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Abstract: Multimodal optimization (MMO) is the problem of finding many or all global and local optima. In recent 
years many efficient nature-inspired techniques (based on ES, PSO, DE and others) have been proposed for 
real-valued problems. Many real-world problems contain variables of many different types, including 
integer, rank, binary and others. In this case, the weakest representation (namely binary representation) is 
used. Unfortunately, there is a lack of efficient approaches for problems with binary representation. Existing 
techniques are usually based on general ideas of niching. Moreover, there exists the problem of choosing a 
suitable algorithm and fine tuning it for a certain problem. In this study, a novel approach based on a 
metaheuristic for designing multi-strategy genetic algorithm is proposed. The approach controls the 
interactions of many search techniques (different genetic algorithms for MMO) and leads to the self-
configuring solving of problems with a priori unknown structure. The results of numerical experiments for 
classical benchmark problems and benchmark problems from the CEC competition on MMO are presented. 
The proposed approach has demonstrated efficiency better than standard niching techniques and comparable 
to advanced algorithms. The main feature of the approach is that it does not require the participation of the 
human-expert, because it operates in an automated, self-configuring way. 

1 INTRODUCTION 

Many real-world problems have more than one 
optimal solution, or there exists only one global 
optimum and several local optima in the feasible 
solution space. Such problems are called 
multimodal. The goal of multimodal optimization 
(MMO) is to find all optima (global and local) or a 
representative subset of all optima. 

Evolutionary and genetic algorithms (EAs and 
GAs) demonstrate good performance for many 
complex optimization problems. EAs and GAs are 
also efficient in the multimodal environment as they 
use a stochastic population-based search instead of 
the individual search in conventional algorithms. At 
the same time, traditional EAs and GAs have a 
tendency to converge to the best-found optimum 
losing population diversity. 

In recent years MMO have become more 
popular, and many efficient nature-inspired MMO 
techniques were proposed. Almost all search 
algorithms are based on maintaining the population 
diversity, but differ in how the search space is 
explored and how optima basins are located and 
identified over a landscape. The majority of 
algorithms and the best results are obtained for real-

valued MMO problems (Das et al., 2011). The main 
reason is the better understanding of landscape 
features in the continuous search space. Thus many 
well-founded heuristics can be developed.  

Unfortunately many real-world MMO problems 
are usually considered as black-box optimization 
problems and are still a challenge for MMO 
techniques. Moreover, many real-world problems 
contain variables of many different types, including 
integer, rank, binary and others. In this case, usually 
binary representation is used. Unfortunately, there is 
a lack of efficient approaches for problems with 
binary representation. Existing techniques are 
usually based on general ideas of niching and fitness 
sharing. Heuristics from efficient real-valued MMO 
techniques cannot be directly applied to binary 
MMO algorithms because of dissimilar landscape 
features in the binary search space. 

In this study, a novel approach based on a 
metaheuristic for designing multi-strategy MMO GA 
is proposed. Its main idea is to create an ensemble of 
many MMO techniques and adaptively control their 
interactions. Such an approach would lead to the 
self-configuring solving of problems with a priori 
unknown structure. 

The rest of the paper is organized as follows. 
Section 2 describes related work. Section 3 describes 
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the proposed approach. In Section 4 the results of 
numerical experiments are discussed. In the 
Conclusion the results and further research are 
discussed. 

2 RELATED WORK 

The problem of MMO has exists since the first EAs. 
The first MMO techniques were applied in EAs and 
GAs for improvement in finding the global optimum 
in the multimodal environment. 

The MMO, in general, can have at least 3 goals 
(Preuss, 2014): 
 to find a single global optimum over the 

multimodal landscape only; 
 to find all global optima; 
 to find all optima (global and local) or a 

representative subset of all optima. 
It is obvious that the second and the third goals 

are more interesting from both a theoretical and a 
practical point of view. 

