
Topic Oriented Auto-completion Models
Approaches Towards Fastening Auto-completion Systems

Stefan Prisca1, Mihaela Dinsoreanu2 and Camelia Lemnaru3

1Computer Science, Technical University of Cluj-Napoca, Vitei 7, 551107, Medias, Romania
2Computer Science, Technical University of Cluj-Napoca, Baritiu Str. 26-28, RO-400068, Cluj-Napoca, Romania

3Computer Science Department, Technical University of Cluj-Napoca, 26 Baritiu St., room c9, 400027, Cluj-Napoca,

Keywords: Word Auto-completion, Topic Oriented Data Models, Topic Indexing.

Abstract: In this paper we propose an autocompletion approach suitable for mobile devices that aims to reduce the overall
data model size and to speed up query processing while not employing any language specific processing. The
approach relies on topic information from input documents to split the data models based on topics and index
them in a way that allows fast identification through their corresponding topic. Doing so, the size of the data
model used for prediction is decreased to almost one fifth of the size of a model that contains all topics, and
the query processing becomes two times faster, while maintaining the same precision obtained by employing
a model that contains all topics.

1 INTRODUCTION

With the increasing usage of mobile devices, and de-
vices with limited typing facilities, it is highly desir-
able to have solutions that speed up typing. The goal
of such a system is to predict words (and phrases)
while the user is typing, thus allowing for faster writ-
ing and increasing productivity. The auto-completion
problem is not new. Such solutions have been used
for years in a variety of activities. The most com-
mon of these activities is everyday text writing tasks.
Nowadays almost everyone owns a smartphone de-
vice. Most of these devices have a built-in software
that suggests words while the user writes messages,
emails, etc. Another use case is represented by query
predictions in search engines. For instance, Google
(and other engines) display a list of suggestions when
someone starts typing in the search field. Other appli-
cations of auto-completion systems include command
line suggestions, code completions in IDEs, etc. An-
other important usage of auto-completion is in sys-
tems that assist persons with writing disabilities in
performing daily task on a computer.

The general flow of an auto-completion system is:
(1) A query is made to the system (for example the
first letters of a command or file in the command line),
(2) the system processes the query and (3) returns sug-
gestions. A query for word auto-completion usually

consists of 2 or 3 previous words, and the first let-
ters of the desired word. For example, consider typ-
ing the following text: ’I am go’. At this point, a
word completion query would be triggered with the
previous words being [’i’, ’am’] and the prefix being
’go’. Hopefully the system answers with ’going’ or
’goofy’. The component of an auto-completion sys-
tem which stores possible completions is the model.

Usually, there is one model for an auto-completion
system, which leads to the following problem: in data
sets which spread on multiple topics, there is influ-
ence induced from one topic to the others. This means
that words/phrases from one topic will be mixed with
words from the others. For example, if a data set
contains documents from totally different topics like
automobile constructions and software development,
there are scenarios in which the auto-completion sys-
tem might propose automobile instead of algorithm.

2 RELATED WORK

There has been a lot of work in the field of auto-
completion, with most recent focus on query auto-
completion for search engines.

The authors of (Bast ’06) present a simple auto-
completion system, that makes use of an inverted in-

Prisca, S., Dinsoreanu, M. and Lemnaru, C..
Topic Oriented Auto-completion Models - Approaches Towards Fastening Auto-completion Systems.
In Proceedings of the 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2015) - Volume 1: KDIR, pages 241-248
ISBN: 978-989-758-158-8
Copyright c© 2015 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

241

dex (Manning ’08). Although this is not the main
purpose of their paper, they present the basic princi-
ple of using a normal inverted index, and the word
retrieval function based on the documents they com-
monly appear in. The approach is relatively simple,
the hash-like structure of the inverted index allows for
fast word retrievals, as it is proven by (Bast ’06), and
there is room for a lot of extensions over the inverted
index.

