
FPGA Implementation of a Multi-Population PBIL Algorithm

João Paulo Coelho1,3, Tatiana M. Pinho2,3 and José Boaventura-Cunha2,3

1Instituto Politécnico de Bragança, Escola Superior de Tecnologia e Gestão,
Campus de Sta. Apolónia, 5300-253 Bragança, Portugal

2Universidade de Trás-os-Montes e Alto Douro, UTAD, Escola de Ciências e Tecnologia,
Quinta de Prados, 5000-801 Vila Real, Portugal

3INESC TEC Technology and Science, Campus da FEUP, 4200 - 465, Porto, Portugal

Keywords: Population based Incremental Learning, Multi-Population Evolutionary Algorithms, FPGA.

Abstract: Evolutionary-based algorithms play an important role in finding solutions to many problems that are not solved
by classical methods, and particularly so for those cases where solutions lie within extreme non-convex mul-
tidimensional spaces. The intrinsic parallel structure of evolutionary algorithms are amenable to the simulta-
neous testing of multiple solutions; this has proved essential to the circumvention of local optima, and such
robustness comes with high computational overhead, though custom digital processor use may reduce this
cost. This paper presents a new implementation of an old, and almost forgotten, evolutionary algorithm: the
population-based incremental learning method. We show that the structure of this algorithm is well suited to
implementation within programmable logic, as compared with contemporary genetic algorithms. Further, the
inherent concurrency of our FPGA implementation facilitates the integration and testing of micro-populations.

1 INTRODUCTION

Frequently the population-based incremental learning
(PBIL) algorithm is defined as a method that com-
bines both the genetic algorithms paradigm and com-
petitive learning for function optimization. It was de-
vised in the ends of the nineties by S. Baluja as a
way to circumvent the lack of performance of con-
ventional genetic algorithms in some particular opti-
mization problems (Baluja, 1994).

Unlike genetic algorithms, PBIL does not han-
dle an entire population of potential problem solu-
tions. Rather, it only manipulates a single point
around which all the next population elements will
be sampled from. This concept was borrowed from
the competitive learning paradigm (Rumelhart and
Zipser, 1986; Duda et al., 2001; Budura et al., 2006)
leading to the introduction of a probability vector.

During each running epoch, the probability vec-
tor is disturbed toward the best current solution with a
strength that depends on the value of a parameter de-
noted by learning rate. In (Folly and Venayagamoor-
thy, 2009) the effect of the learning rate on PBIL per-
formance was evaluated within a power system con-
troller design framework. The authors describe that,
for high learning rate values, the population diversity

is lost. On the other hand, for low learning rate values,
the algorithm exploration ability is enhanced leading
to a more diversified population.

The PBIL algorithm was initially devised to work
with a base-2 solution encoding scheme. However,
this is not an absolute condition. Multiple base ver-
sions of PBIL have already been devised by (Servais
et al., 1997). This approach can lead to an increase
solution resolution without incrementing the encod-
ing dimension.

Meta-heuristics algorithms have been applied to
dynamic optimization problems (Yang et al., 2007;
Nguyen et al., 2012). The key issue in dealing with
this type of problems is the ability to maintain the
population adaptability. In (Yang and Yao, 2003) a
dual population PBIL algorithm was devised. This
approach operates on two dual probability vectors re-
garding the search space central point, in order to
maintain the optimum traceability.

One of the main problems in meta-heuristics
search algorithms concerns the duality between ex-
ploration and exploitation. Given a sufficient number
of generations, the typical population becomes biased
toward the best search space point (Gonzalez et al.,
2001); the algorithm is restricted to searching a nar-
row region of the space. Even if other strategies are

Coelho, J., Pinho, T. and Boaventura-Cunha, J..
FPGA Implementation of a Multi-Population PBIL Algorithm.
In Proceedings of the 7th International Joint Conference on Computational Intelligence (IJCCI 2015) - Volume 1: ECTA, pages 279-286
ISBN: 978-989-758-157-1
Copyright c© 2015 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

279



available, one of the promising techniques requires
the parallel evolution, on the same search space, of
two or more PBIL algorithms. For example (Folly,
2013) provides some results regarding the use of dual
population PBIL for power system controller design.
Each population evolves independently. However, the
number of solutions sampled from each probability
vector is variable and depends on the relative fitness
of the best solution found by each population.

