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Abstract: The literature highlights the effectiveness of emulating processes from nature to solve complex optimization 
problems. Two processes in particular that have been investigated are evolution and development. Evolution 
is achieved by genetic algorithms and the developmental approach was introduced to achieve development. 
The developmental approach differs from other metaheuristics in that it does not explore the search space 
applying intensification and diversification to a complete candidate solution. Instead intensification and 
diversification are performed incrementally, at each step in the process of creating a solution. This is based 
on an analogy from nature in which a multicellular organism is created incrementally rather than firstly being 
completely developed and then improved to be fitter. Evolution on the other hand is used to explore the space 
by applying intensification and diversification to randomly created candidate solutions with the aim of 
improving the fitness of these candidate solutions and ultimately producing a solution to the problem. Given 
that in nature once an organism is initially developed its development or growth does not stop at that point 
but certain cells may continue to grow until a certain point in an organism’s life span, it was felt that the 
developmental approach terminated prematurely. It was hypothesized that a combination of both these 
processes, instantiated with development and followed by evolution, would better emulate the processes in 
nature and would be more effective at exploring the search space. The objective of the research presented in 
the paper is to test this hypothesis. In terms of search this would mean combining a metaheuristic that applies 
intensification and diversification incrementally at each step on partial solutions to create initial candidate 
solutions which are then further explored by a metaheuristic that explores the space of complete candidate 
solutions. The one-dimensional bin-packing problem was used as a case study to evaluate these ideas. The 
hybridization of the developmental approach and genetic algorithm was found to perform better than each of 
these approaches applied separately to solve the problem instances. This study was an initial attempt to test 
the above hypothesis and has highlighted the potential of this hybridization. Given this future work will apply 
this approach to other combinatorial optimization problems.   

1 INTRODUCTION 

Banzhaf and Pillay (2007) emphasised the need to 
take analogies from nature in order to solve complex 
optimization problems. The authors highlight two 
processes that are essential for this, namely, evolution 
and development. Evolution has been emulated to 
solve optimization problems by means of 
evolutionary algorithms, such as genetic algorithms 
(GAs). The developmental approach (DA) was 
created to mimic the process of development in 
nature. The authors use the domain of examination 
timetabling to illustrate the effectiveness of both these 
processes in solving complex optimization problems. 
Since its inception there have been some revisions 
made to the approach to improve its performance 
(Pillay and Banzhaf, 2008; Pillay, 2009; Pillay, 2011; 

Rajah and Pillay, 2013). The DA has performed 
comparatively well to state of the art approaches in 
solving the examination timetabling problem, and 
was placed amongst the finalists in the examination 
timetabling track of the second international 
timetabling competition (McCollum et al., 2008). The 
developmental approach takes an analogy from the 
development of multicellular organisms. Such 
organisms are developed incrementally with different 
processes contributing to growth at each stage of 
development. Whereas other metaheuristics generally 
explore the space of candidate solutions by means of 
intensification and diversification (Blum and Roli, 
2013), the developmental approach performs 
intensification and diversification at each stage of 
solution construction, i.e. on the space of partial 
solutions at each step of creating a solution. 

188
Rajah, C. and Pillay, N..
Combining Development and Evolution - Case Study: One Dimensional Bin-packing.
In Proceedings of the 7th International Joint Conference on Computational Intelligence (IJCCI 2015) - Volume 1: ECTA, pages 188-195
ISBN: 978-989-758-157-1
Copyright c© 2015 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



 

Intensification and diversification are achieved by 
emulating the cell biology processes, namely, cell 
creation, cell division, cell migration and cell 
interaction. Most metaheuristics, like genetic 
algorithms, generally explore the space of candidate 
solutions that have been already constructed. It is 
hypothesized that a hybridization beginning with 
development followed by evolution will better 
emulate the processes in nature. The reasoning behind 
this is that in nature once an initial organism is created 
by means of development, development is not 
necessarily complete. Certain cells of the organism 
will continue to develop until a certain point in the 
organism’s life space. In terms of search this means 
combining a metaheuristic that incrementally 
performs intensification and diversification at each 
stage of solution construction with a metaheuristic 
that will perform further intensification and 
diversification in the space of completed candidate 
solutions. The main contribution of this research is to 
test this combination. It is anticipated that the 
developmental approach will identify potential areas 
for optima in the search space which the genetic 
algorithm will exploit further. The one-dimensional 
bin packing problem (1BPP) was chosen as this is a 
well-known combinatorial optimization problem and 
is in general one of the domains that are used to 
evaluate optimization techniques, e.g. the hyper-
heuristic cross-domain challenge for optimization 
(Ochoa et al., 2014). The hybridization of both 
approaches was found to work well, producing better 
results than the individual application of these 
methods to solve problem.  

