2,1\}, \leq, \lor, \land, 0, 1, \rightarrow)$,
where $0 \leq 1/2 \leq 1$, and the expression $a \rightarrow b$ denotes a greatest element c of $\{0,1,2,1\}$ such that $a \land c \leq b$. We have a semantic function $\text{Mon}_{\text{inter}}$ to see whether a process (supported by a formula) on a state is legal (by value 1/2) for interaction:

$\text{Mon} : \Phi \rightarrow S \rightarrow \{0,1,2,1\},$
\[\text{Mon}[\varphi]s = \begin{cases}
1 & s \in (\varphi)_{\text{pos}} \\
1/2 & s \in (\varphi)_{\text{inter}} \\
0 & s \in (\varphi)_{\text{neg}}
\end{cases} \]

Given a transition system S and \mathcal{H} for monitoring, with $\varphi \in \Phi$ and $s \in S$:

(i) $\text{Mon}[\neg \varphi]s = \text{Mon}[\varphi]s \rightarrow 0$.
(ii) $\text{Mon}[\varphi \lor \psi]s = \text{Mon}[\varphi]s \lor \text{Mon}[\psi]s \rightarrow 0$.
(iii) $\text{Mon}[\varphi \land \neg \varphi]s \leq \text{Mon}[\varphi]s \land \text{Mon}[\neg \varphi]s.$
(iv) $\text{Mon}[\varphi \lor \psi]s = \text{Mon}[\varphi]s \lor \text{Mon}[\psi]s.$
(v) If $s \text{ Rel}(c)s'$, and $\text{Mon}[\varphi \lor \psi]s = 1/2$, then $\text{Mon}[\varphi]s' = 1/2$.
(vi) If $s \text{ Rel}(a)s'$, and $\text{Mon}[\varphi]s = 1/2$, then $\text{Mon}[\varphi[a]]s' = 1/2$.

(A2) A fixed point formula is applicable to the modality denotations. The meaning of formulas $\varphi[a]$ contains the states, to which the states supported by the formula (process) φ might transit. With the fixed point formula,

$\phi = \phi \rightarrow \phi$ may be regarded as meanings with the functions a within modalities, respectively, for interaction.

3 KNOWLEDGE CONSTRUCTION

The formula, say φ, is considered as a process (governing the states), abstracted from an interaction scheme and cognition as follows.

As suggested later, the panel touch in iDevice is represented by action in modality $\langle a \rangle$. As regards the cognition of concepts with references, technologies of the internet URLs are available such that modality $\langle a \rangle$ can be applied. As to learning grammatical rules, modality $\langle a \rangle$ may be adopted. The modalities are to be conveniently placed as followers, because they are concerned with the roles (effects) of actions in formal reasoning:

Interaction Scheme
Interaction with communication (C) and action (A) between human (H) and machinery (M) as artificial intelligence:

$H \xrightarrow{C} M : \text{Communications}$
$\langle c \rangle \varphi \xrightarrow{\varphi} \varphi : \text{Supporting formulas}$
$M \xrightarrow{A} H : \text{Actions}$
$\varphi \xrightarrow{\varphi[a]} : \text{Presentations of actions}$

Cognition
Human (H) cognition of action (A):

$H \xrightarrow{A} H'$(advanced $H)$: Cognition
$\varphi \xrightarrow{\varphi[a]} : \text{Acquiring actions}$

3.1 Interactive Paper Folding

Folding Model
We assume some points for an art of folding paper (origami) to be virtually mechanized or implementable by iDevice, while folding is an action in modal operator at states:

- An origami contains a set of faces.
- A face is an area of no thickness, enclosed with edges. A face is, for iDevice techniques, restricted to a triangle of 3 edges and 3 vertices, while the initial sheet paper is supposedly regarded as containing 2 triangles.
- A crease line is an edge adjacent to 2 faces.
- An edge is a line segment ended by 2 vertices.
Making origami is (i) to specify a crease line, and (ii) to fold 2 adjacent faces with an angle between 0 and 180 degrees.

Valley and Mountain Foldings

A primitive but so fundamental folding is to specify a crease line, folding 2 faces like a valley or a mountain, called valley folding (V-fold) or mountain folding (M-fold), respectively.

As implementations of V-fold and M-fold on iDevices (virtually with correspondence to communication and action modal operators), we have 2 alternative methods below. Each of them is interpreted as an abstract action constrained by a state modeling the modal logic formula in the previous section, and as abstractly causing a transition to the next state after V-fold or M-fold virtually results.