The exact nature of this approach claims to be im-
plemented in a dedicated digital processor. In partic-
ular within an architecture that allows the execution
of true parallel processes as in multi-core processors.
Since, in practice, time is a severe handicap associated
to all the evolutionary algorithms, the digital proces-
sor should exchange computation versatility by com-
putation efficiency and scalability. For this reason, a
custom designed processor, based for example on a
field programmable gate array (FPGA) architecture,
is the obvious choice. On one hand it takes advan-
tage of its combinatory power for fast execution and,
on the other hand, it provides the ability to simultane-
ously run an arbitrary number of PBIL instances.

Hardware implementation of evolutionary algo-
rithms, based on the genetic algorithm paradigm, has
already been performed by several authors. Begin-
ning with the work of (Scott et al., 1995) in the middle
of the nineties, where a general purpose genetic algo-
rithm was implemented using a decentralized topol-
ogy. They reported an average time saving, during
the search procedure, of 94% when compared with
its software implementation. Since the publication of
this seminal work, many others have followed. For
example (Tommiska and Vuori, 1996), (Tang and Yip,
2004), (Fernando et al., 2010) and (Spina, 2010) just
to name a few. However, as far as the authors have
knowledge, the hardware implementation of PBIL has
never been attempted. Some hardware implementa-
tion advantages of PBIL over genetic algorithms can
be enumerated. Namely the fact that PBIL leads to a
lower computation overhead since it is conceptually
simpler and, due to the fact that only the best element
of the population is used, the required memory re-
sources are more parsimony leading to the possibility
of evolving many more populations simultaneously.

In this line of thoughts, this work presents the re-
sults concerning a hardware implementation of both
single population and multi-population PBIL. This
approach will be compared to an equivalent software
implementation using a high level programming lan-
guage having the checkerboard problem as a bench-
mark (Garibay et al., 2003).

The remainder of this work is organized as fol-
lows. Section 2 describes the PBIL algorithm, its

features and how it can be extended to encompass
a multi-population framework. Section 3 deals with
some issues regarding its hardware implementation.
The testbench problem is provided in section 4 to-
gether with the obtained experimental results. Finally,
the main conclusions, and future research directions,
are presented in section 5.

2 THE PBIL ALGORITHM

The population-based incremental learning is a prob-
abilistic search technique which combines notions of
both evolutionary simulation and competitive learn-
ing (Baluja, 1994). Conceptually it belongs to a
class of stochastic search methods generally referred
as “estimation of distribution” algorithms (Larranaga
and Lozano, 2002; Pelikan et al., 2002; Hauschild and
Pelikan, 2011). Transversal to this class of methods is
the concept of probabilistic modelling of solutions. In
PBIL this approach is carried out by means of a data
structure denoted by probability vector. The probabil-
ity vector is expressed as a real-valued vector whose
elements are in the range between 0.0 and 1.0. The
probability vector plays a central role in the opera-
tion dynamics of PBIL. As a matter of fact, and unlike
many evolutionary algorithms, there is no manipula-
tion of individuals using operators such as crossover.
There is no individuals update from one generation to
another. All the operations are done in the probabil-
ity vector entity. Hence one can argue that the PBIL
conceptual approach leads to a simpler algorithm to
implement, when comparing to other meta-heuristic
search methods. This fact translates to a more parsi-
mony use of computational resources such as memory
and algebraic operations.

On its canonical form, the PBIL algorithm con-
sists on two primitives: update and adjustment of the
probability vector. The update primitive is responsi-
ble for the learning step and the adjustment primitive
to keep the exploration ability of the algorithm.

The probability vector update law represents a
disturbance on the actual probability vector toward
the binary pattern of the best current solution. Let
νi ∈ [0,1]n×d denote the probability vector at the cur-
rent generation i. The probability vector, which will
be used to generate the next set of population ele-
ments, is computed by:

νi+1 = (1−ρ) ·νi ·
(
1− (βi⊕ωi)

)
+ · · ·

+(ρ+µ) · (βi∧ ω̄i)+ρ · (βi∧ωi)
(1)

where ρ ∈ [0,1] denotes the learning rate, βi ∈
{0,1}n×d is the best found solution at generation i

ECTA 2015 - 7th International Conference on Evolutionary Computation Theory and Applications

280



and ωi ∈ {0,1}n×d is the worst solution found at gen-
eration i. The bar over ω denotes the bitwise binary
complement, ⊕ and ∧ the “exclusive or” and “and”
logical operators respectively, 1 is a vector of ones
with dimension n×d and µ ∈ [0,1] is usually referred
to as the negative learning rate. This negative learning
rate is an additional disturbance applied to the prob-
ability vector in the direction where the bits from the
best individual differ from the ones of the worst. No-
tice that the dot operation between two equal length
vectors refers to the Hadamard product.

