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Abstract: We consider the task of finding frequent parallel episodes in parallel point processes (or event sequences),
allowing for imprecise synchrony of the events constituting occurrences (temporal imprecision) as well as
incomplete occurrences (selective participation). The temporal imprecision problem is tackled by frequent
pattern mining using a graded notion of synchrony that captures both the number of instances of a pattern as
well as the precision of synchrony of its events. To cope with selective participation, a reduction sequence of
items (or event types) is formed based on found frequent patterns and guided by pattern overlap. We evaluate
the performance of this method on a large number of data sets with injected parallel episodes. We demonstrate
that, in contrast to binary synchrony where it pays to consider the pattern instances, graded synchrony performs
better with a pattern-based scheme than with an instance-based one, thus simplifying the procedure.

1 INTRODUCTION

We present elaborate methodology to identify mean-
ingful frequent synchronous patterns in event se-
quences (see e.g. (Mannila et al., 1997)), using the
principles of frequent item set mining (FIM) (see
e.g. (Borgelt, 2012)). As is well known, the objec-
tive of FIM is to find all item sets that are frequent in
a transaction database. FIM uses the support (number
of occurrences in the transactions) to define an item
set as frequent, namely if its support reaches or ex-
ceeds a (user-specified) minimum support threshold.
In standard FIM the support of an item set is a simple
count of transactions, whereas in our case the event
sequence data is continuous in nature, since it resides
in the time domain, and thus no (natural) transactions
exist. This continuous form causes several problems,
especially w.r.t. the definition of a support measure.

Frequent pattern mining in continuous time faces
two main problems: temporal imprecision and selec-
tive participation. The former is related to the syn-
chrony of events which is affected by temporal jit-
ter, due to which the events are usually not perfectly
aligned. In frequent pattern mining we tackle tem-
poral imprecision by defining that items (or events)
co-occur if they occur in a (user-specified) limited

time span from each other. In earlier work the
size of a maximum independent set (MIS) of such
synchronous groups of items, which can be com-
puted efficiently with a greedy algorithm (see (Borgelt
and Picado-Muino, 2013) and (Picado-Muino and
Borgelt, 2014)), is used as a support measure.
This method is referred to as binary synchrony in
(Ezennaya-Gómez and Borgelt, 2015), because it al-
lows only for two values: either a group of events is
synchronous, or it is not.

Unfortunately, a greedy algorithm no longer guar-
antees an optimal solution when a graded notion of
synchrony is introduced, while a backtracking ap-
proach (as it would be used for a general maximum in-
dependent set problem, which is NP-complete) takes
exponential time in the worst case. As a consequence,
an adaptation is necessary, which takes the form of
an approximation procedure to compute the support,
but maintaining the crucial property of support being
anti-monotone. To this end, (Ezennaya-Gómez and
Borgelt, 2015) defined a graded synchrony approach
where the support computation takes the precision of
synchrony into account. That is, a pattern that has
fewer occurrences, but in each of these the items oc-
cur very closely together in time, is rated better than
an item set, which has more instances, but in each
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of these the synchrony of the events is rather loose
(Ezennaya-Gómez and Borgelt, 2015).

The second problem, that is, selective participa-
tion, is related to the lack of occurrence of some
items, which produces incomplete pattern instances.
As a consequence, only subsets of the actual pattern
are present in the instances underlying a pattern. This
can be caused by imperfections of the measuring tech-
nology or by properties of the underlying process.
(Borgelt et al., 2015) presented an approach to solve
this problem in the binary synchrony setting we men-
tioned above. The goal of this paper is to transfer
this approach from the binary synchrony setting to a
graded synchrony setting, and to investigate whether
the same conclusions can be drawn about the different
variants considered in (Borgelt et al., 2015).

The application area that motivates our work is the
analysis of parallel spike trains in neurobiology. Such
spike trains are sequences of points in time, one per
neuron, that represent the times at which an electrical
impulse (action potential or spike) is emitted. The ob-
jective is to identify cell assemblies or groups of neu-
rons that tend to exhibit synchronous spiking. Such
cell assemblies were proposed in (Hebb, 1949) as a
model for encoding and processing information in bi-
ological neural networks. Since synchronous spike
input to receiving neurons is known to be more effec-
tive in generating output spikes (Abeles, 1982; König
et al., 1996), such cell assemblies are a plausible hy-
pothesis for neural information processing.