Section 2 gives the background to the study. 
Section 3 presents the DA for solving the 1BPP. The 
hybrid approach, HDA, is described in section 4. The 
methodology used to evaluate the DA, GA and the 
HDA applied to the 1BPP is described in Section 5. 
Section 6 discusses and compares the performance of 
the DA, GA and HDA. Section 7 concludes the study. 

2 1BPP 

The one dimensional bin-packing problem is an NP-
hard combinatorial optimization problem as it cannot 
necessarily be solved in polynomial time. The 1BPP 
requires that a minimum number of bins be used to 
pack items of different sizes. Each bin has the same 
capacity and its capacity may not be exceeded. If a 
bin is full then a new bin must be used. This study 
focuses on the offline version of the problem in which 
the size of the item is known prior to packing (Scholl 
et al., 1997).  

Fleszar and Hindi (2002) used the perturbation 
MBS to create an initial solution which is improved 
using variable neighbourhood search. The approach 
was successfully applied to the Scholl benchmark set. 
In the study conducted by Layeb and Chenche (2012) 
initial solutions created by hybridizing the first-fit and 
best-first heuristics are optimized using tabu search 
(Glover and Luguna, 1997) for the Scholl benchmark 
set. In the study conducted by Layeb and Boussalia 
(2012) the cuckoo search algorithm, incorporating 
principles of quantum computing, is used to solve the 
Scholl benchmark problem set. Alvim et al. (2004) 
applied a hybrid method to solve the 1BPP. An initial 
solution is constructed using the best first decreasing 
heuristic. A redistribution strategy is used to improve 
bin usability in the solution. A tabu search is then 
used to improve the solution. The approach was 
applied to both the Scholl and Faulkenauer problem 
sets and it produced some of the best results in 
literature. Scholl et al. (1997) introduced an approach 
called BISON to solve the 1BPP. BISON combines a 
variation of MTP with new bound and dominance 
rules and reduction procedures, tabu search and a 
depth-first search branch and bound method, to solve 
this problem. The reduction procedures are similar to 
MTP but the approach outperforms MTP when 
applied to the Scholl benchmark set. 

Lima and Yakawa (2003) used a group based 
encoding scheme in a genetic algorithm to solve the 
problem. The first fit heuristic is used to create each 
individual in the initial population. The method was 
able to solve three of the 10 problem instances from 
the Scholl problem set considered hard to solve. 
Rohlfshagen and Bullinaria (2007) make use of a GA 
inspired by exon shuffling in nature. The GA solved 
8 of the 10 hard problems in the Scholl benchmark 
set. Abidi et al. (2013) also made use of a GA to solve 
the 1BPP. Half of the initial population is generated 
using the first fit heuristic and the rest is randomly 
generated. The approach found optimal solutions to 
930 instances from the Scholl benchmark set. 
Dokeroglu and Cosar (2014) made use of a parallel 
grouping algorithm. The approach to generate the 
initial population runs on a processor called the 
master node. Thereafter, sub-populations (islands) 
are run on separate processors, slave nodes, different 
from the master node. Problems in both the Scholl 
benchmark problem sets and Faulkenauer benchmark 
problem sets were solved using this approach.  

A more recent direction of research in this domain 
include the use of hyper-heuristics (Lopez-Camacho 
et al., 2014) to solve this problem. The authors make 
use of a selection construction hyper-heuristic to 
construct a solution to the bin-packing problem. The 
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low-level heuristics used are the first fit decreasing, 
best fit decreasing and a subset of the set of Djang and 
Finch heuristics. A genetic algorithm is implemented 
to explore the heuristic space. The hyper-heuristic 
was successfully used to solve both one dimensional 
and two dimensional instances.  

3 DEVELOPMENTAL 
APPROACH FOR 1BPP 

This section describes the DA used for 1BPP. First 
the overall algorithm is presented and explained. 
Then cell creation, cell division, cell interaction and 
cell swap are then described. Algorithm 1 illustrates 
the DA used for 1BPP. 