The learning rate parameter has a huge effect on
how PBIL navigates along the search space. In gen-
eral, this coefficient influences the speed with which
the probability vector tends to the point that is cur-
rently being evaluated. Since in PBIL the probabil-
ity vector is used to generate the next set of sample
points, the learning rate affects the portions of the
function space that will be explored. If the learning
rate is too low, then the algorithm requires a large
number of generations until its behavior deviates from
random walk and becomes following a coherent di-
rection. On the other hand, if the learning rate is too
high then the initial population best individual will
severely bias the rest of the search process toward the
space region around it. This effect of early dominance
prevents a proper search space exploration. This bias-
variance trade-off can be dealt by means of an adap-
tive learning rate. A common choice is to select a
very low learning rate at the beginning of the search
process and then increasing it linearly toward some
maximum value (Folly and Venayagamoorthy, 2009).

The PBIL algorithm also faces the problem of
premature convergence. As the probabilities become
closer to their bounds, the lack of diversity becomes
gradually more pronounced. One way to prevent
this occurrence comprises the definition of a proba-
bility vector adjustment operation. This operation is
equivalent to the genetic algorithms mutation opera-
tor. However, unlike genetic algorithms, it is usually
applied on the probability vector and not in the indi-
viduals. In PBIL this mutation, or adjustment oper-
ation, takes the appearance of a disturbance on each
probability vector element.

Let ζi be a vector with dimension n×d, in GF(2),
and whose jth element is 1 if, and only if, an uniform
generated random number between [0,1] is lower than
a threshold value, η ∈ [0,1], designated by mutation
probability. In this context, the probability vector ad-
justment operation is governed according to:

νi+1 = (1−δ ·ζi) ·νi +δ ·ζi · εi (2)

where the parameter δ ∈ [0,1] denotes the mutation
level strength and εi ∈ {0,1}n×d is a binary string
whose elements are drawn, in each generation, from

an uniform two bits random number generator. Once
again 1 ∈ {1}n×d .

As usual there are no exact rules to define the best
parameters. However, as a rule of thumb, it is fre-
quent to select a learning ratio close to ρ = 0.1 and a
negative learning ratio around µ= 0.07. The mutation
level is usually selected near δ = 0.05. Nevertheless
those values can be made adaptive and change accord-
ing to some set of rules like population variance, gen-
eration progress, among others.

Before ending this section it is important to em-
phasize that, in normal operation, the iterative dis-
tilling of newer solutions leads to a reduction in
the search engine exploration capability. This lack
of diversity can be tackled by increasing the muta-
tion probability η. However, this strategy has al-
ways the side effect of corrupting the knowledge gath-
ered by the PBIL algorithm. In order to bypass this
exploration-exploitation compromise a multiple pop-
ulations strategy can be addressed. The following sec-
tion presents the concept behind this type of solution
and highlights its benefits when compared to the sin-
gle population PBIL.

2.1 Multi-Population PBIL

Parallelization is a frequent word when talking about
population based search methods. This notion usually
refers to the fact that, conceptually, this class of algo-
rithms evaluates a set of solutions in parallel. As a
matter of fact, in the common implementation form,
those solutions are evaluated sequentially within one
generation time window. Nevertheless, this approach
leads to a parallel search engine in contrast to the
usual gradient-based techniques where only an initial
point moves, according to some law, along the search
space local gradient.

On the other hand parallelization can be under-
stood in a multi-population paradigm where a num-
ber of arbitrary distinct populations evolves simulta-
neously. This strategy has been proved to be useful
when dealing with time-dependent optimization prob-
lems (Branke et al., 2000) or as a way to ensure diver-
sity in multi-modal search spaces (Siarry et al., 2002).

Using multiple populations, instead of a single
one, presents many challenges. Specially regarding
the way the information provided by the set of popu-
lations is combined. This issue is transversal to all the
multi-population platforms including PBIL. The only
thing that changes is the complexity on how those in-
terprocess communications occur.