The objective of this paper is to adapt the se-
lective participation approach in an algorithm called
CoCoNAD (for Continuous-time Closed Neuron
Assembly Detection, a name inspired by the men-
tioned application domain) to detect significant syn-
chronous patterns with a graded notion of synchrony.

As a first step to identify of neuronal assemblies,
we look for frequent neuronal patterns (i.e. groups of
neurons that exhibit frequent synchronous spiking). In
this setting, both temporal imprecision and selective
participation are expected to be present and thus re-
quire proper treatment. Once frequent patterns are
detected, additional filtering is necessary to remove
those frequent patterns that are produced by chance
events and thus are not relevant. Then, detection of
selective participation is applied. Due to the graded
nature of the synchrony definition we adopt, the selec-
tive participation approach needs to be modified from
the approach presented in (Borgelt et al., 2015).

The remainder of this paper is structured as fol-
lows: Section 2 covers basic terminology and nota-
tion and introduces our graded notion of synchrony.
In Sections 3 and 4 we show how a support based on
graded synchrony is approximated and frequent syn-

chronous patterns are mined and filtered using pat-
tern spectrum filtering. In Section 5 we present our
methodology to identify frequent parallel episodes
with selective participation with a graded notion of
synchrony. Section 6 reports experimental results on
data sets with injected parallel episodes. Finally, in
Section 6 we draw conclusions from our discussion.

2 EVENT SEQUENCES &
SYNCHRONY

We adopt notation and terminology from (Mannila
et al., 1997) and (Ezennaya-Gómez and Borgelt,
2015). The data are sequences of events S =
{〈i1, t1〉, . . . ,〈im, tm〉}, m ∈ N, where ik in the event
〈ik, tk〉 is the event type or item (taken from an
item base B) and tk ∈ R is the time of occurrence
of ik, k ∈ {1, . . . ,m}. Note that the fact that S
is a set implies that there cannot be two events
with the same item occurring at the same time:
events with the same item must differ in their oc-
currence time and events occurring at the same time
must have different types/items. Such data may
as well be represented as parallel point processes
P = {〈i1,{t(1)1 , . . . , t(1)m1 }〉, . . . ,〈in,{t

(n)
1 , . . . , t(n)mn }〉} by

grouping events with the same item i ∈ B, n = |B|,
and listing the times of their occurrences for each of
them. Finally, note that in our motivating application
(i.e. spike train analysis), the items (or event types)
are the neurons and the corresponding point processes
list the times at which spikes were recorded for these
neurons (Ezennaya-Gómez and Borgelt, 2015).

A synchronous pattern (in S ) is defined as a set of
items I ⊆ B that occur several times (approximately)
synchronously in S . Formally, an instance (or occur-
rence) of such a synchronous pattern (or a set of syn-
chronous events for I) in an event sequence S with re-
spect to a user-specified time span w ∈ R+ is defined
as a subsequence R ⊆ S , which contains exactly one
event per item i ∈ I and which can be covered by a
time window at most w wide. Let φ the pattern op-
erator that yields the pattern underlying an instance,
φ(R ) = {i | 〈i, t〉 ∈ R }. Hence the set of all instances
of a pattern I ⊆ B, I 6= /0, in an event sequence S is

ES ,w(I) =
{

R ⊆ S | φ(R ) = I
∧|R |= |I|∧σw(R )> 0

}
,

where σw is the synchrony operator which measures
the degree of synchrony of the events in R .

The synchrony operator should conincide with bi-
nary synchrony for limiting cases as follows: if all
events in R coincide (i.e. have exactly the same oc-
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Figure 1: Degree of synchrony as a function of the distance
between the latest and the earliest event.

currence time, perfect synchrony), the degree of syn-
chrony should be 1, while it should be 0 if the events
are spread out farther than the window width w (no
synchrony). However, if the (time) distance between
the earliest and the latest event in R is between 0
and w, we want a degree of synchrony between 0
and 1.

Such a synchrony operator was described in
(Picado-Muino et al., 2012) based on the notion of
an influence map, which is placed at each event and
describes the vicinity around an event in which syn-
chrony with other events is defined. Such an influence
map for an event occurring at time t is defined as a
function

ft(x) =
{

1
w if x ∈ [t− w

2 , t +
w
2 ],

0 otherwise.