Over the past decade interest for this field has 
increased. The recent approaches are focused on the 
goal of exploring the search space and finding many 
optima to the problem. Many efficient algorithms 
have been proposed. In 2013, the global completion 
on MMO was held within IEEE CEC'13 (Li et al., 
2013a).  

The list of widespread MMO techniques includes 
(Das et al., 2011; Liu et al., 2011; Deb and Saha, 
2010): 

1. General techniques: 
 Niching (parallel or sequential) 
 Fitness sharing, Clearing and Cluster-based 

niching 
 Crowding and Deterministic crowding 
 Restricted tournament selection (RTS) 
 Mating restriction 
 Species conservation 

2. Special techniques: 
 Niching memetic algorithm 
 Multinational EA 
 Bi-objective MMO EA 
 Clustering-based MMO EA 
 Population-based niching 
 Topological algorithms 

3. Other nature-inspired techniques: 
 PSO, ES, DE, Ant Colony Optimization and 

others 
Binary and binarized MMO problems are usually 

solved using the GA based on general techniques. 
Also special techniques are applied, but some of 
their features can be lost in the binary space. 

Unfortunately, many efficient nature-inspired MMO 
algorithms have no binary version and cannot be 
easily converted to binary representation. 

As we can see from many studies, there is no 
universal approach that is efficient for all MMO 
problems. Many researches design hybrid 
algorithms, which are generally based on a 
combination of search algorithms and some heuristic 
for niching improvement. For example, here are four 
top-ranked algorithms from the CEC’13 competition 
on MMO: Niching the CMA-ES via Nearest-Better 
Clustering (NEA2), A Dynamic Archive Niching 
Differential Evolution algorithm (dADE/nrand/1), 
CMA-ES with simple archive (CMA-ES) and 
Niching Variable Mesh Optimization algorithm (N-
VMO) (Li et al., 2013b). 

Another way is combining many basic MMO 
algorithms to run in parallel, migrate individuals and 
combine the results. In (Bessaou et al., 2000) an 
island model is applied, where islands are iteratively 
revised according to the genetic likeness of 
individuals. In (Yu and Suganthan, 2010) four MMO 
niching algorithms run in parallel to produce 
offspring, which are collected in a pool to produce a 
replacement step. In (Qu et al., 2012) the same 
scheme is realized using the clearing procedure. 

The conception of designing MMO algorithms in 
the form of an ensemble seems to be perspective. A 
metaheuristic that includes many different MMO 
approaches (different search strategies) can deal 
with many different MMO problems. And such a 
metaheuristic can be self-configuring due to the 
adaptive control of the interaction of single 
algorithms during the problem solving. 

In (Sopov, 2015) a self-configuring multi-
strategy genetic algorithm in the form of a hybrid of 
the island model, competitive and cooperative 
coevolution was proposed. The approach is based on 
a parallel and independent run of many versions of 
the GA with many search strategies, which can deal 
with many different features of optimization 
problems inside the certain optimization class. The 
approach has demonstrated good results with respect 
to multi-objective and non-stationary optimization. 

3 MULTI-STRATEGY MMO GA 

In the field of statistics and machine learning, 
ensemble methods are used to improve decision 
making. On average, the collective solution of 
multiple algorithms provides better performance 
than could be obtained from any of the constituent 
algorithms. This concept can be also used in the  
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Figure 1: The Self*GA structure. 

field of EA. The main idea is to include different 
search strategies in the ensemble and to design 
effective control of algorithm interaction. Our 
hypothesis is that different EAs are able to deal with 
different features of the optimization problem, and 
the probability of all algorithms failing with the 
same challenge in the optimization process is low. 
Moreover, the interaction of algorithms can provide 
the ensemble with new options for optimization, 
which are absent in stand-alone algorithms. 

The general structure of the self-configuring 
multi-strategy genetic algorithm proposed in (Sopov, 
2015) is called Self*GA (the star sign corresponds to 
the certain optimization problem) and it is presented 
in Figure 1.  