For example in (Yang and Yao, 2003) and (Folly,
2013) two different PBIL populations are generated
over a dynamic search space. Each PBIL instance

FPGA Implementation of a Multi-Population PBIL Algorithm

281



has its own probability vector and the search direc-
tion is biased according to the overall relative best so-
lution. This is accomplished by providing more sam-
pling from the best of the two PBIL instances. If one
probability vector outperforms the other, its sample
size is increased by some arbitrary amount ∆ while
the other is reduced by the same quantity.

In this article an alternative strategy is proposed.
Each PBIL instance will be described within a process
and the inter-processes information sharing is defined
by means of the following law:

ν j = (1− γ) ·ν j + γ ·ν∗ (3)

where the index j ∈ {1, · · · , p} refers to one of the
p populations available from the pool and ν∗ is the
current best population probability vector. The coef-
ficient γ ∈ [0,1] is used to define the amount of cross-
population information sharing. If γ = 0, each popu-
lation independently evolves. Alternatively, if γ = 1,
this paradigm collapses into a single population PBIL.

Further information regarding this technique will
be provided during section 4. The next section deals
with details regarding the hardware implementation
of both single population and multi-population PBIL.

3 HARDWARE DEVELOPMENT

This section presents the implementation details con-
cerning the integration of the algorithm described in
the previous section into a programmable logic de-
vice. This description will be divided into two sub-
sections. The first deals with the hardware structure.
In particular the FPGA development board character-
istics and remaining interface hardware. The second
subsection describes the overall algorithm architec-
ture that will be programmed into the FPGA.

3.1 FPGA Development Board

The multi-population PBIL algorithm, discussed in
the previous section, will be embedded into a cus-
tom hardware processor where several population in-
stances can run in real parallel. The digital hardware
processor devised was built over a FPGA manufac-
tured by ALTERA R© Corporation. In particular we will
deal with a Cyclone II (EP2C5T144C8) chip which
has a core voltage of 1.2V, 4608 logic elements, 89
user input/output lines (I/O), 117 KB memory and 26
embedded 9 bits hardware (Altera, 2008). For an ex-
haustive information regarding this device character-
istics please refer to the device datasheet or to the sev-
eral booklets provided by ALTERA R© on its web site.

The development board used in this work, the
EP2C5/EP2C8, is a very low cost solution that in-
cludes, besides the FPGA itself, a 50 MHz crystal os-
cillator, a pair of voltage regulators and a 4 MB FPGA
configuration memory (EPCS4SI8). The used hard-
ware is illustrated in Figure 1. The left image presents
the overall shape of the development board used and,
the right image, a full preview of the installed hard-
ware. Additionally a 20× 4 lines LCD display was
interfaced in order to make easily observable the final
simulation parameters such as the elapsed time, the
best found solutions and so on.

Figure 1: At the left, an image of the low-cost FPGA devel-
opment board used in this work and, at the right, the exper-
imental setup assembled that includes, besides the develop-
ment board, a 20×4 lines LCD display.

The FPGA is set, through a JTAG interface hard-
ware programmer, using the Quartus II software pro-
vided by ALTERA R© . This software package follows
an integrated development environment paradigm
where the user accesses to a myriad of different tools
from the same infrastructure. Distinct tools and lan-
guages can be used to describe the target hardware
functionality. Furthermore it is possible to access,
from the same software environment, a set of func-
tions that expands from hardware analysis, synthesis,
program compilation, device programming and dif-
ferent types of simulation capabilities. VHDL is one
of the hardware description languages that the soft-
ware can handle and is the one used during this work.

3.2 FPGA Multi-Population PBIL

In any evolutionary algorithm, independently of its in-
spiration, a number of potential solutions are evalu-
ated, in parallel, during each generation. The search
through the search space flows from those points to-
ward new ones according to some set of rules. The
difference between those rules is what make all the
evolutionary algorithms flavours that exist. From
genetic algorithms, early in the seventies, to krill-
herd optimization passing from ant colonies, cuckoo
search, fireflies, glowworms, bats, and so forth. In
this context, parallelism does not refer to the ability
to parallelize the evolutionary algorithm implementa-
tion. It concerns the fact that it is possible to evalu-

ECTA 2015 - 7th International Conference on Evolutionary Computation Theory and Applications