Based on influence maps, events are synchronous
iff their influence maps overlap. The area of the over-
lap measures the degree of synchrony (Figure 1):

σw(R ) =
∫ ∞

0
min
〈i,t〉∈R

ft(x,w) dx.

Alternatively, we may use the equivalent definition

σw(R ) = max
{

0,1− 1
w

(
max
〈i,t〉∈R

t− min
〈i,t〉∈R

t
)}

.

The synchrony operator underlies the definition of
a support operator sS ,w(I) that is used to mine syn-
chronous patterns. The support should capture (also)
the number of occurrences of a pattern in a given
event sequence S . In addition, in order to be effi-
cient, frequent pattern mining requires support to be
anti-monotone: ∀I ⊆ J ⊆ B : sS ,w(I) ≥ sS ,w(J). Or
in words: if an item is added to an item set, its sup-
port cannot increase. This implies the so-called apri-
ori property: ∀I,J ⊆ B : (J ⊇ I ∧ sS ,w(I) < smin)⇒
sS ,w(J) < smin. Or in words: no superset of an infre-
quent pattern can be frequent. The apriori property
allows to prune the search for frequent patterns effec-
tively (Borgelt, 2012).

Given a support measure and a (user-specified)
minimum support smin, the task of frequent syn-
chronous pattern mining is defined as the task to iden-
tify all item sets I ⊆ B with sS ,w(I) ≥ smin ((Borgelt,
2012)).

t (time)

Intersection 
of influence 
maps

a

b

c

ta1

tb1
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Figure 2: Support computation for three items a, b, c. Each
event has its influence map (represented as a rectangle). If
two influence maps overlap, the resulting influence map is
the maximum (union) of these influence maps. The inter-
section of influence maps is the minimum which defines the
synchrony operator. In the diagram, item b has two events
the influence regions of which overlap. The support results
from the integral over the intersections.

3 SUPPORT COMPUTATION FOR
GRADED SYNCHRONY

For binary synchrony the support is computed effi-
ciently using a greedy algorithm. However, following
(Ezennaya-Gómez and Borgelt, 2015) and as we men-
tioned in the introduction, for graded synchrony such
an approach does not guarantee an optimal result and
thus needs to be replaced by an approximation.

As such an approximation, defined in (Ezennaya-
Gómez and Borgelt, 2015), the integral over the max-
imum (union) of the minimum (intersection) of influ-
ence regions is chosen: the minimum represents the
synchrony operator, the maximum takes care of a pos-
sible overlap between instances of synchronous event
groups, and the integral finally aggregates over differ-
ent instances. Formally:

sS ,w(I) =
∫ ∞

−∞
max

R ∈ES ,w(I)

(
min
〈i,t〉∈R

ft(x)
)

dx.

The advantages of this support measure are mainly
two: in the first place, the support measure defined in
this way is anti-monotone due to the minimum over
i ∈ I. Secondly, it allows to compute the support by a
simple intersection of interval lists, since all occurring
functions only take two values, namely 0 and 1

w , and
therefore it suffices to record where they are greater
than 0. Thus, the list of intervals for each item i ∈ B
in which max〈 j,t〉∈S ; j=i ft(x) > 0 is computed. These
intervals can then be intersected to account for the
minimum. Summing the interval lengths and divid-
ing by w we obtain the area under the functions (see
the example described in Figure 2).
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Note that this computation scheme is very simi-
lar to the Eclat algorithm (Zaki et al., 1997) (which
works by intersecting transaction identifier lists),
transferred to a continuous domain (and thus to ef-
fectively infinitely many transactions). As a conse-
quence, Eclat’s item set enumeration scheme, which
is based on a simple divide-and-conquer approach,
can be applied with only few adaptations (concerning
mainly the support computation) to obtain an efficient
algorithm for mining frequent synchronous patterns
(see e.g. (Borgelt, 2012)).

4 PATTERN SPECTRUM
FILTERING

The large number of patterns in the output of syn-
chronous pattern mining method is a problem and
thus further reduction is necessary. This is done by
identifying statistically significant patterns. Previ-
ous work showed that statistical tests on individual
patterns are not suitable (Picado-Muino et al., 2013;
Torre et al., 2013). The main problems are the lack of
proper test statistics as well as multiple testing, that is,
the huge number of patterns makes it very difficult to
control the family-wise error rate, even with control
methods like Bonferroni correction, the Benjamini-
Hochberg procedure or the false discovery rate etc.
(Dudoit and van der Laan, 2008).