The total population size (or the sum of 
populations of all stand-alone algorithms) is called 
the computational resource. The resource is 
distributed between algorithms, which run in parallel 
and independent over the predefined number of 
iterations (called the adaptation period). All 
algorithms have the same objective and use the same 
encoding (solution representation). All populations 
are initialized at random. After the distribution, each 
GA included in Self*GA has its own population 
which does not overlap with populations of other 
GAs. At the first iteration, all algorithms get an 
equal portion of the resource. This concept 
corresponds to the island model, where each island 
realizes its own search strategy.After the adaptation 
period, the performance of individual algorithms is 
estimated with respect to the objective of the 
optimization problem. After that algorithms are 
compared and ranked. Search strategies with better 

performance increase their computational resource 
(the size of their populations). At the same time, all 
algorithms have a predefined amount of resource 
that is not distributed to give a chance for algorithms 
with low performance. This concept corresponds to 
the competitive coevolution scheme. 

Finally, migrations of the best solutions are set to 
equate the start positions of algorithms for the run 
with the next adaptation period. According to the 
optimization problem, such a migration can be 
deterministic, selection-based or random. This 
concept corresponds to cooperative coevolution. 

Such a technique eliminates the necessity to 
define an appropriate search strategy for the problem 
as the choice of the best algorithm is performed 
automatically and adaptively during the run. 

Now we will discuss the design of a Self*GA for 
MMO problems that can be named SelfMMOGA. 

At the first step, we need to define the set of 
individual algorithms included in the SelfMMOGA. 
In this study we use six basic techniques, which are 
well-studied and discussed (Singh and Deb, 2006; 
Das et al., 2011), and they can be used with binary 
representation with no modification. Algorithms and 
their specific parameters are presented in Table 1. 
All values for radiuses and distances in Table 1 are 
in the Hamming metric for binary problems and in 
the Euclidean metric for continuous problems. 

The motivation of choosing certain algorithms is 
that if the SelfMMOGA performs well with basic 
techniques, we can develop the approach with more 
complex algorithms in further works. 

The adaptation period is a parameter of the 
SelfMMOGA. Moreover, the value depends on the 
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Table 1: Algorithms include in the SelfMMOGA. 

 Algorithm Parameters 

Alg1 Clearing 
Clearing radius, Capacity of 
a niche 

Alg2 Sharing Niche radius, α 

Alg3 Clustering 
Number of clusters, min 
distance to centroid, max 
distance to centroid 

Alg4 
Restricted 
Tournament 
Selection (RTS) 

Window size 

Alg5 
Deterministic 
Crowding  

- 

Alg6 
Probabilistic 
Crowding 

- 

limitation of the computational resource (total 
number of fitness evaluations). 

The key point of any coevolutionary scheme is 
the performance evaluation of a single algorithm. 
For MMO problems performance metrics should 
estimate how many optima were found and how the 
population is distributed over the search space. 
Unfortunately, good performance measures exist 
only for benchmark MMO problems, which contain 
knowledge of the optima. Performance measures for 
black-box MMO problems are still being discussed. 
Some good recommendations can be found in 
(Preuss and Wessing, 2013). In this study, the 
following criteria are used. 

The first measure is called Basin Ratio (BR). The 
BR calculates the number of covered basins, which 
have been discovered by the population. It does not 
require knowledge of optima, but an approximation 
of basins is used. The BR can be calculated as =  (1) 

= 1, ,∈   

, = 1, 	 ∈0,   

where pop is the population, k is the number of 
identified basins by the total population, l is the 
indicator of basin coverage by a single algorithm, b 
is a function that indicates if an individual is in basin 
z. 

To use the metric (1), we need to define how to 
identify basins in the search space and how to 
construct the function b(x,z). 