282



ate an arbitrary number of potential solutions in each
generation. This is usually known as implicit paral-
lelism. Of course this parallelism idea is, in fact, im-
plemented sequentially in the major part of the com-
puter languages. Additionally this type of parallelism
tends to collapse since, after a sufficient number of
generations, the selection pressure bias the solutions
to became the same. Hence, in fact, when the popula-
tion converges the algorithm has the task to evaluate
a large number of very similar solutions. This lack
of population diversity can be tackled by means of
several strategies. For example using mutation oper-
ators or by means of fitness sharing techniques. An-
other more interesting technique is multi-population
evolution where several populations evolve simulta-
neously. This paradigm can be easily implemented
using programmable logic devices since, within this
type of hardware, it is possible to effectively evolve,
in true concurrent configuration, a set of smaller size
populations. Those populations share information be-
tween them by an intelligence exchange mechanism
in order to simultaneously explore the full extend of
the search space while maintaining inter-population
diversity. This kind of concurrent evolution of several
populations is usually referred as explicit parallelism.

In the case of genetic algorithms, there have been
already many attempts to implement this method into
a FPGA. However, they usually involve only a sin-
gle population with the aim of take advantage of
the fast processing power provided by combinatorial
processors (Scott et al., 1995; Tommiska and Vuori,
1996; Tang and Yip, 2004; Narayanan, 2005; Fer-
nando et al., 2010; Spina, 2010). In this work an
alternative evolutionary structure is embedded into a
FPGA. However, as far as the present authors have
knowledge, there was never been any attempt to im-
plement the PBIL in hardware. This believe is even
stronger given that our aim is to put forward an ar-
chitecture that is able to handle several populations in
parallel. In this context Figure 2 presents the overall
multi-population PBIL algorithm structure embedded
within the FPGA.

Figure 2: FPGA multi-population PBIL architecture.

As shown in the figure above, each PBIL instance
is executed inside a process and, in abstract, it is pos-
sible to set p populations simultaneously. Each pop-
ulation has its own probability vector and, after fit-
ness evaluation, its values are updated. The update is
performed taking into consideration each population
current best individual and the inter-population best
individual. The objective of the inter-process com-
munication module is to provide, at any time instant,
the best global individual to each of the running PBIL
instances. At each processing cycle, all the processes
are executed and, inside each process, a n population
PBIL instance is embedded.

Inside the process the single population PBIL op-
erations sequence is performed: first the N population
elements are generated according to the present prob-
ability vector. Then each element fitness is computed
and both the best and worst elements are used in the
probability vector update scheme. The probability ac-
tualization also requires the knowledge of the current
best inter-population individual. This information is
provided by the inter-process communication module
which is, in its essence, just a shared variable.

A fundamental module, virtually in all evolution-
ary algorithms, is the random number generator. This
block also plays a fundamental role in the PBIL al-
gorithm activity. As a matter of fact its activity range
from population generation to the mutation operation.

Even if true randomness is impossible to achieve
using deterministic software rules, it is possible to
generate number sequences with a very low autocor-
relation index for lags higher than zero. There are sev-
eral methods to obtain those kind of sequences. Some
of the most popular ones are the linear feedback shift
register (LFSR), the cellular automaton (CA) and the
linear congruential generator (LCG). Nevertheless it
seems that the choice of the random number genera-
tor method is not critical to the evolutionary algorithm
performance (Meysenburg and Foster, 1999; Martin,
2002). In this work a LCG random number generator
strategy with a 31 bit modulus and a multiplier equal
to 2147483629 was used.

Having described the multi-population PBIL
hardware architecture, the following section will deal
with its use in finding a solution of a classical opti-
mization problem commonly known as the checker-
board challenge.

4 EXPERIMENTAL RESULTS

The problem addressed in this article regards the
checkerboard problem referred in (Baluja, 1994). The
objective is to be able to find a solution that will

FPGA Implementation of a Multi-Population PBIL Algorithm

283



closely match the pattern of a generic checkerboard.
A checkerboard is a matricial square structure, with a
total of d elements, with two types of cells, “black”
and “white”, arranged in an alternated colour pattern
along its lines or columns.

Let the checkerboard colour cells be encoded by
an one bit variable. For example “black” is associ-
ated to logical “1” and “white” to logical “0”. Each
location with a ‘1’ should be surrounded, in all four
directions, by a ‘0’ and vice-versa with the exceptions
of the cells located at the board boundaries. Follow-
ing this reasoning, the problem solution will be en-
coded as a d bit string. In particular, in this work, a
576 bit solution string will be assumed. This solution
can be interpreted as a particular pattern for a 24×24
checkerboard grid.