To overcome this problem, we rely here on the ap-
proach suggested in (Picado-Muino et al., 2013) and
refined in (Torre et al., 2013), namely Pattern Spec-
trum Filtering (PSF). This method is based on the fol-
lowing insight: even if it is highly unlikely that a spe-
cific group of z items co-occurs s times, it may still be
likely that some group of z items co-occurs s times,
even if items occur independently. From this insight
it was derived in (Picado-Muino et al., 2013) that pat-
terns should rather be judged based on their signa-
ture 〈z,s〉, where z = |I| is the size of a pattern I and s
its support. A pattern is not significant if a counterpart
which has the same or larger pattern size z and same
or higher support s can be explained as a chance event
under the null hypothesis of independent events.

In order to determine the likelihood of observing
different pattern signatures 〈z,s〉 under the null hy-
pothesis of independent items, a data randomization
or surrogate data approach is employed. The general
idea is to represent the null hypothesis implicitly by
(surrogate) data sets that are generated from the orig-
inal data in such a way that their occurrence probabil-
ity is (approximately) equal to their occurrence prob-
ability under the null hypothesis. Such an approach
has the advantage that it needs no explicit data model
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Figure 3: Pattern spectrum generated from 104 surrogate
data sets.

for the null hypothesis, which in many cases (includ-
ing the one we are dealing with here) may be difficult
to specify. Instead, the original data is modified in
random ways to obtain data that are at least analo-
gous to those that could be sampled under conditions
in which the null hypothesis holds. An overview of
several surrogate data methods in the context of neu-
ral spike train analysis can be found in (Louis et al.,
2010).

Summarizing, the objective of PSF is to pool the
resulting patterns from the output of synchronous pat-
tern mining with the same or larger signature 〈z,s〉
filtering by the surrogate data sets generated as an im-
plicit representation of the null hypothesis. An exam-
ple of such a pattern spectrum, for data as it will be
used in Section 6, is shown in Figure 3. It captures
what pattern signatures occurred in a large number of
surrogate data sets. Note that since we are working in
continuous time domain the support values are (non-
negative) real numbers.

5 SELECTIVE PARTICIPATION
METHOD

To achieve the purpose of this paper we draw in the
same idea described in (Borgelt et al., 2015) to iden-
tify parallel episodes in the presence of selective par-
ticipation. The approach is based on the following
insight: although incomplete occurrences of a pat-
tern may make it impossible that the full pattern is
reported by the mining procedure, it is highly likely
that several overlapping subsets will be reported. An
example of this situation is illustrated in Figure 4,
which shows parallel spike trains of six neurons a to f
with complete and incomplete instances of the paral-
lel episode comprising all six neurons (in blue; while
background spikes are shown in gray). Although the
full set of neurons fires together only once (leftmost
instance) and thus would not be detected, the other
five incomplete occurrences give rise to five subsets
of size 4, each of which occurs twice, and many sub-
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f
e
d
c
b
a

Figure 4: Parallel episodes (indicating neuron assembly ac-
tivity) with selective participation (blue) as well as back-
ground spikes (gray).

sets of size 3, occurring 3 or more times. Since these
patterns overlap heavily, it should be possible to re-
construct the full pattern by analyzing pattern overlap
and combining patterns.

The method views the set of patterns that were
found in a given data set as a hypergraph1 on the
set of items (which are the vertices of this hyper-
graph): each pattern forms a hyperedge. Patterns that
are affected by selective participation thus give rise
to densely connected sub-hypergraphs. Hence, we
should be able to identify such patterns by finding
densely connected sub-hypergraphs, (Borgelt et al.,
2015).

The method draws on the approach proposed in
(Tsourakakis et al., 2013) for detecting dense sub-
hypergraphs. Although this approach was designed
to find dense subgraphs in standard graphs, its ba-
sic idea is easily transferred and adapted: we form
a reduction sequence of items by removing, in each
step, the item that is least connected to the other items
(that are still considered). Then we identify from this
sequence the set of items where the least connected
item (i.e., the one that was removed next) was most
strongly connected (compared to other steps of the se-
quence). This item set is the result of the procedure,
(Borgelt et al., 2015).