Algorithm 1: Developmental Approach for 1BPP. 

 

An organism represents a solution to the 1BPP with 
all items allocated to bins. Each cell in the organism 
corresponds to a bin and size limit of the cell is 
equivalent to the bin capacity for the problem. The 
algorithm starts by sorting all the items to be packed 
according to the saturation degree. The saturation 
degree represents the number of cells, i.e. bins, an 
item can be placed in. The saturation degree of the 
remaining items is recalculated after the placement of 
each item. An item is allocated to the cell with the 
least residual space after placement. If the item does 
not fit into the existing cell a new cell is created. 
There is no restriction on the number of cells 
contained in the organism. Both the cell interaction 
operator and cell swap operators are called on each 
iteration. The algorithm ends when all items have 
been packed. Cell and organism representation, cell 
division, cell interaction, cell swap and fitness 
evaluation are described in the sections below.  

3.1 Representation and Cell Creation 

As mentioned above the organism developed by the 
DA represents the solution to the 1BPP and each cell 
in the organism represents a bin in the problem. 
Figure 1 illustrates an example of an organism that 
has three cells. Cell 1 has three items, namely, items 
2, 4 and 7. Cell 2 has four items and cell 3 has two 
items. An item cannot be allocated more than once to 
a cell or be allocated to more than one cell. One item 
is allocated on each iteration. The algorithm begins 
by creating a single cell an allocating the first item in 
the list to it. If the item cannot be allocated to an 
existing cell, cell division is performed. The next 
section describes the cell division operator. 

3.2 Cell Division 

Cell division takes place when an item has to be 
allocated and the existing cells have reached the size 
limit. A new cell is created and the item is placed in 
it. Figure 2 shows an organism that has two cells. Cell 
1 has items 1 and 2. Cell 2 has items 3 and 4. Item 5 
needs to be added to the organism. The item is too 
large to fit in either cell. As a result cell division takes 
place. After cell division the organism has three cells. 
The new cell is cell 3 with item 5 placed in it. The 
next section describes the cell interaction process.  

3.3 Cell Interaction 

The cell interaction operator attempts to move an item 
from a randomly chosen cell to another cell in order 
to improve the overall fitness of the organism. The 
cell interaction operator is illustrated in Figure 3. The 
organism contains three cells, one containing items 2, 
4 and 7, the second contains items 5, 6, 9 and 10 and 
the third items 1 and 3. Cell 1 is chosen at random. 
Item 7, shown in bold with grey shading is chosen at 
random from cell 1. Cell 3 is chosen at random and 
item 7 is moved to it as the move improves the overall 
fitness of the organism.  

3.4 Cell Swap 

Some cell interactions are reciprocal in nature. 
During an exchange cells may swap items between 
themselves. The cell swapping operator first 
randomly selects two non-empty cells. A single item 
from each cell is chosen at random. An attempt is 
made to swap the two items between these two cells. 
The move is made if the items fit into the receiving 
cells and the fitness of the organism is improved by 
the swap. The fitness function is discussed in section 

Create_Organism() 
Begin 
 Sort the items to be allocated according to their saturation 
 degree 
 Create a single cell 
 Select the item with lowest saturation degree and place in 
 the first bin. 
 Repeat  
  Resort the remaining items 
    If there is a feasible cell available  
     Add the item to the cell with least unused space 
    Else  
     Perform cell division and place the item in the new cell 
     Perform Cell Interaction 
     Perform Cell Swap 
Until all items have been scheduled 
End 
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3.3.2.  The cell swapping operator is illustrated in 
Figure 4. Cell 1 and cell 3 are randomly chosen. Item 
7 from cell1 and item 3 from cell 3 are randomly 
chosen. Item 7 from cell 1 is swapped with item 3 
from cell 3 as the move results in a fitter organism. 
The swapped items are shown in bold with grey 
shading.  

3.5 Fitness and Evaluation 

The fitness of each organism is calculated using the 
function in Equation 1 proposed by Faulkenauer 
(1996). All cells have the same capacity. The function 
favours cells that have less unused space. The 
function returns a value between zero and one, where 
a higher value is more desirable. A set of completely 
full cells, with no cell being partially full, would 
return a value of one.  ݂݅ݏݏ݁݊ݐ = ∑ ଶ௡௜ୀଵ(ܿ/௜ݏݏ݈݈݁݊ݑ݂) ݊  

where: ݊ = number of cells, ݂ݏݏ݈݈݁݊ݑ௜= sum of the 

size of all items in cell, and C = cell capacity. 