In short, the PBIL algorithm will be tested regard-
ing its ability to generate a solution that matches the
checkerboard pattern of ‘0’ and ‘1’ with the highest
probability possible. To perform this operation an ob-
jective function must be devised that will be used to
assign a degree of performance to a given solution. In
(Baluja, 1994) this fitness is measured by counting the
number of correct surrounding bits, of each bit posi-
tion, for a subspace grid centred at the space checker-
board. That is, the squares lines that follow the board
boundary are not taken into account on the objective
function. In this work all the table cells are consid-
ered. In particular the objective function regards the
product of the number of different bits between a par-
ticular solution and two different template vectors that
match the two possible board distribution layouts. In
order to illustrate this concept refer to Figure 3 where
(a) and (b) represent the two valid board configura-
tions for a 8×8 cells checkerboard. As it can be eas-
ily seen, one of the boards is just a 90 degree rotation
of the other. Recall that the state of each board cell is
coded using one bit information. In particular a black
cell is represented as ‘1’ and a white cell as ‘0’.

Figure 3: (a) and (b) regard the two possible checkerboard
templates. (c) is an example of an arbitrary generated board.

The image presented in Figure 3 (c) refers to an
arbitrary generated board. Its matching degree, re-
garding one of the template boards, is computed by:

Ft =

√
d

∑
i=1

√
d

∑
j=1

ti j⊗bi j (4)

where t ∈ {a,b} refers to one of the two possible

board templates: the one from Figure 3 (a) or Figure
3 (b). The variable d is the board dimension, i.e., the
total number of board cells, and ti j is the logical value
regarding the cell located at ith row and jth column
on the template board t. In the same line of taught,
bi j refers to the logical value of a cell placed at line i,
column j, of the an arbitrary board b.

For the example illustrated in Figure 3 the value of
Fa is equal to 39 and Fb equal to 25. Those numbers
can be interpreted as the closeness between the arbi-
trary generated board and the two possible target pat-
terns. The objective function that the algorithm will
seek to optimize is the product of Fa by Fb. This will
lead to a fitness value for the board in Figure 3 (c)
equal to 975. Hence the problem can be putted as to
find an arbitrary board b which minimizes the objec-
tive function:

F = ∏
t

Ft (5)

Notice that no constraints regarding the equilib-
rium between the number of white and black cells
are imposed. Hence the full factorial set of the d bits
strings is considered admissible.

In order to get an intuition about the problem com-
plexity let the board b be interpreted as the d bits bi-
nary encoding of integers between 0 and 2d − 1. As
can be viewed, the number of possible boards com-
binations grows exponentially with d. For now let’s
assume a very small board with d = 4. In this frame-
work the objective function expressed at (5) can be
represented, in a 1D plot, by Figure 4.

Figure 4: Fitness value as a function of all the possible 16
cells combinations for a 2× 2 checkerboard. The abcissas
regards the integer conversion of the binary codeword ob-
tained by taking the bits along the table lines, from left to
right, assuming that the most significant bit is at the upper
left corner and the least significant the one at the lower right
table corner.

From visual inspection it is possible to observe the
multimodal nature of the problem as long as the ex-
istence of two minima locations. There are no sys-
tematic paths along which the optimization algorithm
could infer the optima location. In this context it is a
complex problem.

Due to the FPGA true parallel processing capabil-
ity, the implementation of the PBIL version, which

ECTA 2015 - 7th International Conference on Evolutionary Computation Theory and Applications

284



promotes the co-evolution of many populations si-
multaneously, is the current addressed methodology.

The first set of experiments will be conducted us-
ing a software approach. The PBIL algorithm, de-
scribed at section 2.1, was codded, within a numeri-
cal computation environment, using a high level com-
puter language. The implemented programs were
fully vectorized for speed purposes and run over an
Intel R© CoreTM I5-3230M processor platform.

A total of 10 PBIL instances, each one evolving
10 population elements, were executed during 2500
generations using ρ = 0.01, µ = 0.0005, η = 0.02
and δ = 0.005. Remark that, instead of initializ-
ing the probability vectors with the constant 0.5, this
data structure was loaded, for each of the 10 popu-
lations, using values taken from a normal distributed
(pseudo) random number process with values in the
range ]0,1[. With this strategy it is assured that the al-
gorithm explores different points of the search space.

The first set of one hundred experiments was con-
ducted assuming γ = 0. Each of the ten populations
average fitness is presented at Figure 5.