(I1) It is to determine the positions of 2 vertexes: A panel touch with *long-press* from the first point and with *pan* (drag) to another suggests a line segment. For the suggestive line segment, a perpendicular is provided as an effective crease line, at already-decided position crossing the given (line segment), so that V-fold or M-fold might be implemented.

(I2) It is to directly by touch specify a crease line: By an operation *pinch in/out*, a crease line is provided between the suggested points so that *flick* operation might be effective for either face concerning the crease line to be folded.

They are basic tools for a more refined visualisation (Sasakura et al., 2013).

Sequential Foldings

As a sequence formation for making (flying) plane, we can now have a sequence of folding by recursion (cycle):

(i) At a state of *communicating* (C), machinery sees by interaction where machinery makes folding and how it does, and transit to the next concerning state. This is regarded as monitored by a formula of the form \(\langle \cdot \rangle \varphi\) with interaction admission, in which communication \(c\) virtually represents an interaction.

(ii) At the next state of *reasoning* (R), machinery makes an implementation of iDevice for folding determined in the previous step on the point and by the method: This is regarded as monitored by a formula of the form \(\varphi[a]\) with interaction admission.

(iii) We then see that a *folding* (F) is made by the previous implementation: This is regarded as monitored by a formula of the form \(\varphi(a)\) with interaction admission.

The cycle is regarded as monitoring realized by formula denotations in the following manner, where we take abbreviations for C, R and F:

```
Monitoring: \((\langle c \rangle \varphi) \quad \varphi \quad \varphi(a)\)
```

Interaction for:
```
C R F
```

In a more concretized folding to an airplane, a whole sequence, virtually causing state-transitions for implementation, is given with an interactive communication at each state (step):

(i) V-fold, to make the rightmost and uppermost position set into the centre.

(ii) V-fold, to make the leftmost and uppermost position set into the centre.

(iii) V-fold, to operate by a central and vertical crease line.

(iv) V-fold, to operate for one out of 2 faces (made in step (iii)) by a crease line parallel to the crease line of step (iii), with an angle of 90 degrees open to the outer side.

(v) V-fold, to operate for another out of 2 faces (made in step (iii)) by a crease line parallel to the crease line of step (iii), with an angle of 90 degrees open to the outer side.

A visualization of a simple plane may be designed, on the basis of the above action sequence.

3.2 Reference Recursion

As URL structures, a referenced page (named \(x\)) may contain some senses recursively linked with other references, as a function \(x \mapsto \{y_1, \ldots, y_n\} (n \geq 0)\) with references \(x\), and \(y_1, \ldots, y_n\).

Let \(X\) be a set of references. With respect to modality \(\langle a \rangle\), \(u \equiv u_a\) is definable as a function, \(u : X \to 2^X\). The function \(\tilde{a} : 2^X \to 2^X\) is defined for the function \(u\) by: \(\tilde{a}(Y) = \bigcup_{x \in Y} u(x)\). Note for any \(a\) that \(\tilde{a}(\emptyset) = \emptyset\). For the function \(1_X : X \to 2^X\), \(1_X(x) = \{x\}\), the function \(\tilde{1}_X\) is \(\tilde{1}_X(Y) = Y\), the identity on \(2^X\). Let \(U_X\) be a set of functions of \(2^X\) to \(2^X\) such that \(f(\emptyset) = \emptyset\) for any \(f \in U_X\). The composition of \(f\) and \(g\) in \(U_X\), \(g \circ f : 2^X \to 2^X\) is \((g \circ f)(Y) = g(f(Y))\). Then, the composition is associative. With respect to the identity element \(1_X\), \(f \circ 1_X = 1_X \circ f = f\).

Then \(\langle U_X, \circ, 1_X \rangle\) is a monoid (semigroup with identity).

On the other hand to the operation \(\circ\), the alternation \(+\) is considerable. \(f + g : 2^X \to 2^X\) is defined to be \((f + g)(X) = f(X) \cup g(X)\). It is seen that the operation \(+\) is commutative and associative. With the function \(0_X : X \to 2^X\) such that \(0_X(x) = \emptyset\), \(0_X(Y) = \emptyset\)
Then, as the identity element \(\hat{0}_X \), \(f + \hat{0}_X = \hat{0}_X + f = f \).
It is clear from the definition of "\(+\)" that \(f + f = f \).
As above mentioned, \(\langle U_X, +, 0, X \rangle \) is a commutative monoid. As regards the composition, we can see for any \(f \in U_X \) that \(\hat{0}_X \circ f = f \circ \hat{0}_X = \hat{0}_X \), because \(\hat{0}_X(Y) = \emptyset \).
By properties of the operations + and \(\circ \), on the set \(U_X \), we have:

Proposition 1. \(\langle U_X, +, 0, X, \hat{1}_X \rangle \) is an (idempotent) semiring.

