
GA-based Action Learning

Satoshi Yonemoto
Graduate School of Information Science, Kyushu Sangyo University, Fukuoka, Japan

Keywords: Genetic Algorithm, Action Learning and Action Series Learning.

Abstract: This paper describes a GA-based action learning framework. First, we propose a GA-based method for

action learning. In this work, GA is used to learn perception-action rules that cannot be represented as genes

directly. The chromosome with the best fitness (elitist) acquires the perception-action rules through the

learning process. And then, we extend the method to action series learning. In the extended method, action

series can be treated as one of perception-action rules. We present the experimental results of three

controllers (simple game AI testbed) using the GA-based action learning framework.

1 INTRODUCTION

This paper describes a GA-based action learning

framework. First, we propose a GA-based method

for action learning. And then, we extend the method

to action series learning. This work focuses on the

following problem: Action learning method is

certainly suitable for estimating reactive actions.

Obstacle avoidance is one of such reactive actions.

In this case, the preceding action occurs just as the

direct result of 'avoidance'. However, just a

perception-action rule does not always solve more

complicated tasks. In general, a task (for one agent)

should be completed by performing the combination

of action series. For solving this problem, we

propose a new method that can include action series

under the same GA-based learning framework.

Action learning framework is often used in

artificial intelligence for games (called Game AI)

(Togelius, 2010) (Shaker, 2011) (Yannakakis, 2012),

and in autonomous robot simulations (Gu, 2003)

(Brooks, 2014) (Siegwart, 2011). Recently, human-

like character (avatar) in computer games can be

controlled by various AI engines. Autonomoous car

is also controlled by AI engine, using the same

learning framework. The above mentioned, complex

action is not performed by just one action associated

with a perception data. For example, human-like

character performs manipulation tasks in virtual

environment, their action rules are often hand-coded

(Kuffner, 1998), and it is difficult to learn such action

series by perceiving real human activities.

Therefore, we tackle to develop a new method to

acquire action series from the percaptual data. GA-

based learning is one way to acquire action rules in

non-parametric manner. In the other learning

approach, a convolutional neural network is often

used (Mnih, Volodymyr, et al., 2015). In the GA based

learning, the model is perception-action rules (i.e.,

table), learned with the evolution process. GA based

learning has the following merits. Action rule for

each perception is not formed as a block box.

Therefore, large and sparse table can be slimmed

after the learning process.

2 GA-BASED LEARNING

2.1 Genetic Algorithm

Genetic Algorithm (GA) is an optimization

technique that globally estimates model parameters.

GA is one of stochastic search methods which have

been applied with success to many types of complex

problems such as image analysis and control

problems. In general, genetic algorithm is performed

the following steps:

1. Generate an initial population (N individuals) by

randomly choosing.

2. Calculate the fitness of the population as an

evaluation process.

3. Select a subset of population under pre-defined

selection criteria.

4. Recombine the selected population as a new

population (genetic operation such as mutation and

crossover).

Yonemoto, S..
GA-based Action Learning.
In Proceedings of the 7th International Joint Conference on Computational Intelligence (IJCCI 2015) - Volume 1: ECTA, pages 293-298
ISBN: 978-989-758-157-1
Copyright c© 2015 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

293

5. Repeat 2-4 until an elitist condition is satisfied.

In this work, GA is used to learn action rules that

cannot be represented as genes directly. In this

approach, the purpose of GA-based evolution is to

construct a policy for perception-action pair.

Given a perception s, an action a, and a policy π,

the action-value of the pair (𝑠, 𝑎) under π is defined

by π(𝑠, 𝑎). This corresponds to compute the function

values π(𝑠, 𝑎) for all perception-action pairs (𝑠, 𝑎),

using evolutionary computation.

2.2 Genetic Encoding for Action
Learning

Figure 1 illustrates our genetic encoding.

Chromosome represents n perception parameters (n

bit binary code). For example, such perception

includes sensor grids around game characters and

range sensors for autonomous robots. In this

encoding, the binary code indicates a number

(index) for the action-value table, π (see Figure 1).

The desirable action 𝑎 for 𝑎 perception 𝑠 is given

as the value of the table. The action is also defined

by k bit binary code. The genetic algorithm is

performed in three fundamental steps, that is,

evaluation, selection and genetic operation. During

the evaluation process, the fitness of the population

is calculated. The chromosome with the best fitness

(elitist) guides properly the best perception-action

rules π.