Such an extension to the inverted index is dis-
cussed by the authors of (Prisca ’15). Here, an user
oriented alternative to the inverted index data model
is presented, called User Oriented Index. This new
model is based on the idea that in an auto-completion
system there are two document types: (1) initial doc-
uments, those documents that are used for general in-
dex construction, and (2) user documents: documents
that are written by the user, and that are given higher
priority. They specifically separate user documents
in order to give higher ranking to words that come
from these documents. To achieve this, the User Ori-
ented Index makes use of document id masks to iden-
tify user-written documents. These masks are used to
split the document id domain in two: (1) initial doc-
uments [0→ userDocMask) and (2) user documents
[userDocMask→ ∞]. Moreover, in order to improve
final ranking precision, this new index keeps track of
word positions from the input documents. The re-
sults showed an average improvement of 13% over the
regular inverted index, in terms of prediction quality
and learning capabilities. On the other hand, storing
all that additional information requires more space,
and the User Oriented Index takes approximately 1.3
times more size compared to a regular index. This
approach requires a good size reduction strategy that
will not influence the performance.

More recent research has been done in the area
of query auto-completion for search engines. Tak-
ing another user-oriented approach, Milad Shokouhi
(Shokouhi ’13) presents a possible supervised rank-
ing framework for learning user search preferences
based on the user’s long term search history and lo-
cation. They prove that personalized rankers improve
the performance of regular popularity based rankers
by 9%. Although this system improves the perfor-
mance of regular rankers, it is a supervised learning
method that requires the model to be learned.

All of the non-learning approaches discussed rely
on a single, big model to make predictions. This
model contains all the topics from the data set, mixed
together, which may result in predicting words from
the wrong topics. Also, this leads to large model sizes,
and requires more and more pruning, encoding, etc.
Moreover, another fact to keep in mind is that for an

Figure 1: Main Topic Oriented model building and query
processing workflow.

auto-completion system to be useful, it must be able
to process queries fast. Research (Card ’91), (Miller
’68) shows that the upper time limit for to the human
eye to perceive instantly is around 100 ms. This is a
big constraint, as the predictions must appear imme-
diately after a key is pressed, otherwise risking to be
outdated. This again is hard when having only one
huge model to predict completions against, as when
its size grows, so does the query processing time. One
alternative to consider is defining a strategy that sepa-
rates this one big model into smaller ones that are eas-
ier to store and provide faster query processing while
offering the same performance.

3 PROPOSED APPROACH

In this paper we will present a solution to the one
model problems, that aims to reduce the size of the
model, reduce the query processing time and still of-
fer the same completion capabilities as standard mod-
els (even better in some cases, as shown by our re-
sults). Our approach leverages topic information to
split the model based on the topics contained inside
it, and load the corresponding sub-model when mak-
ing query completions.

Figure 1 illustrates how the main building and
querying workflow is altered to include additional
logic to identify and attach topic information, and to
track the topics. Instead of communicating directly
with the model, the Builder and Query Processor pass
their messages to a Topic Indexer. The job of the
Topic Indexer is to track topics inside the model, and
provide the required information to the builder and
query processor. We can identify the two workflows:

1. Builder Workflow: The builder takes in documents
and inserts them into the corresponding model by

KDIR 2015 - 7th International Conference on Knowledge Discovery and Information Retrieval

242

passing the Word and Topic information into the
topic indexer. For our purposes, we assume the
topic is known.

2. Query Processing Workflow The query processor
sends and auto-completion query to the Topic In-
dexer, and attaches the additional Topic informa-
tion. Again, we assume that the topic is known.

The main constraint of such an approach is that
the system needs enough input data in order to be
able to find the topic, and only then make predictions.
Therefor we consider as input data long documents
(e.g. e-mails, essays, reports, etc.), not short in-line
messages. We also assume that our topics are already
identified for each of the documents, thus the problem
of topic identification is not covered within this pa-
per. The main focus remains on presenting solutions
for the Topic Model and Indexer, and how the Builder
and Query Processor communicate with them. The
part of the Topic Model Overview diagram 1 that we
cover in this paper is the Topic Autocompletion Work-
flow.

The issues with one model solutions that we iden-
tified are (1) topic interferences, (2) big models and
(3) slow query processing. In order to address these
issues, we present the following methods of storing
topic information:

• have one model for all topics, and include a list of
topics for each gram. (one-for-all) Although this
method does not directly address problems 2 and
3, it aims to reduce the topic interferences, but not
totally separate the model, as words from differ-
ent topics are mostly shared between the topics.
The obvious disadvantage is that there still is a
single model that stores all words, regardless of
their topic. The advantage is that each word is
stored once, even if this word appears in multiple
topics.