4 HYRBRID APPROACH (HDA) 

This section presents the hybrid approach. The hybrid 
approach combines the DA discussed in section 3 
with a genetic algorithm. As previously mentioned 
the DA explores the space of partial solutions at each 
step in creating a solution whereas the genetic 
algorithm applies intensification and diversification 
to the space of complete candidate solutions. It is 
anticipated that by combining both these approaches 
the developmental approach will identify areas of 
potential optima which will be further explored by the 
genetic algorithm. Firstly, an overview of the 
approach is given, followed by a description of the 
GA.  

 
The DA, described in section 3, is used to generate 
each individual in the initial population optimized by 
the GA. Offspring are created using crossover and 
mutation and replace their parents in the population.  

 Tournament selection is used to choose parents to 
create successive generations. Individuals are chosen 
at random from the population to form a tournament. 
The size of the tournament is a parameter value as it 
is problem dependent. The winner of the tournament 
is the fittest element which is returned as a parent. 

The fitness of the organisms generated by the DA 
for the initial population is sufficiently high. This 

means that highly fit parents that are selected for 
recombination already have cells that are well 
packed. The crossover operator needs to preserve this 
packing in some cells to some extent to ensure that 
the DA efforts are not completely lost in 
recombination. The following list outlines the steps 
followed by the crossover operator:  

 
1. All cells from both parents are sorted in ascending 
order according to the amount of unused space within 
each cell. 

2. An offspring is created by selecting cells from the 
list that are mutually exclusive, i.e. only cells 
containing items not yet in the offspring are selected. 
If there is more than one cell to choose from then a 
cell is selected at random.  

3. The remaining items are allocated using the first-
fit heuristic. 

 4. The DA operators cell interaction and cell swap 
are invoked in an attempt to improve the offspring’s 
fitness. The application of these operators could be 
viewed as local search and hence the genetic 
algorithm a memetic algorithm. 

The mutation operator is responsible for ensuring 
some measure of diversity is maintained in successive 
generations. The mutation operator works as follows: 

1. Select two cells at random in the offspring. 
2. Select two items at random from each cell and 

attempt to swap them. 

5 METHODOLOGY 

The DA, GA and HDA were evaluated on the Scholl 
benchmark set for the 1BPP.  Table 1 lists the details 
of the benchmark set. 

Table 1: Scholl Benchmark Set. 

Set # Instances Item sizes Bin Capacity # Items 

Set1 720 [1-100] {100,120,150
} 

{50,100,20
0,500} 

Set2 480 [3-9]  1000 {50,100,20
0,500} 

Set3 10 [20000-
35000] 

100000 200 

The benchmark consists of three sets. The first set has 
720 instances. Each instance has item sizes in the 
range [1,100]. The bin capacities are 100, 120 and 
150 and the number of items to be packed is 50, 100, 
200 and 500. The second set has 480 instances. The 
item sizes are given such that the average number of 
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items per bin is in the range [3-9]. The number of 
items to be packed is the same as Set1.  The third set 
has 10 instances. The item sizes are in the range 
[20000-35000]. The bin capacity is 100000 and the 
number of items is 200. Set 3 is deemed the most 
challenging to solve. 

The DA, GA and HDA were applied separately to 
solve the benchmark problems. The DA, GA and 
HDA were applied using three different population 
sizes, namely, 100, 300 and 500. This was done to test 
the effect of population size on the performance of all 
three approaches. Population sizes greater than 500 
were not considered. One of the aims of this study is 
to test the efficiency of the approaches with smaller 
population sizes. In this way computational times can 
be kept at acceptable levels. Fifty runs were 
performed for each of the population sizes 100, 300 
and 500 using a new random number generator seed 
for each organism in the population. The tournament 
size was fixed at 10.  The crossover probability was 
set at 0.9 and the mutation probability used was 0.05. 
Since the mutation operator attempts to swap items 
between two randomly selected bins, it may not 
always be successful in that the item intended to be 
swapped may not be able to fit into the destination 
bin. For this reason the number of attempts for a swap 
was set at 100 to avoid the system wasting valuable 
computational time unnecessarily. Increasing the 
number of attempts beyond this value made little or 
no difference to the results achieved. Using a value of 
50 was found to be ineffective during testing. 