3 EXTENSION TO ACTION

SERIES LEARNING

3.1 Problem in Action Learning

Although GA-based learning is one of effective

solvers for action learning, there is still another

consideration. This approach is suitable for

estimating reactive actions such as obstacle

avoidance. However, it is just a one-step solver

using perception-action rules π(𝑠, 𝑎). In general, a

task should be completed by performing the

combination of action series.

Action series learning is an extended version of GA-

based action learning where the evaluation is

performed by several action series. This means that

the perception-action table includes action series

𝑎1, ⋯ , 𝑎𝑚 for a perception 𝑠 . After performing

several action series, the evaluation function is

calculated.

3.2 Genetic Encoding for Action Series
Learning

For chromosome represented by n perception

parameters (n bit binary code), 𝑚 action series

are assigned. Each action 𝑎𝑖 is defined by k bit

binary code. The desirable action series 𝑎1,⋯ , 𝑎𝑚

for a perception 𝑠 are given as the value of the table.

Figure 2 illustrates the genetic encoding for this

approach.

After action series are performed, the evaluation

function is calculated. Naturally, before performing

all of 𝑚 action series, the task can be completed.

Therefore, maximum length of action series must be

determined in advance. This approach provides a

capable of effectively compressing for candidates of

actions. That is, both action time series and several

candidates of actions can be described in a unified

manner.

Figure 1: Genetic encoding for action learning.

Figure 2: Genetic encoding for our extended approach.

4 EXPERIMENTS

To evaluate our GA-based action learning

framework, three autonomous controllers (simple

game AI testbed) are implemented. These programs

are written in Java. To evaluate an essential GA

evolution, game rules are simplified. Common

genetic parameters are shown in Table 1.

4.1 Case 1: Vehicle Controller

First, our GA-based action learning is applied for a

action 𝑎 (k bit code)

1 0 1 1 1 0 01 0 1 0 1 0 0・・・ ・・・1 1

[0,1, 1,0,0,0,0,1,0,0]
perception 𝑠
(n bit code)

sensory data

environment

k bit 2n table (𝑠, 𝑎)

action series 𝑎𝑖

 (m k bit code)

1 0 1 1 1 0 01 0 1 0 1 0 0・・・ ・・・

[0,1, 1,0,0,0,0,1,0,0]
perception 𝑠
(n bit code)

sensory data

environment

m k bit 2n table (𝑠, 𝑎𝑖)

1 0 0 1 1 1・・

𝑎1 𝑎 𝑎𝑚

ECTA 2015 - 7th International Conference on Evolutionary Computation Theory and Applications

294

simplified vehicle control problem. Figure 3

illustrates the screenshots.

Table 1: Common genetic parameters.

Population size 100

Crossover rate 0.9

Mutation rate 0.05

Max generations 100

4.1.1 Game Rules

The following rules are applied:

 Vehicle: The vehicle can select three

directions: go straight, turn left (-30[deg]) and

turn right (+30[deg]). The vehicle has five

range sensors to detect the neighbour

obstacles (see Figure 4).

 Scene: Static obstacles (set of line segments)

are arranged into the scene.

 Game over: The vehicle touches one of the

obstacles.

 Task (goal): The vehicle keeps a drive during

several laps or until over pre-defined distance.

4.1.2 GA Rules

For genetic encoding, the following rules are

defined:

 Perception: Five range sensors are attached to

detect obstacles. The sensor is defined by 5 bit

binary code. When the sensor 𝑖 detects an

obstacle (i.e., crossing a line segment), output

is 1, (otherwise output is 0).

 Action: Three actions (turn left, turn right and

go straight) are encoded by 2 bit binary code.

 Fitness (f): If the vehicle touches an obstacle

(a line segment), then f = 𝜀 . If the vehicle

keeps a drive during several laps (or pre-

defined distance driving), then 𝑓 = 1.0 .

 Genetic encoding: Perception is defined by 5

bit binary code (n=5). And action is defined

by 2 bit binary code (k=2). The code indicates

a number (index) of 25 2 action-value table.

The learning process is equal to fill the table,

satisfying the fitness f = 1.0.

4.1.3 Results

Figure 5 illustrates the results of trajectory of the

elitist. In this case, the trajectory is represented as a

loop line. We demonstrated for several courses, and

we found obstacle avoidance with static scene is

relatively easy. In practical use, solution of obstacle

avoidance which exists dynamic objects is needed.