• have a separate model for each topic. (one-for-
each) This method provides a more extreme so-
lution to all of the issues above. It separates the
models in completely different sub-models, and
predicts queries using only the sub-model corre-
sponding to the topic at hand. The disadvantage
is that words are shared between multiple topics.
If most of the words in the data-set are shared
between topics, this method will store all of the
shared words in each sub-module, thus resulting
in extra copies of the same word which will ulti-
mately increase the overall size required to store
all of the sub-models.

In order to avoid confusion, in the following sec-
tions we refer to the overall data model as super-
model, and to separate topic-specific models as sub-

models. Moreover, throughout this paper, we con-
sider that each document has one topic. In cases when
a document has multiple topics, we consider only the
most relevant one.

3.1 One-For-All Topic Model

The first idea that comes in mind is to create a
super-model that stores topic information for each
gram. The problem that remains after is how to store
this information inside the super-model? One can
insert for each gram a list of topics it appears in.
For example, in the case of an inverted index data
model, a list of topics in which the word appears
is stored together with the postings list. An entry
from the User Oriented index containing this extra
information looks like this: market:{postings:
{1 : [1], 3 : [1], 101:[2]}, topics:{
food, automobile, shopping }}.

The obvious issue with this solution is the size.
The super-model will grow a lot due to topic informa-
tion. Imagine a word like how. As it most probably
appears in all topics, it has a large topic list that affects
the running performance of the system. To address
this problem, we propose to generalize the idea con-
cerning user document ids presented in (Prisca ’15),
by applying it to topics. This results is a new Topic
Model: the Topic Oriented Index.

To achieve this, we define a mapping between
each topic identified in the data set, and a range of
document ids. For this mapping, any common data
structure can be used, but it is important for it to be a
singleton. This means that once topics are mapped to
a certain id range, the same mapping is used through-
out the whole system. Moreover, since we cannot al-
ways have all topics identified, there needs to be an id
range dedicated to uncategorized documents. We re-
fer to this as the Uncategorized id range, and propose
that it takes values at the end of the id domain (i.e.
[lastKnownTopicId → ∞), where lastKnownTopicId
is the last id assigned to a known topic). In case new
topics appear in the data set, one only has to reduce
the set of Uncategorized id ranges, and allocate some
of them to the new topic.

As an example, let us consider that we have a data
set consisting of the following documents, split by
topic:

• doc1, Topic:Architecture: This building has an old
Gothic facade design, made by a famous architect

• doc2, Topic:Software: Our system architect chose
the Facade design for this particular problem

• doc3, Topic:Mathematics: The problem can be
represented in an equation system.

Topic Oriented Auto-completion Models - Approaches Towards Fastening Auto-completion Systems

243

The document topics from above are: Architec-
ture, Software, Mathematics. As there are few docu-
ments in each topic, we shall use id ranges of 100 for
this example, and assign them to each topic: (1) Ar-
chitecture: [0→ 100], (2) Software : [101→ 200],
(3)Mathematics: [201 → 300] and Uncategorized:
[301→ ∞). The simple Inverted Index that would re-
sult from these documents is presented in 1 and the
Topic Oriented Index in table 2. Both the indexes have
been pruned with an occurrence threshold (OCC TH)
of 2.

Table 1: Example of Inverted Index pruned with OCC TH
= 2.

Word Posting List
facade {0, 1}
the {1, 2}
this {0, 1}
design {0, 1}
an {0, 2}
architect {0, 1}
system {1, 2}

Table 2: Example of Topic-Oriented Index pruned with
OCC TH = 2.

Word Posting List
facade {0 : [7], 101 : [6]}
the {101 : [5], 201 : [1]}
this {0 : [1], 101 : [9] }
design {0 : [8], 101 : [7]}
an {0 : [4], 201 : [7]}
architect {0 : [13], 101 : [3] }
system {101 : [2], 201 : [9]}

As a comparison to the regular Inverted index, the
Topic Oriented Index respects the entry format of the
User Oriented Index ((Prisca ’15)), which means that
it uses the document id masks, and stores word posi-
tions from the documents. Furthermore, we want to
store user information as it is done in the User Ori-
ented Index. The same idea with a user mask can
be applied. This means that the document id will
be composed from a user id, a topic id and the ac-
tual document id within the topic range. Formally,
the document id can be defined as < userDocMask >
+ < topicIdRange >. Considering the topics from
our previous example, if a user with userDocMask =
1000 wrote documents about mathematics, then the
range of ids associated to those documents is 1000+
[201→ 300] = [1201→ 1300].