Figure 5: Multi-population average fitness evolution, along
2500 generations, using 100 tryouts.

As can be seen, in average, all the popula-
tions have the same behavior regarding its conver-
gence. Moreover, without cross communication be-
tween processes, neither one of the ten populations
was able to converge consistently to one of the two
possible global optima. Regarding the computational
load it was measured an average CPU time, per run,
of 7.8 seconds. After increasing the cross-population
information, by incrementing γ from 0 to 0.1, and
repeating the experiment sets, it is now possible to
observe, from Figure 5, that the convergence to the
global minimum is consistently achieved in contrast
to the previous case. Furthermore, by increasing even
more the value of γ, it is possible to witness a faster
convergence rate. To illustrate this statement, Fig-
ure 5 presents the convergence rate assuming γ = 0.8.
The best solution is now found after less than 2000
generations in contrast with the earlier case where
2500 generations were, in average, needed to find
the optima. From the obtained results it is possible
to conclude that the PBIL is able to find the solu-
tion of the checkerboard problem as initially stated

in (Baluja, 1994). In this paper it was shown that this
was even possible by dividing a large population into
smaller ones. This large population dismemberment,
into lower size ones, favors its implementation in a
parallel processing environment. Moreover different
initial points on the surface can be explored simul-
taneously by providing different initial probabilities
vectors to each population in the pool. It is also pos-
sible to confirm the success of the inter-population in-
formation exchange strategy devised. Filtering each
of the probability vectors using the one from the best
fittest population promotes a faster convergence to a
global optimum. Having established that this opti-
mization approach is an effective method to solve the
checkerboard problem, the next step is to execute it
on the dedicated hardware digital processor. Under
this condition, the hardware based multi-population
PBIL was driven under the same test conditions as the
software version regarding both the number of popu-
lations, individuals per population and remain tuning
parameters. As expected, in term of convergence, the
obtained results were equivalent to the ones presented
at Figure 5. However, by using dedicated hardware,
the execution time was substantially decreased by a
factor near 3. That is, similar results were obtained,
at the end of 2500 generations, after only 2.8 seconds.
This time reduction can be further decreased by using
an higher performance FPGA’s such as the ones form
the ALTERA R© STRATIX family. This can lead to the
possibility of using this type of optimization method
in real-time applications when high dynamics are in-
volved.

5 CONCLUSIONS

The PBIL has, at the present time, more than two
decades of existence. This is a stochastic optimiza-
tion method belonging to a broad class of methods
known under the designation of distribution estima-
tion algorithms. Even if this method has proven to
be very effective on solving some types of problems
where other meta-heuristic approaches fail, it has be-
come gradually obscured by the proliferation of a
countless new evolutionary methods such as particle
swarm optimization, cuckoo search, krill heard opti-
mization among many other methods. However, nei-
ther of them has reached, in the present authors opin-
ion, the degree of simplicity and fluidity of PBIL. As
a matter of fact, the PBIL algorithm is conceptually
simpler which leads to faster execution times when
compared with the other techniques. Processing time
is a very important issue when dealing with problems
requiring large population evolving during extensive

FPGA Implementation of a Multi-Population PBIL Algorithm

285



generations number or when real-time solution find-
ing must be provided. Allied to the optimization al-
gorithm simplicity, the execution time can be narrow
down by using a special designed digital processor in-
stead of a general purpose microprocessor such as the
ones that equip the common domestic personal com-
puters. The main contributions of this work can be
summarized into three main points: the demonstra-
tion that it is possible to execute, in a very efficient
fashion, the PBIL algorithm using a programmable
logic device; the fact that, in this case, the exten-
sion of the original single-population approach to a
multi-population one is naturally extended through
the instantiation of new VHDL processes; and finally
that the interconnection between the populations, in
a multi-population framework, can happen easily at
the probability vectors level. This multi-population
hardware based approach was applied to the checker-
board problem which has been proved to be a decep-
tive type problem for other evolutionary algorithms.
Namely the genetic algorithms. The obtained results
show that, not only the PBIL algorithm was able to
solve the problem, but it was able to do it in a time
fraction when comparing to its implementation using
a pure software approach over a generic microproces-
sor platform.

REFERENCES

Altera (2008). Cyclone ii device handbook (volume i).
Technical report, Altera Corporation.