This solution will show the next Case 2.

Figure 3: Screenshots of vehicle controller.

Figure 4: Genetic encoding for vehicle controller.

Figure 5: Trajectory of the elitist (vehicle controller).

4.2 Case 2: Action Game Controller

Next, our GA-based action learning is applied for

simplified action game, like Nintendo's classic game

Super Mario Bros. Figure 6 illustrates the

screenshots (minimum map size).

4.2.1 Game Rules

The following rules are applied:

 Character: The character can typically move

horizontally (left and right) and jump. The

2bit×25 table
1 0 1 1 1 0 01 0 1 0 1 0 0

turn right

・・・ ・・・0 1

[1,0,0,0,0]

vehicle with five

range sensors

right

left

perception

GA-based Action Learning

295

character can walk and run to the right and left

direction. The character can jump onto

obstacles or can jump over holes (gravity acts

on the character).

 Scene: Scene length is 5 times screen width.

Side scrolling is applied in accordance to the

character position. Wall blocks, holes,

enemies and flag pole (goal position) are

arranged into the scene (according to the

character position, they appear at their pre-

defined position).

 Game over: The character touches enemies or

downs holes.

 Task (goal): The character touches flag pole

(reach the goal position).

Figure 6: Screenshots of action game controller.

4.2.2 GA Rules

For genetic encoding, both perception-action rules

and the fitness function must be defined.

 Perception: Two sensor grids are used: enemy

sensor and obstacle sensor (Figure 7). These

sensors are defined as the 3 3 neighbour

cells around the character (3 3 is minimum

grid size). Enemy sensor is defined by 7 bit

binary code. When enemies or holes are

appeared in the neighbour cells, output is 1

(otherwise output is 0). Obstacle sensor is

defined by 5 bit binary code. When wall

blocks are appeared in the neighbour cells,

output is 1 (otherwise output is 0).

 Action: Three actions (move left, move right

and jump) are encoded by 2 bit binary code.

 Fitness (f): The fitness function is basically

defined as the distance to the flag pole (goal).

Therefore, if the character reaches the flag

pole, then 𝑓 = 1.0 . If the character touches

one of enemies, then 𝑓 = 𝜀 . If the character

downs a hole, then 𝑓 = 𝜀 .

 Genetic encoding: Perception is defined by 12

bit binary code (n=12). And action is defined

by 2 bit binary code (k=2). The code indicates

a number (index) of 21 2 action-value table.

The learning process is equal to fill the table,

satisfying the fitness f = 1.0.

Figure 7: Genetic encoding for action game controller.

4.2.3 Results

Figure 8 illustrates the results of trajectory of the

elitist. Although perception represented by 3 3

neighbour cells is a slight clue, avoidance actions

with dynamic objects (enemies) are acquired.

Figure 9 illustrates an example of the acquired

action. When an enemy closes with the character

from right to left, the character can avoid it (i.e.,

jumping action after rearward moving).

Figure 8: Trajectory of the elitist (action game controller).

Figure 9: Acquired jumping action after rearward moving.

4.3 Case 3: Map Navigator

Our GA-based learning is extended to learn action

series. In this experiment, our method is applied for

simplified character map navigation (i.e., path

enemy sensor

0 0 0

0 0

0 1

0 0 0

0 0

2bit 212 table

obstacle sensor

1 0 1 1 1 0 01 0 1 0 1 0 0

right + jump
・・・ ・・・1 1

[0,0,0,0,0,0,1][0,0,0,0,0]

perception

ECTA 2015 - 7th International Conference on Evolutionary Computation Theory and Applications

296

finding problem). Path finding problem in maze is

typically realized by another algorithms such as A*

algorithm. In this case, it assumes that the character

does not have any map information (i.e., a graph) to

solve it. This restriction is often used in

reinforcement learning. Figure 10 illustrates the

screenshots.

4.3.1 Game Rules

The following rules are applied:

 Character: The character can typically move

up, right, down and left (four direction) if he is

on the road in a map. The character can

perceive the direction of an item at a time. The

character can collect the item.

 Map: The map is constructed by 20 x 10 wall

blocks. Several items are arranged in the map.

 Task (goal): The task is to collect all items in

the map (or to visit all check points). One

episode corresponds to collect an item.