Using this kind of document ids allows us to store
information about multiple users in the same index by
having more userDocMasks. Continuing our previous
example, we can associate a userDocMask of 2000
to a second user. Assuming this second user writes

about software programming, we now encode his/her
documents with ids in range [2101→ 2200].

3.1.1 Building the Topic Oriented Index

The Builder Workflow of the Topic Oriented Index
involves the same basic strategy as building the User
Oriented Index (Prisca ’15). The only difference is
that for the Topic Oriented Index, the logic for doc-
ument id assignment changes. We now need to store
the last used id for each topic, and append the user
mask to that id. The build procedure is presented in
algorithm 1. This algorithm implements the Builder
Workflow for the Topic Oriented Index.

Algorithm 1: Topic Oriented Index builder workflow algo-
rithm.
1: topicMapping← LOADTOPICMAPPINGS()
2: function APPENDTOINDEX(index, filePath)
3: rawContet← read(f ilePath)
4: docTopic← IDENTIFYTOPIC(rawContent)
5: preprocessed← PREPROCESS(rawContent)
6: docId← GETLASTDOCID(topicMapping,docTopic)+1
7: docPosition← 0
8: for all word in preprocessed do
9: UPDATE(index,word,docId,docPosition)

10: docPosition← docPosition+1
11: UPDATELASTDOCID(topicMapping,docId) return

processed

3.1.2 Query Processing for the Topic Oriented
Index

Query processing and ranking workflow operations
are similar to the corresponding operations in the User
Oriented Index. The difference for the Topic Oriented
Index is that we can no longer compare the document
id to a single mask, but instead we have to compare it
to the topic id interval. Formally, we can present this
approach as algorithm 2, which implements the Query
Processing workflow for the Topic Oriented Index.

Algorithm 2: Topic Oriented Index Query Processing.

1: KnownTopic← GETCURRENTTOPIC()
2: function TOPICINDEXQUERYPROCESSOR(query)
3: if KnownTopic == Null then
4: idRange← [0→ ∞]
5: else
6: idRange← GETIDRANGE(KnownTopic)

return PROCESSQUERY(query, idRange)

3.2 One-For-Each Topic Model

The second approach to having topic information, is
to split the super-model in totally separate sub-models
for each topic. This kind of model separation clearly

KDIR 2015 - 7th International Conference on Knowledge Discovery and Information Retrieval

244

Figure 2: One-For-Each Topic Model.

distributes sub-models among all topics. This reduces
the size of the used model, as each of the sub-models
will only contain a subset of the grams contained in
the super-model. One could use various data struc-
tures to map each of the topics to the corresponding
sub-model, like a table, a list of tuples, a tree, etc. We
have decided to use a tree structure for our purposes,
as it allows us to easily track the topic hierarchy (the
Topic Tree). This is illustrated in figure 2.

The One-For-Each topic model relies on having
an underlying auto-completion system for each sub-
topic, which has all the auto-completion logic imple-
mented. This means that the mere job of the One-For-
Each topic model is to simply track the topics, and
delegate any auto-completion work to the underlying
system. It can be thought of as an extension for ex-
isting auto-completion models, that adds the logic to
track topics.

3.2.1 Building Topic Tree Models

As mentioned, the Builder Workflow for the Topic
Tree Model will identify the topic, and delegate all
other work to the underlying auto-completion system.
The algorithm for building topic models in presented
bellow. 3.

Algorithm 3: Topic Tree Model building algorithm.