Proof. It remains to see distributive laws, which hold with the following reasons:

\[
(g + h) \circ f(Y) = g(f(Y)) \cup h(f(Y))
\]

\[
= (g \circ f + h \circ f)(Y)
\]

\[
f \circ (g + h)(Y) = f(g(Y) \cup h(Y))
\]

\[
= (f \circ g + f \circ h)(Y)
\]

Q.E.D.

We now examine the property of compositional sequences of functions of the form \(\hat{u} \).

Definition 2. The composition of \(\hat{u}_1, \hat{u}_2, \ldots, \hat{u}_{n-1} \) and \(\hat{u}_n \) is successful for \(x \in X \) if \(\hat{u}_n \circ \ldots \circ \hat{u}_1(x) = \emptyset \).

Let \(U_X^2 \subset U_X \) be a set of functions of the form \(\hat{u}, \hat{1}_X \) or \(0_X \). To provide a composition (sequence) \(\sigma \) of the functions from \(U_X^0 \), successful for a given \(x \in X \), we have a recursive procedure \(\text{Pro}(x) \) as follows, where \(\perp \) stands for a failure: \(\perp + \sigma = \sigma + \perp = \sigma \) and \(\perp \circ \sigma = \sigma \circ \perp = \perp \) for any finite sequence \(\sigma \) constructed by the functions from \(U_X^0 \).

Procedure Pro:

\[
\text{Pro}(x, U_X^0) = \begin{cases} \emptyset & \text{if } U_X^0 = \emptyset \text{ then } \perp \\ + & \{\hat{u} \in U_X^0\} \text{ Check}(x,u) \end{cases}
\]

\[
\text{Check}(x,u) = \begin{cases} \perp & \text{if } u(x) = \emptyset \text{ then } \hat{u} \\ \circ & \text{else} \end{cases}
\]

\[
\text{Pro}(y, U_X^0) = \{\hat{u}\} \circ \hat{u}
\]

Proposition 3. On the basis of the procedure \(\text{Pro} \) for a given \(x \in X \). \(\text{Pro}(x) \) contains a non-\(\perp \) sequence iff some sequence from \(\text{Pro}(x) \) is successful for \(x \).

Proof. (1) If \(\text{Pro}(x, U_X^0) \) contains a sequence successful for \(x \), then it must be a non-\(\perp \) sequence, by the construction of the procedure \(\text{Pro} \) with \(\text{Check} \).

(2) Assume that \(\text{Pro}(x, U_X^0) \) contains a non-\(\perp \) sequence. Induction is made on recursion included in \(\text{Pro} \) with \(\text{Check} \): (i) If some \(u \) exists such that \(u(x) = \emptyset \), then \(\text{Pro}(x, U_X^0) \) contains \(\hat{u} \), successful for \(x \).

(ii) If \(u(x) \neq \emptyset \), suppose each procedure \(\text{Pro}(y, U_X^0 - \{\hat{u}\}) \) for \(y \in u(x) \), with the preceding function \(\hat{u} \), in \(\text{Check}(x,u) \). By the procedure \(\text{Pro}(y, U_X^0 - \{\hat{u}\}) \) to (by induction hypothesis) contain a sequence successful for \(y \), and by distributive laws of \(\circ \) over +, there may be a sequence from \(U_X^0 \), beginning with \(\hat{u} \) (as in \(\text{Check}(x,u) \)), successful for the given \(x \). This concludes the induction step. Q.E.D.