Although this limits the basic procedure to the
identification of a single pattern, it is clear that multi-
ple patterns can easily be found with the same amend-
ment as suggested in (Tsourakakis et al., 2013): find
a pattern and then remove the underlying items (ver-
tices) from the data. Repeat the procedure on the re-
maining items to find a second pattern. Remove the
items of this second pattern and so on. A drawback
of this approach is that it can find only disjoint pat-
terns and thus fails to identify overlapping patterns.
However, given the general difficulty to handle selec-
tive participation, we believe that this is an acceptable
shortcoming.

Formally, a reduction sequence of item sets is con-
structed, starting from the item base B, as

1While in a standard graph any edge connects exactly
two vertices, in a hypergraph a single hyperedge can con-
nect arbitrarily many vertices.

Jn = B, where n = |B|,
Jk = Jk+1−{argmini∈Jk+1

ξS ,w,smin(i,Jk+1)},
for k = n−1,n−2, . . . ,0,

where ξS ,w,smin(i,Jk) denotes the strength of connec-
tion that item i ∈ Jk has to the other items in the
set Jk, as it is induced by the (closed) frequent pat-
terns found when mining the sequence S with window
width w and minimum support smin (concrete func-
tions ξS ,w,smin(i,Jk) are studied below). Then, we as-
sign a quality measure to each element of this reduc-
tion sequence:

∀k;0≤ k ≤ n :
ξS ,w,smin(Jk) = min

i∈Jk
ξS ,w,smin(i,Jk).

Finally, we select the pattern (item set)

I = argmaxJk;0≤k≤n ξS ,w,smin(Jk),

that is, the pattern with the highest quality (sub-
hypergraph density), as the result of our procedure.

To obtain concrete instances of the functions
ξS ,w,smin(i,Jk), two different approaches were defined
in (Borgelt et al., 2015): a pattern-based approach
which works with patterns and support and instance-
based approach which tries to remove instances to
focus the evaluation on instances that likely resulted
from the actual assembly activity. These methods are
described for binary synchrony. To apply them to
our graded synchrony, a re-definition of the latter was
necessary and it is described further down.

Pattern-based Approach
Let C ∗S (w,smin)⊆ 2B be the set of closed frequent pat-
terns that are identified by the CoCoNAD algorithm
with a graded notion of synchrony (if executed with
window width w and minimum support smin on S ),
for which no counterpart (no signature with the same
size and greater or equal support constitutes a coun-
terpart) was observed in any of the surrogate data sets
(that is, the closed frequent patterns remaining after
pattern spectrum filtering). Let C ∗S ,J(w,smin) = {I ∈
C ∗S (w,smin) | I ⊆ J} be the subset of these patterns that
are subsets of an item set J. Then we define the hy-
pergraph connection strength of item i∈ J to the other
items in J as

ξ(pat)
S ,w,smin

(i,J) = ∑
I∈C ∗S ,J(w,smin)

(|I|− r) · sS ,w(I),

where r ∈ {0,1} is a parameter that determines
whether the full pattern size (hyperedge size) should
be considered (r = 0), or whether the item i itself
should be disregarded (r = 1). The support of the
item set I enters the definition because a larger sup-
port clearly means a stronger connection.
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Figure 5: Experimental results with ν = 1 (each item missing from one instance). Patterns filtered by 10, 100, and 1000
surrogate data sets.

Intuitively, ξ(pat)
S ,w,smin

(i,J) sums the grades of syn-
chrony underlying each of the patterns that connect i
to the other items in J.

Note that in this definition we assume (as is com-
mon practice) that ξ(pat)

S ,w,smin
(i,J) = 0 if C ∗S ,J(w,smin) =

/0.
This approach has the advantage that merely the

filtered set of closed frequent patterns is needed.
However, it has the disadvantage that subset patterns
which, by chance, occur again outside of the instances
of the full pattern may deteriorate the detection qual-
ity. An example of such an occurrence can be seen
in Figure 4: the neurons a, b and e fire together be-
tween the second and third instance of the full set.
However, this is not an incomplete instance of the full
set, but rather a chance coincidence resulting from
the background spikes. This can lead to a subset be-
ing preferred to the full pattern, even though the sum
in the above definition gives higher weight to events
that support multiple instances (as these are counted
multiple times). Removing instances is necessary to
improve the detection quality. To obtain concrete in-
stances of the functions ξS ,w,smin(i,Jk) we define:

Instance-based Approach
We start from the same idea in (Borgelt et al., 2015)
that we only want to consider instances that are not
“isolated”, but “overlap” some other instance (prefer-
ably of a different pattern). The reason is that iso-
lated instances likely stem from chance coincidences,
while instances that “overlap” other instances likely
stem from the same (complete or incomplete) in-

stance of the full pattern we try to identify. Unlike
(Borgelt et al., 2015) where the instance-based ap-
proach merely counts spikes without considering the
precision of synchrony, in our approach we recompute
the support from the reduced set of instances, which
is simple as the instances are known.

Let C ∗S (w,smin) and CS ,J(w,smin) be defined as
above. Let US ,w(I) ⊆ ES ,w(I) be the set of all in-
stances of I that was identified by the CoCoNAD al-
gorithm in order to compute the support sS ,w(I). Fur-
thermore, let VS ,w,smin(J) =

⋃
I∈C ∗S ,J(w,smin)

US ,w(I).

That is, VS ,w,smin(J) is the set of all instances underly-
ing all patterns found in S that are subsets of J.

To implement our idea of keeping overlapping in-
stances of different patterns, we define

V ∗S ,w,smin
(i,J) =

{R ∈ VS ,w,smin(J) | ∧ ∃T ∈ VS ,w,smin(J) :
φ(T ) 6= φ(R )∧oi(T ,R ) = 1},

where φ is the pattern operator defined in Section 2
and oi(R ,T ) is an operator that tests whether the in-
stances R and T overlap. In words: V ∗S ,w,smin

(i,J)
is the set of instances of patterns that contain the
item i ∈ J and are subsets of the set J, which over-
lap at least one other instance of a different pattern.
The operator oi checks whether the instances have a
non-empty intersection. The instance-based approach
has the advantage that chance coincidences are much
less likely to deteriorate the detection quality. How-
ever, its disadvantage is that it is more costly to com-
pute, because not just the patterns, but the individual
instances of all relevant patterns have to be processed.
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Figure 6: Example of generated data sets that imitate par-
allel neural spike trains. Each row of blue dots represents
the spike train of each neuron. In this example the injected
patterns are drawn in red.

The selective participation adaptation method pro-
poses to study only instances that overlap with other
instances of different patterns, re-compute the support
for these patterns and finally apply the pattern-based
approach.

6 EXPERIMENTS

We implemented our frequent synchronous pattern
mining method in Python, using an efficient C-based
Python extension module that implements the pat-
tern mining and surrogate generation.2 We gener-
ated event sequence data as independent Poisson pro-
cesses with parameters chosen in reference to our ap-
plication domain: 100 items (number of neurons that
can be simultaneously recorded with current technol-
ogy), 20Hz event rates (typical average firing rate ob-
served in spike train recordings), 3s total time (typical
recording times for spike trains range from a few sec-
onds up to about an hour).

Into such independent data sets we injected a sin-
gle synchronous pattern each, with sizes z ranging
from 2 to 12 items and numbers c of occurrences (in-
stances) ranging from 2 to 12. To simulate imprecise
synchrony, the events of each pattern instance were
jittered independently by drawing an offset from a
uniform distribution on [−1ms,+1ms] (which corre-

2The implementation of the CoCoNAD algorithm is de-
veloped in Python (Rossum, 1993) and the core of the al-
gorithm is developed in C (Kernighan and Ritchie, 1978).
This implementation can be found at

http://www.borgelt.net/coconad.html and
http://www.borgelt.net/pycoco.html.

A Java graphical user interface is available at
http://www.borgelt.net/cocogui.html.

The scripts with which we executed our experiments as well
as the complete result diagrams (all parameter combina-
tions) will be available at

http://www.borgelt.net/hypernad.html.

sponds to typical bin lengths for time-binning of par-
allel neural spike trains, which are 1 to 7ms). An ex-
ample of such a data set is depicted in Figure 6.

To simulate selective participation, we deleted
each item of a parallel episode from a number ν ∈
{1,2,3,4,5} of their instances. This created data sets
with instances similar to those shown in Figure 4
(which corresponds to z = 6, c = 6 and ν = 1, but
has much fewer background spikes): a few instances
may be complete, but most lack a varying number of
items. For each signature 〈z,c〉 of a parallel episode
and each value of ν we created 1000 such data sets.