1: function BUILDTOPICMODELS(rawInput)
2: topicPath← getTopicPath(rawInput) . Retrieve the full

topic path of the given input
3: wordModel← BUILDINDEXMODEL(rawInput)
4: SAVEWORDBYTOPIC(wordModel, topicPath)
5: UPDATETOPICINDEX(topicPath,wordModel)

3.2.2 Query Processing on Topic Tree Models

An issue with total topic separation arises at query
processing: what happens when we do not know the
topic of the current document (i.e. the document for
which the system currently processes queries)? The
system will not be able to make predictions, as mod-
els for different topics are disjoint. In order to over-
come this, we have to combine the topic oriented
auto-completion strategy with a single model auto-
completion strategy. The solution is to first use a sin-
gle model in order to make general predictions. After

the user writes enough content to allow a topic identi-
fication system to determine the topic, we switch to
the sub-model corresponding to that topic, and use
that to make predictions. The algorithm for query
processing is presented in 4. This is just an adapter
to the underlying model’s query processor. The only
purpose of this algorithm is to load the proper model
into memory. This algorithm implements the Query
Processing workflow for the Topic Tree Models.

Algorithm 4: Topic Tree Model Query Processing.

1: KnownTopic← Null
2: UsedModel← SingleModelPath
3: function TOPICQUERYPROCESSOR(query)
4: if KnownTopic == Null then
5: if UsedModel 6= SingleModelPath then
6: UsedModel ←

LOADMODEL(singleModelPath)
7: else
8: modelPath← GETMODELPATH(KnownTopic)
9: if UsedModel 6= modelPath then

10: UsedModel← LOADMODEL(modelPath)
return PROCESSQUERY(query,UsedModel)

4 EXPERIMENTS AND RESULTS

In this section we present the results obtained by topic
oriented data models, and compare them to single
models. We are mainly interested in measuring the
precision, recall and runtimes obtained by using var-
ious data models for word prediction systems (note
that we do not experiment with phrase predictions).
The precision and recall are computed using the Mean
Reciprocal Rank, as presented in equations 1, (2).

As data models for comparison, we chose two that
are topic oriented, and two that are not:

1. single, non-topic User Oriented Index: the user
focused auto-completion data structure presented
in paper (Prisca ’15) To separate between general
documents and user documents, we use a user-
DocumentMask of 30000 ((Prisca ’15)).

2. Topic Oriented Index: The altered Inverted Index
data structure presented in this paper. This data
structure encodes topic information using docu-
ment ids. For building the Topic Index, we con-
sider topic id ranges of 1000, and an userDoc-
umentMask of 30000. This means that the first
topic from our data set will get ids [0→ 1000]∪
[30000→ 31000] , the second will have [1001→
2000]∪ [31001 → 32000], and so on. The sec-
ond interval of id ranges corresponds to user doc-
uments on the given topic. We assume that in our
data set there are not enough documents and top-

Topic Oriented Auto-completion Models - Approaches Towards Fastening Auto-completion Systems

245

Figure 3: Topic structure of the BigEn data set.

ics to consume all the ids allocated within the in-
tervals.

3. Topic Tree with an underlying User Oriented In-
dex: The tree-like indexing structure for topics
that uses underlying User Oriented Indexes for
word storage. This data structure was presented
in this paper. For the underlying User Oriented
Index, we used the same userDocumentMask of
30000.

4. single, non-topic regular Inverted Index: the regu-
lar Inverted Index data structure, commonly used
for information retrieval tasks. A short introduc-
tion to this data structure is given by (Bast ’06)
and (Manning ’08).

In order to test the topic models, we used data sets
that spread on multiple topics. We marked the topic
of each document by hand. Note that we do not use a
topic identification system to find the topic of a doc-
ument. In a real-life situation, the topic identification
system might introduce additional errors. Because
our system is dependent on the topic, for our exper-
iments we consider having large documents, like e-
mails, essays, articles, software documentations, etc.
This ensures that the topic for the document at hand
is known.

We conducted tests on a large data set, consisting
of documents written in English, on different topics:
Woodworking, Fitness, Cycling, Computer games,
Gadgets, Phone and Notebook reviews, Chemistry,
Math, Web technologies, Economy, Travel, Food
recipes, etc. This set spreads on over 7.4 million
words, and has a size of 46 MB. We obtained the
documents from different web sources using a web
crawler. For this data set, we consider that a possible
user has documents written on the following topics:
Chemistry, Food recipes and about traveling in In-
dia. For the purpose of our experiments, we make the
assumption that only one user has documents in our
model, and all the user-written documents are writ-
ten by the same user. This set is referred to as BigEn
for the rest of this paper. This data set contains doc-
uments that spread over the topic hierarchy presented
in figure 3.