3.3 Rewriting Rules

Learning the rules \(r \) and \(r' \), the human’s state may be transitioned from \(s \) to \(s' \), which can be mechanized in rewrites with states:

\[
\begin{array}{c|c|c}
\text{state} & \text{state} & \text{rewritings with states:} \\
\hline
s & r & s' \\
\hline
\end{array}
\]

To intuitively see such a structure, we now have a function sequence virtually with reference to states. Let \(N_t \) and \(\Sigma \) be a set of nonterminals and a set of terminals, respectively. With respect to modality \(\langle a \rangle \), a rule \(r \) regarded as an action \(a \) is defined to be a function \(r : N_t \cup \Sigma \rightarrow (N_t \cup \Sigma)^* \) such that \((N_t \cup \Sigma)^* \) is the set of all finite sequences, formed from the set \(N_t \cup \Sigma \), containing the nil sequence \(\text{nil} \), and \(\tau(t) = t \) for any \(t \in \Sigma \). The function \(r \) can be extended to the one \(\bar{r} : (N_t \cup \Sigma)^* \rightarrow (N_t \cup \Sigma)^* \) as defined to be

\[
\bar{r}(\text{nil}) = \text{nil}, \text{ and } \\
\bar{r}(z) = \text{cons}(r(\text{head}(z)), \bar{r}(\text{tail}(z)))
\]

where (i) \(\text{head} \) takes the first symbol from a given non-nil sequence, (ii) \(\text{tail} \) is a sequence constructed by cutting off the first symbol for a given sequence, and (iii) \(\text{cons} \) is an operation to get a sequence by combining a symbol with a sequence.

The composition of \(\bar{r}_1 \) and \(\bar{r}_2 \) can be defined to be

\[
\bar{r}_2 \bullet \bar{r}_1(z) = \bar{r}_2(\bar{r}_1(z))
\]

with the identity function \(\bar{I}(z) = z \) for any \(z \in (N_t \cup \Sigma)^* \). As regards the composition, the associative laws holds. Now let

\[
V_\Sigma = \{ fn | fn \text{ is a function of } (N_t \cup \Sigma)^* \rightarrow (N_t \cup \Sigma)^* \}
\]

Then \(\{V_\Sigma, \bullet, \bar{I}\} \) is a monoid.

Given a nonterminal \(m \in N_t \), whether there is a sequence \(\bar{r}_1, \ldots, \bar{r}_n \) such that \(\{\bar{r}_n \ldots \bar{r}_1\}(m) \in \Sigma^* \) can be decided, if the set \(N_t \) is finite: Neglecting the elements of \(\Sigma \), at least a similar procedure like the procedure \(\text{Pro} \) (as regards reference completion for successful termination) can work for a given nonterminal.

4 CONCLUDING REMARKS

We have summaries regarding this work in progress for formal methods in interactive techniques.

(i) This formality of multi-modal logic, to monitor states virtually interactive for iDevice may be closely relevant to the recent trend of game semantics (Venema, 2008).

(ii) As well as newly presented semantics for this calculus based on a state set, actions regarding a modal
operator are discussed, with respect to their functional and algebraic aspects and with reference to works (Giordano et al., 2000; van der Hoek et al., 2005; Kucera and Esparza, 2003). The accounts of actions are made by applications of Heyting algebra, fixed point theory, and semiring structure. They are also related to trend coalgebra (Kurz, 1989).

(iii) Fixed point logic (Venema, 2006) may include the present version, since the action modality may be denoted by a fixed point. However, the mu-operator requires some restriction that the operator may be associated with a monotone function. For a nonmonotonic case, we have backgrounds (Genesereth and Nilsson, 1987; Yamasaki, 2006; Yamasaki, 2010).

(iv) As regards sequence formation in iDevice, it is closely related to knowledge structure, where (iv) As regards sequence formation in iDevice, it is closely related to knowledge structure, where transitions. Whether well mechanized formations of a sequence for the origami crane by iDevice would be a problem from the views of interaction techniques with graphical designs of practical impacts. Concerning URL references, a referential closeness is discussed with respect to the idea of successful sequence of references. The sequence is related to the structure of semiring, captured by coalgebraic behaviours. For a task as implementing heuristic cognition stages of recovery from language, it is a methodological or technical idea to automate grammatical rule applications, while the discussion of this positioning is really concerned with state-constraint grammars between context-free and context-sensitive grammar hierarchies (Kasai, 1970), simpler than the class of constraint functional programming (Bertolissi et al., 2006) and more classical than the recent studies of (infinite) streams and languages by coalgebra (Rutten, 2001; Winter et al., 2013; Winter et al., 2015). We might, however, have formal reasonings to implementing cognitions or to making them graded up as artificial (machine) intelligences, following the advanced theories from those (Genesereth and Nilsson, 1987; Reiter, 2001).

REFERENCES