4.3.2 GA Rules

For genetic encoding, the following rules must be

defined:

 Perception: (𝑑𝑥, 𝑑𝑦) is defined by a signed

vector of the current item direction. They are

represented by 4 bit binary code, (0, 0), (-1,-1),

… , (+1,+1). (See Figure 11).

 Action: 4 action series are stored for a

perception. Each action is encoded by 2 bit

binary code (move up, right, down and left).

 Fitness (f): If the character can collect an item,

then f = 1.0 (then, a new item is set as the

next target).

 Genetic encoding: Perception is defined by 4

bit binary code (n=4). Each action is defined

by 2 bit binary code. In this case, 4 action

series are defined (m=4), therefore, action

series are defined by 2 4 = 8 bit binary

code. The code indicates a number (index) of

24 8 action-value table. The learning

process is equal to the acquisition of the

action-value table, satisfying the fitness f = 1.0.

4.3.3 Results

Figure 12 illustrates the results of trajectory of the

elitist. Four items were successfully acquired in

order (a)-(d) in Figure 12. Moving operations were

properly applied according to just item

direction (𝑑𝑥, 𝑑𝑦).

Figure 13 (a) illustrates a failure in learning

process (m=4). However, applying iterated learning

process, the character could come near the target

item (Figure 13 (b)). We found that augmenting

action series eliminates this failure (m is more than

5). Figure 13 (c) shows the successful case (m=5).

According to the task level, the length of action

series m should be defined.

Figure 10: Screenshots of map navigator.

Figure 11: Genetic encoding for map navigator.

(a) (b)

(c) (d)

Figure 12: Trajectory of the elitist (map navigator).

5 CONCLUSIONS

We have proposed a GA-based action learning

framework. In our framework, GA is used for

learning perception-action rules as a table. In the

experiments, first, we have demonstrated vehicle

controller to solve static object avoidance problem.

Next, we demonstrated action game controller for

action series 𝑎𝑖

 (8 bit code)

1 0 1 1 1 0 01 0 1 0 1 0 0・・・ ・・・

[1,0, 1,0]
perception
(4 bit code)

(𝑥, 𝑑𝑦)

8 bit×24 table

1 0 0 1 1 1・・

𝑎1 𝑎 𝑎4

GA-based Action Learning

297

(a) (b)

(c)

Figure 13: Influence on the length of action series.

dynamic object avoidance. The genetic encoding

was performed by constructing a 21 2 action-

value table. Larger table is necessary to extend

sensor grid size and to add various actions. However,

we think that it can be solved as one of

implementation issues. This approach is effective,

but is just applicable for such object avoidance

problem. Therefore, we proposed a new method that

considers action series under the same GA-based

learning framework. In the experiments, we showed

that map navigator is successfully performed using

action series learning. Especially, our extended

approach is able to acquire action series (4 set of

moving operations) from the slight perceptual data.

This approach provides a capable of effectively

compressing for candidates of actions.

Future work includes development of practical

application and more complex action series

acquisition (for action game controller).

REFERENCES

Togelius, Julian, Sergey Karakovskiy, and Robin

Baumgarten, 2010. The 2009 mario ai competition,

Evolutionary Computation (CEC), IEEE Congress on.

IEEE.

Shaker, Noor, et al., 2011. The 2010 Mario AI

championship: Level generation track, Computational

Intelligence and AI in Games, IEEE Transactions on

3.4 : 332-347.

Yannakakis, Geogios N, 2012. Game AI revisited.

Proceedings of the 9th conference on Computing

Frontiers. ACM.

Gu, Dongbing, et al., 2003. GA-based learning in

behaviour based robotics, Computational Intelligence

in Robotics and Automation. IEEE International

Symposium on 3.

Brooks, Rodney A., 2014. The role of learning in

autonomous robots, Proceedings of the fourth annual

workshop on Computational learning theory.

Siegwart, Roland, Illah Reza Nourbakhsh, and Davide

Scaramuzza, 2011. Introduction to autonomous mobile

robots. MIT press.

Kuffner Jr, James J, 1998. Goal-directed navigation for

animated characters using real-time path planning and

control, Modelling and Motion Capture Techniques

for Virtual Environments. Springer Berlin Heidelberg,

171-186.

Mnih, Volodymyr, et al., 2015. Human-level control

through deep reinforcement learning, Nature

518.7540: 529-533.

ECTA 2015 - 7th International Conference on Evolutionary Computation Theory and Applications

298