Table 2: GA and HDA parameter values. 

Parameter Value 

Population sizes 100,300,500 
Tournament size 10 
Crossover Rate 0.9 
Mutation Rate 0.05 

To facilitate a comparison in performance of the 
GA and HDA, the same parameter values, listed in 
Table 2 are used. The fundamental difference 
between the GA and HDA is the way the initial 
population is generated. In the case of the GA, the 
initial population is generated randomly. For the 
HDA the DA is used to generate individuals in the 
initial population.  

The system was implemented in Java using an i5 
Core at 2.4 GHz with 4 GB RAM and running 
Windows 7 professional. The performance of the DA, 
GA and HDA are discussed in the following section. 

6 RESULTS AND DISCUSSION 

This section reports on the performance of the DA, 
GA and HDA described in the previous section in 
solving the one-dimensional bin-packing problem. 
Section 6.1 examines the performance of the DA, GA 
and HDA in solving this problem. Section 6.2 
provides a comparison of these methods to other 
methods producing the best results for the Scholl 
benchmark set.   

Table 3: DA, GA and HDA results. 

Problem 
Set 

Population 
Size 

DA GA HDA 

Set1 100 A:634 
B:632.5 
C:2.278 
D: 0.19 

A:609 
B:599.1 
C:33.43 
D: 3.39 

A:712 
B:710.8 
C:1.289 
D:6.895 

300 A:685 
B:637.7 
C:2.011 
D: 0.19 

A:681 
B:673.3 
C:22.9 
D: 9.58 

A:719 
B:713.9 
C:0.544 
D:22.26 

500 A:696 
B:642.4 
C:1.822 
D: 0.22 

A:700 
B:692.8 
C:17.07 
D:14.32 

A:718 
B:716.8 
C:0.622 
D:34.71 

Set2 100 A:434 
B:432.5 
C:0.944 
D: 0.12 

A:386 
B:379.9 
C:37.66 
D: 5.6 

A:464 
B:460.9 
C:5.211 
D:7.394 

300 A:461 
B:437.1 
C:1.433 
D: 0.15 

A:433 
B:431.4 
C:8.267 
D:16.83 

A:468 
B:466.4 
C:2.933 
D:26.75 

500 A:453 
B:444.3 
C:2.322 
D: 0.14 

A:465 
B:461.8 
C:3.288 
D: 32 

A:480 
B:471.3 
C:4.9 
D:41.31 

Set3 100 A: 8 
B: 8 
C: 0 
D: 0.5 

A: 0 
B: 0 
C: 0 
D: 0.72 

A: 8 
B: 8 
C: 0 
D: 4 

300 A: 8 
B: 8 
C: 0 
D: 0.5 

A: 4 
B: 3.1 
C:1.211 
D:2.917 

A: 9 
B: 8 
C: 0 
D:12.92 

500 A: 8 
B: 8 
C: 0 
D: 0.4 

A: 5 
B: 4.1 
C:0.767 
D:5.928 

A: 9 
B: 8 
C: 0 
D:18.39 

6.1 DA, GA and HDA Results 

Table 3 lists the results obtained by the DA, GA and 
HDA for the three sets of problem instances 
comprising the Scholl benchmark set. The table lists 
the highest number of instances that were solved to 
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optimality over the 50 runs (A), the average score and 
variance score over the 50 runs (B), the average 
variance (C) and the average time taken to produce a 
solution (D). 

Table 4 shows the standard and absolute deviations 
for DA, HDA and GA respectively. The absolute 
deviation is how far the result is from the optimal 
solution and is represented by the number of bins. The 
relative deviation is computed as the absolute 
deviation divided by the number of bins in the optimal 
solution. The table lists the average absolute 
deviation (A), maximum absolute deviation (B), 
average relative deviation (C) and the maximum 
relative deviation (D) over the 50 runs for each set 
using the best population size. 

Table 4: Absolute and relative deviations for the DA, GA 
and HAD. 