The experiments have been conducted on an In-
tel i7 dual core, 3.7 MHz processor with 8 GB RAM

memory, using the Python programming language.
After building the data models, we stored them in
json format, without any compression or encoding.
One can also use a low-cost database like MongoDB
to store the models, but we found it easier to keep
them in a simple text file. We build a Topic Index, a
Topic Tree, a single Simple Index and a single User-
Oriented Index. We use the whole data set for all
models, such that all of them are built from the same
user and nonuser documents. After the build, a prun-
ing step is applied, with an occurrence threshold of
5 ∗ 10−6 ∗ nChars for initial general documents, and
of 0.5 ∗ 10−6 ∗ nChars for user documents. The re-
sults obtained after building the models are presented
in table 3. We compared the size on disk, build time,
number of words and number of documents that result
in each model. Since the topic tree involves multiple
separate models, we present the average statistics.

Table 3: Comparing build measurements of our models.

Model Build
Time

Size nWords nDocs

Topic
Tree

5.6 s 10 MB 5000(avg) 97(avg)

Topic In-
dex

88 s 51 MB 16512 3550

User Ori-
ented In-
dex

82 s 48 MB 16512 3550

Simple
Index

138 s 7 MB 2183 3550

The User Oriented Index and Topic Index both
have the same number of words in them. The reason is
the the Topic Index uses a underlying User Oriented
Index to build its data model, therefor the resulting
words are the same. The difference between the two
is that the Topic Index takes more space due to hav-
ing larger document ids from topic ranges. The Topic
Tree takes less average size, has less average docu-
ments and has the fastest build. Although the Topic
Tree contains on average 1/3 of the words in other
models, these do not spread on that many documents,
thus having a more reduced size (1/5 of the User Ori-
ented Index).

In order to test the system, we pass over the test
documents with sliding window of 3. The first two
words represent the previous words of the query, and
the third one is the desired word. We consider the first
4 letters of the desired word as the letters passed to the
query, and then check which (if any) of the words in
the resulted list correspond to the desired word. For
the topic based models, we switch between different
indexes based on the current topic. For testing, we as-
sumed that a single user has documents written on the
following topics Chemistry, Food recipes, India. The

KDIR 2015 - 7th International Conference on Knowledge Discovery and Information Retrieval

246

test results are presented in tables 4,5,6, correspond-
ing to each of the user topics.

To measure the performance of the systems, we
use the Mean Reciprocal Rank metric for precision 1
and recall 2. Although we generally consider a word
to be predicted correctly if it appears in the first three
positions of the resulted list, we still prefer that it ap-
pears on the first position, thus lowering the scores
of the second and third positions by using the above
metrics.

RankPrecision =
∑1/rank(accepted autocompletion)

n(predicted autocompletion)
(1)

RankRecall =
∑1/rank(accepted autocompletion)

n(queries)
(2)

It can be seen that the User-Oriented Index, the
Topic Oriented Tree and the Topic Oriented Index per-
form mostly the same. Although there are not large
variations among the three, the Topic Oriented Tree
tends to outperform the other two, due to the fact that
it contains words from one topic only, and it totally
eliminates interferences from other topics. This also
improves its runtime. As it can be seen, it’s half the
runtime of other systems. Nevertheless, all three solu-
tions outperform a simple index in terms of precision
and recall.

Table 4: Test results of topic based vs single models on
Chemistry documents.

Model Precision Recall Runtime
Topic Index 73.48% 72.83% 6 ms
Topic Tree 72.95% 72.23% 14 ms
User Oriented
Index

73.03% 72.30% 14 ms

Simple Index 63.74% 59.93% 12 ms

Table 5: Test results of topic based vs single models on
Food recipes documents.

Model Precision Recall Runtime
Topic Index 83.39% 81.83% 8 ms
Topic Tree 88.04% 88.04% 4 ms
User Oriented
Index

84.09% 82.51% 8 ms

Simple Index 77.16% 67.34% 8 ms

We are also interested in how fast our solutions
are able to learn from the user. To find out, we plotted
learning curves for the BigEn data set. We compared
the learning capabilities of the User Oriented Index,
the Topic Oriented Tree, and the Topic Oriented In-
dex. We create two testing scenarios:

Table 6: Test results of topic based vs single models on
documents about traveling in India.