Then we tried to detect the injected synchronous
patterns with the methods described in Sections 4 and
5. For mining closed frequent patterns we used dif-
ferent values of the window width, w ∈ {2,3,4,5}
(matching the jitter of the temporal imprecision) us-
ing a minimum support smin = 1.0 and a minimum
pattern size zmin = 2. Based on results presented in
(Ezennaya-Gómez and Borgelt, 2015), the window
value used is 3

2 j. Then filtering patterns mined with
different pattern spectrum derived from 10, 100 and
1000 data sets with independent spike trains. The
method described in Section 5 is applied to the re-
sulting patterns.

Some of the results we obtained are depicted in
Figures 5, 7, and 8. In each row of the figures, the
first diagram shows the number of (strict) false nega-
tives, that is, the fraction of runs (of 1000) in which
something else than exactly the injected pattern was
found. In order to elucidate what happens in those
runs in which the injected parallel episode was not
(exactly) detected, the diagrams in columns 2 and 3
show the fraction of runs in which a superset or a sub-
set, respectively, of the injected parallel episode was
returned. Column 4 shows the fraction of runs with
overlap patterns (the reported pattern contains some,
but not all of the items of the injected parallel episode
and at least one other item), column 5 the fraction of
runs with patterns that are unrelated to the injected
parallel episode. On top of each diagram the different
approaches are shown with its parameters. The first
value corresponds to the number of missing instances
followed by the type of filter, and the type of reduction
sequence approach applied and value of r parameter.

Figure 5 shows the different results obtained by
filtering closed frequent patterns with the different
patterns spectra (10, 100 and 1000). Note that graded
synchrony has less problems with unrelated patterns.
We observe that filtering by surrogates derived from
100 and 1000 performs better w.r.t. unrelated patterns.
That is, filtering with 100 and 1000 surrogate data sets
detect every injected pattern if only something is de-
tected at all. Figure 7 shows a comparison between
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Figure 7: Experimental results with instance-based approach and pattern-based approach for graded synchrony (each item
missing from one instance).
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Figure 8: Comparison between the instance/pattern-based approach for graded synchrony and the instance-based approach
for binary synchrony.

the instance-based approach and the pattern-based ap-
proach using graded synchrony. The firsts two rows
of diagrams show results for r = 0 and the second
two rows correspond to r = 1. The pattern-based ap-

proach is slightly better than the instance-based ap-
proach in terms of false negatives (exact pattern de-
tection). Concretely, for r = 1, the pattern-based ap-
proach has better ratios in supersets and overlaps by
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paying a price of a slightly worse ratio for subsets.
Taken together, the price of having more subsets is
preferred, because subsets contain only items actually
in the assembly, while superset and overlap patterns
also contain unrelated items.

The first and second row of figure 8 correspond
to the instance and the pattern-based approach for
graded synchrony. The third corresponds to the
instance-based approach for binary synchrony. Com-
paring the diagrams for unrelated patterns, our graded
method detects all injected patterns (first and sec-
ond rows), while the binary method also produces
unrelated pattern. In (Borgelt et al., 2015) it is
demonstrated that the instance-based approach yields
slightly better results than the pattern approach. How-
ever, this approach does not consider the precision of
synchrony. Surprisingly, using only the pattern-based
approach with a graded notion of synchrony yields a
better ratio for overlap and superset patterns.

7 CONCLUSIONS

In this paper we presented a method to detect fre-
quent synchronous patterns in event sequences using
a graded notion of synchrony for mining patterns in
the presence of imprecise synchrony of events con-
stituting occurrences and selective participation (in-
complete occurrences). Our method adapts methods
presented in the literature to tackle selective participa-
tion using binary synchrony, especially the instance-
based approach which looks at instances of patterns to
improve the detection by removing instances that are
likely chance events, checking the precision of syn-
chrony of these instances. We demonstrate in our ex-
periments that using a graded notion of synchrony for
support computation helps to simplify the detection
of selective participation, because a pattern-based ap-
proach yields better results or at least equally good
results as an instance-based approach. This is a con-
siderable advantage, since identifying the individual
pattern instances is costly and thus it is desirable to
avoid it.
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