Problem Set DA GA HDA 

Set1 A: 0.035 
B: 2 
C: 0.03 
D: 2.44 

A: 0.015 
B: 1 
C: 0.08 
D: 1.55 

A: 0.001 
B: 1 
C: 0.002 
D: 1.14 

Set2 A: 0.035 
B: 2 
C: 0.03 
D: 2.44 

A: 0.065 
B: 2 
C: 0.09 
D: 3.7 

A: 0 
B: 0 
C: 0 
D: 0 

Set3 A: 0.035 
B: 2 
C: 0.03 
D: 2.44 

A: 0.31 
B: 2 
C: 0.21 
D: 1.99 

A: 0.01 
B: 1 
C: 0.18 
D: 1.79 

From Table 3 it is evident that the DA performs well 
as it achieves the optimal solution in more than 97% 
of Set1 instances, more than 96% of the Set2 
instances and 80% for the Set3 instances. Increasing 
the population size seems to have a minimal impact 
on the performance of the DA.  For Set1 and Set2, the 
GA requires a higher population size to produce 
better results than the DA. For Set3, it performs 
poorly producing much worse results than the DA.   
This shows that it does not scale well to more difficult 
problems. Increasing the population size for both the 
HDA and GA does result in an overall performance 
improvement. However, HDA outperforms the GA 
using a smaller population of 100 compared to 500 
for Set1. For Set2, the HDA using a population of 100 
performs similarly to the GA using a population of 
500. A similar performance is noted for Set3 when 
comparing HDA to GA. The HDA optimally solved 
almost all the instances in Set1, all the instances in 
Set2 and almost all the instances in Set3. The absolute 
and relative deviation also indicates the superior 
performance of the HDA over the DA. The non-
optimal solutions derived by the HDA deviated by at 

most one from the known optimal. The processing 
time for the DA is considerably shorter than HDA and 
GA.  The GA takes less processing time than the 
HDA.  

Hypothesis tests were performed to ascertain the 
statistical significance of the result that the HDA 
performs better than the DA. The levels of 
significance, critical values, and decision rules for 
these tests are listed in Table 5. The hypothesis and 
Z-values are shown in Table 6. 

Table 5: Levels of Significance, critical values and decision 
rules. 

P Critical Value Decision Rule 
0.01 2.33 Reject Ho if Z > 2.33 

0.05 1.64 Reject Ho is Z > 1.64 

0.1 1.28 Reject Ho if Z > 1.28 

Table 6: Hypothesis and Z values for DA and HDA 
comparison. 

Hypothesis Dataset Z Values 
Ho : µDA= µHDA  
HA : µHDA> µDA 

Set1 4.64 

Ho : µDA= µHDA  
HA : µHDA> µDA 

Set2 4.40 

Ho : µDA= µHDA  
HA : µHDA> µDA 

Set3 0.62 

The hypothesis that HDA performs better than DA 
was found to be significant at the 1% level of 
significance for Set1 and Set2. The hypothesis that 
HDA performs better than DA was not found to be 
significant at all levels of significance for Set3. 

Hypothesis tests were also performed to ascertain 
the statistical significance of the result that the HDA 
performs better than the GA. The hypothesis and Z-
values are shown in Table 7.  

Table 7: Hypothesis and Z values for GA and HDA 
comparison. 

Hypothesis Dataset Z Values 
Ho : µHDA= µGA  
HA : µHDA> µDA 

Set1 37.71 

Ho : µHDA= µGA  
HA : µHDA> µGA 

Set2 35.27 

Ho : µHDA= µGA  
HA : µHDA> µGA 

Set3 16.07 

The hypothesis that HDA performs better than GA 
was found to be significant at all levels of significance 
for Set1, Set2 and Set3.  
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6.2 Comparison to Previous Work 

This section empirically compares the performance of 
the DA, GA and the HDA to other work solving the 
Scholl benchmark problem set in Table 8. These 
methods are discussed in section 2. The table displays 
the number of problem instances that are solved to 
optimality for each of the problem sets.  For example, 
696/720 indicates that 696 instances in a set 
consisting of 720 instances were optimally solved. In 
some cases the method was not applied to all the 
problem instances in a chosen set. For example, the 
method by Layeb and Boussalia (2012) was applied 
to 15 problem instances from Set1, 16 problem 
instances from Set2 and all 10 problem instances 
from Set3. Therefore, Table 8 shows that their 
method solved all 15 problems instances chosen from 
Set1, 4 of the 16 problem instances from Set2 and 
none of the 10 problem instances from Set3.  