Model Precision Recall Runtime
Topic Index 75.94% 72.15% 9 ms
Topic Tree 79.56% 78.35% 5 ms
User Oriented
Index

76.38% 72.56% 9 ms

Simple Index 65.82% 51.31% 10 ms

• scenario one: how fast the systems learn with no
other user-written documents except the ones they
learn from

• scenario two: how the systems learn when there
are user-written documents in the data set on other
topics

Figure 4: Learning comparisons - scenario one.

Figure 5: Learning comparisons - scenario two.

During our learning tests, we observe that the
Topic Oriented Tree tends to learn much faster, but
it is also more sensitive. The interpretation is that it
contains few words at the beginning, and whatever
is indexed can improve or decrease its precision. It
can be seen in both plots that around 2000 words, the
learning curve of the Topic Oriented Tree drops a lit-
tle. However, it adapts faster than the other two. After
500 words its precision increases to over 80%, while
the other two are around 70%. To be noted that the
learning curve of the Topic Oriented Tree does not
change between the two test scenarios. Due to the
fact that this model separates topics completely, it is
irrelevant if there are other topics used by the user, as

Topic Oriented Auto-completion Models - Approaches Towards Fastening Auto-completion Systems

247

these will have other data models. On the other hand,
the Topic Oriented and Simple Index both suffer from
topic interferences. With no other user topics, these
two reach 78% (4), but when there are other topics
(5) they stagnate at 70%.

5 CONCLUSION

In this paper, we presented prediction data models
that are split by document topics, and which achieve
the same results as regular models, while having less
then 25% of the size (on average) and requiring half
the query processing time. We conclude that in order
to benefit from the advantages of both single models
and topic split models, one can build single models at
first, and as the data set grows, start using topic ori-
ented data structures. This keeps runtimes and sizes
small even after learning from a large collection of
documents, and ensures that the system can make pre-
diction even when the topic is unknown, by using the
single model.

REFERENCES

S. Card, G. Robertson, and J. Mackinlay. The information
visualizer, an information workspace. Proceedings of
the SIGCHI conference on Human factors in com-
puting systems: Reaching through technology, pages
181186, 1991.

R. Miller. Response time in man-computer conversational
transactions. Proceedings of the AFIPS Fall Joint
Computer Conference, 33:267277, 1968.

H. Bast and I. Weber: Type Less, Find More: Fast Auto-
completion Search with a Succinct Index, SIGIR ’06
Proceedings of the 29th annual international ACM SI-
GIR conference on Research and development in in-
formation retrieval.

Manning, Christopher D., Prabhakar Raghavan, and Hin-
rich Schtze, Introduction to information retrieval, Vol.
1. Cambridge: Cambridge university press, 2008.

P. Krishnan, J. Vitter, and B. Iyer. Estimating alphanumeric
selectivity in the presence of wildcards, Proceedings
of the 1996 ACM SIGMOD international conference
on Management of data, pages 282293, 1996.

Carmel, David, et al. ”Static index pruning for information
retrieval systems.”, Proceedings of the 24th annual in-
ternational ACM SIGIR conference on Research and
development in information retrieval. ACM, 2001.

Stefan Prisca, Mihaela Dinsoreanu, Rodica Potolea. ”A lan-
guage independent user adaptable approach for word
auto-completion”, 11th International Conference on
Intelligent Computer Communication and Processing,
2015.

Jiang, Jyun-Yu, Yen-Yu Ke, Pao-Yu Chien, and Pu-Jen
Cheng. ”Learning user reformulation behavior for

query auto-completion.”, In Proceedings of the 37th
international ACM SIGIR conference on Research &
development in information retrieval, pages. 445-454.
ACM, 2014.

Whiting, Stewart, and Joemon M. Jose. ”Recent and robust
query auto-completion.”, In Proceedings of the 23rd
international conference on World wide web, pp. 971-
982. ACM, 2014.

Milad Shokouhi: Learning to personalize query auto-
completion, Proceedings of the 36th international
ACM SIGIR conference on Research and develop-
ment in information retrieval, 2013, Pages 103-112

KDIR 2015 - 7th International Conference on Knowledge Discovery and Information Retrieval

248