Baluja, S. (1994). Population-based incremental learning.
Technical report, Carnegie Mellon University.

Branke, J., Kaussler, T., Smidt, C., and Schmeck, H. (2000).
A multi-population approach to dynamic optimization
problems. In Evolutionary Design and Manufacture.
Springer London.

Budura, G., Botoca, C., and Miclau, N. (2006). Compet-
itive learning algorithm for data clustering. Electron
Energetics, 19(2):261–269.

Duda, R., Hart, P., and Stork, D. (2001). Pattern classifica-
tion. John Wiley & Sons.

Fernando, P., Katkoori, S., Keymeulen, D., Zebulum, R.,
and Stoica, A. (2010). Customizable fpga ip core im-
plementation of a general-purpose genetic algorithm
engine. Evolutionary Computation, IEEE Transac-
tions on, 14:133–14.

Folly, K. (2013). Parallel pbil applied to power system con-
troller design. Journal of Artificial Intelligence and
Soft Computing Research, Vol. 3, No. 3:215–223.

Folly, K. A. and Venayagamoorthy, G. K. (2009). Effect
of learning rate on the performance of the population
based incremental learning algorithm. In Proceed-
ings of International Joint Conference on Neural Net-
works.

Garibay, O., Garibay, I., and Wu, A. (2003). The modular
genetic algorithm: Exploiting regularities in the prob-
lem space. In Computer and Information Sciences -
ISCIS 2003. Springer Berlin Heidelberg.

Gonzalez, C., Lozano, J., and Larranaga, P. (2001). The
convergence behavior of the pbil algorithm: A prelim-
inary approach. In Artificial Neural Nets and Genetic
Algorithms. Springer Vienna.

Hauschild, M. and Pelikan, M. (2011). An introduction
and survey of estimation of distribution algorithms.
Swarm and Evolutionary Computation, 1:111 – 128.

Larranaga, P. and Lozano, J., editors (2002). Estimation of
distribution algorithms: A new tool for Evolutionary
Computation. Kluwer, Boston.

Martin, P. (2002). An analysis of random number gener-
ators for a hardware implementation of genetic pro-
gramming using ffpga and handel-c. Technical report,
University of Essex.

Meysenburg, M. M. and Foster, J. A. (1999). Random gen-
erator quality and gp performance. In Proceedings of
the Genetic Evolutionary Computation Conference.

Narayanan, S. (2005). Hardware implementation of Genetic
Algorithm modules for intelligent systems. PhD thesis,
University of Cincinnati.

Nguyen, T. T., Yang, S., and Branke, J. (2012). Evolution-
ary dynamic optimization: A survey of the state of the
art. Swarm and Evolutionary Computation, 6:1–24.

Pelikan, M., Goldberg, D., and Lobo, F. (2002). A survey of
optimization by building and using probabilistic mod-
els. Computational Optimization and Applications,
21:5–20.

Rumelhart, D. and Zipser, D. (1986). Feature discovery by
competitive learning. MIT Press.

Scott, S., Samal, A., and Seth, S. (1995). Hga: A hardware-
based genetic algorithm. In Third International ACM
Symposium on Field-Programmable Gate Arrays.

Servais, M., de Jager, G., and Greene, J. R. (1997). Function
optimisation using multiple-base population based in-
cremental learning. In in Proceedings of the Eighth
Annual South African Workshop on Pattern Recogni-
tion.

Siarry, P., Pétrowski, A., and Bessaou, M. (2002). A multi-
population genetic algorithm aimed at multimodal op-
timization. Adv. Eng. Softw., 33:207–213.

Spina, M. L. (2010). Parallel genetic algorithm engine on
a FPGA. PhD thesis, University of South Florida.

Tang, W. and Yip, L. (2004). Hardware implementation of
genetic algorithms using fpga. In Proceedings of the
47th MWCAS.

Tommiska, M. and Vuori, J. (1996). Implementation of ge-
netic algorithms with programmable logic devices. In
Proceedings of 2NWGA.

Yang, S., Jin, Y., and Ong, Y., editors (2007). Evolution-
ary Computation in Dynamic and Uncertain Environ-
ments. Springer-Verlag.

Yang, S. and Yao, X. (2003). Dual population-based incre-
mental learning for problem optimization in dynamic
environments. In 7th Asia Pacific Symposium on In-
telligent and Evolutionary Systems.

ECTA 2015 - 7th International Conference on Evolutionary Computation Theory and Applications

286