Table 8: Number of instances solved for different methods. 

Method Set1 Set2 Set3 

DA 696/720 453/480 8/10 

GA 700/720 465/480 5/10 

HDA 718/720 480/480 9/10 

Fleszar and Hindi (2002) 694/720 474/480 2/10 

Scholl et al.  (1997) 697/720 473/480 3/10 

Alvim et al. (2004)  720/720 480/480 10/10 

Lima and Yakawa (2003) - - 3/10 
Layeb and Boussalia 
(2012) 

15/15 4/16 0/10 

Layeb and Chenche 
(2012) 

5/5 7/15 0/5 

Rohlfshagen and 
Bullinaria (2007) 

- - 8/10 

Dokeroglu and Cosar 
(2014) 

667/720 412/480 8/10 

Abidi et al. (2013) 615/720 315/480 0/10 
Lopez-Camacho et al. 
(2014) 

2/2 2/2 - 

The comparisons show that the hybrid 
improvement heuristic employed by Alvim et al. 
(2004) performs the best for all three problem sets. It 
is able to solve all problem instances in all three sets 
to optimality. The GA inspired by exon shuffling in 
nature (Rohlfshagen and Bullinaria, 2007) was 
applied to Set3 and achieved good results. The HDA 
has also implemented crossover operators fashioned 
to exon shuffling. This may possibly explain the 
similarity in performance with all three methods. The 
HDA produced better results than the grouping GA 
on both Set 1 and Set 2. This may be partly due to the 
strong performance of the DA used in the HDA. The 

performance of HDA is the closest to the hybrid 
method by Alvim et al. in terms of the number of 
problem instances solved to optimality in each 
dataset. However, the hybrid method has shorter 
processing times. This is due to the fact that the 
hybrid method optimizes a single candidate solution. 
The HDA optimizes a population of individuals at the 
same time. Furthermore, the DA has to solve each 
problem 100, 200 or 500 times before the GA is 
applied. Thus it can be expected that the runtimes are 
higher. The performance of the HDA is closely 
followed by the DA for all three datasets. The BISON 
method, and the perturbation MBS’ with VNS 
achieved similar results for all three sets. Whilst the 
DA is comparable in performance to other 
biologically inspired methods considered here, the 
HDA performs the best. 

7 CONCLUSION 

Previous work has emphasized the importance of both 
evolution and development in solving complex 
combinatorial optimization problems. As a result of 
this the developmental approach was derived to 
emulate the process of development in nature.  This 
study investigates combining development and 
evolution and evaluates this hybridization on a new 
problem domain, namely, the one-dimensional bin-
packing problem. The standard operators of the DA, 
namely, cell division and cell interaction were 
implemented. In addition, a third operator taking an 
analogy from cell biology, namely, cell swap, was 
needed. The DA's performance in solving this 
problem was found to be comparative to other 
approaches applied to the Scholl benchmark set. The 
HDA performs better than the DA and GA in solving 
the one-dimensional bin-packing problem and 
comparatively, and in a number of cases better, than 
other methods that have been applied to the same 
benchmark set. The study has highlighted the 
potential of the hybridization of both these 
approaches and future work evaluate this hybrid 
further on additional problem domains including the 
travelling salesman and airplane landing problems. 
Further theoretical justification for the performance 
of the hybrid will also be investigated. 

REFERENCES 

Banzhaf, W., Pillay, N., 2007. Why Complex Systems 
Engineering Needs Biological Development. 
Complexity, Vol. 13, No. 2, 12-21. 

ECTA 2015 - 7th International Conference on Evolutionary Computation Theory and Applications

194



 

Pillay, N., Banzhaf, N., 2008. A Developmental Approach 
to the Uncapacitated Examination Timetabling 
Problem.  In Proceedings of PPSN 2008, Lecture Notes 
in Computer Science, 276-285.  

Pillay, N., 2009.  A Revised Developmental Approach to 
the Uncapacitated Examination Timetabling Problem. 
In Proceedings of SAICSIT 2009, Gauteng,South 
Africa, ACM Press,187-192. 

Pillay, N., 2011. A Study of Noise Operators in the 
Developmental Approach for the Examination 
Timetabling Problem.  In Proceedings of the 2011 IEEE 
Conference on Intelligent Computing and Intelligent 
Systems (ICIS 2011), Guangzhou, China, Vol. 3, 534-
538, IEEE Press, November 2011 

Rajah, C., Pillay, N. 2013. A Study of introduction of cell 
depletion in the Developmental Approach for the 
Uncapacitated Examination Timetabling Problem.  In 
Proceedings of ORSSA 2013, 102-111. 

McCollum, B., McMullan, P., Paechter, B., Lewis, R., 
Schaerf, A., DiGapsero, L., Parkes, A. J., Qu, R., Burke, 
E.K., 2008. Setting the research agenda in automated 
timetabling: The second international timetabling 
competition.  INFORMS Journal of Computing, Vol. 
22, No.1, 120–130. 

Ochoa, G., M. Hyde, T. Curtois, , July 2014 J.A. Vazquez-
Rodriguez, J. Walker, M. Gendreau, G. Kendall, B. 
McCollum, A. J. Parkes, S. Petrovic andE.K. 
Burke."HyFlex: A Benchmark Framework for Cross-
Domain Heuristic Search". In Proceedings of the 
European Conference on Evolutionary Computation in 
Combinatorial Optimization (EvoCOP 2012), Lecture 
Notes in Computer Science, Vol. 7245, pp. 136-147, 
2012. 

Blum, C., Roli, A. 2013. Metaheuristics in Combinatorial 
Optimization: Overview and Conceptual Comparison. 
ACM Computing Surveys, vol. 35, no. 3, 268-308. 

Scholl, A., Klein, R.,  Jurgens, C., 1997. Bison: A Fast 
Hybrid Procedure for Exactly Solving the One-
Dimensional Bin Packing Problem. Computers and 
Operations Research, vol. 24, no. 7, 626-645. 

Flezar, K., Hindi, K. S., 2002. New Heuristics for One-
Dimensional Bin-Packing". Computers and Research, 
vol. 29, no. 7, 821-839. 

Layeb, A., Chenche, S., 2012. A Novel GRASP Algorithm 
for Solving the Bin-Packing Problem. International 
Journal of  Information Engineering and Electronic 
Business, vol. 2, 8-14. 

Glover, F., Laguna, M. 1997. Tabu Search, Kluwer 
Academic Publishers. 

Layeb, A., Boussalia, S. R., 2012. A Novell Quantum 
Inspired Cuckoo Search Algorithm for Bin-Packing 
Problem. International Journal of Information 
Technology and Computer Science, vol. 5, pp. 58-67, 
2012. 

Alvim, A. C., Ribeiro, C. C., Glover, F., Aloise, D. J., 2004. 
A Hybrid Improvement Heuristic for the One-
Dimensional Bin Packing Problem. Journal of 
heuristics, vol. 10, 205-229. 

Lima, H., Yakawa, T., 2003. A New Design Of Genetic 
Algorithm For Bin Packing. Evolutionary Computation 

, 2003, CEC '03. The 2003 Congress on Evolutionary 
Computation, vol. 2, 1044-1049. 

Rohlfshagen, P., Bullinara, J. A. 2007. A Genetic 
Algorithm With Exon Shuffling Crossover for Hard Bin 
Packing Problems.  In GECCO '07 Proceedings of the 
9th Annual Conference on Genetic and Evolutionary 
Computation, New York, USA, 1365-1371. 

Abidi, S., Krichen, S., Alba, E., Molina, J. M., 2013. 
Improvement Heuristic for Solving the One-
Dimensional Bin-Packing Problem. In Proceedings of 
the 5th International Conference on Modeling, 
Simulation and Applied Optimization (ICMSAO), 1-5. 

Dokeroglu, T., Cosar, A., 2014. Optimization of One-
Dimensional Bin Packing Problem with Island Parallel 
Grouping Genetic Algorithms. Computers and 
Industrial Engineering, Vol. 75, 176-186. 

López-Camacho, E., Terashima-Marin, H., Ross, P., 
Ochoa, G., 2014. A Unified Hyper-Heuristic 
Framework for Solving Bin Packing Problems.  Expert 
Systems with Applications, vol. 41, no. 15, 6876–6889. 

Falkenauer, E., 1996. A Hybrid Grouping Genetic 
Algorithm For Bin Packing. Journal of Heuristics, vol. 
2, 5-30. 

Combining Development and Evolution - Case Study: One Dimensional Bin-packing

195