For continuous MMO problems, basins can be 
identified using different clustering procedures like 
Jarvis-Patrick, the nearest-best and others (Preuss et 

al., 2011). In this study, for MMO problems with 
binary representation we use the following approach. 
We use the total population (the union of 
populations of all individual algorithms in the 
SelfMMOGA). For each solution, we consider a 
predefined number of its nearest neighbours (with 
respect to the Hamming distance).  If the fitness of 
the solution is better, it is denoted as a local optima 
and the centre of the basin. The number of 
neighbours is a tunable parameter. For a real-world 
problem, it can be set from some practical point of 
view. The simplified basin identification procedure 
is described using a pseudo-code as follows: 

Z=∅; 
for all (x ∈ total population) 
{ 
   for i=1,..,S 
      yi=define nearest neighbour(x); 
   
   for all yi 
      if (fitness(x) > fitness(yi))   
      { 
         Z=Z+x; 
      }; 
}; 

The function b(x,z) can be easily evaluated by 
defining if individual x is in a predefined radius of 
basin centre z. The radius is a tunable parameter. In 
this study, we define it as = 	

 (2) 

where k is the number of identified basins ( = | |). 
The second measure is called Sum of Distances 

to Nearest Neighbour (SDNN). The SDNN penalizes 
the clustering of solutions. This indicator does not 
require knowledge of optima and basins. The SDNN 
can be calculated as 

= ,  (3) 

, = min∈ \ ,   

where dnn is the distance to the nearest neighbour, 
dist is the Hamming distance. 

Finally, we combine the BR and the SDNN in an 
integrated criterion K: = ∙ 1 ∙  (4) 

where  is a normalized value of ,  
defines weights of the BR and the SDNN in the sum 
( ∈ 0,1 . 

Next, we need to design a scheme for the 
redistribution of computational resources. New 
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population sizes are defined for each algorithm. In 
this study, all algorithms give to the “winner” 
algorithm a certain percentage of their population 
size, but each algorithm has a minimum guaranteed 
resource that is not distributed. The guaranteed 
resource can be defined by the population size or by 
problem features. 

At the coopearative stage, in many 
coevolutionary schemes, all individual algorithms 
begin each new adaptation period with the same 
starting points (such a migration scheme is called 
“the best displaces the worst”). For MMO problems, 
the best solutions are defined by discovered basins 
in the search space. As we already have evaluated 
the approximation of basins (Z), the solutions from Z 
are introduced in all populations replacing the most 
similar individuals. 

Stop criteria in the SelfMMOGA are similar to 
those in the standard GA: maximum number of 
objective evaluations, the number of generations 
with no improvement (stagnation), etc. 

4 EXPERIMENTAL RESULTS 

To estimate the approach performance we have used 
the following list of benchmark problems: 
 Six binary MMO problems are from (Yu and 

Suganthan, 2010). These test functions are based 
on the unitation functions, and they are 
massively multimodal and deceptive. 

 Eight real-valued MMO problems are from 
CEC’2013 Special Session and Competition on 
Niching Methods for Multimodal Function 
Optimization (Li et al., 2013b). 

Table 2: Test suite. 

Problem 
Number of desirable 

optima 
Problem 

dimensionality* 
binaryF11 32 global 30 
binaryF12 32 global 30 
binaryF13 27 global 24 
binaryF14 32 global 30 
binaryF15 32 global 30 
binaryF16 32 global 30 

cecF1 2 global + 3 local 9, 12, 15, 19, 22 
cecF2 5 global 4, 7, 10, 14 ,17 
cecF3 1 global + 4 local 4, 7, 10, 14 ,17 
cecF4 4 global 14, 22, 28, 34, 42 
cecF5 2 global + 2 local 11, 17, 24, 31, 37 
cecF6 18 global + 742 local 16, 22, 30, 36, 42 
cecF7 36 global 14, 20, 28, 34, 40 
cecF8 12 global 8, 14, 20, 28, 34 

* Real-valued problems have been binarized using the 
standard binary encoding with 5 accuracy levels. 

We have denoted the functions as in the source 
papers. Some details of the problems are presented 
in Table 2. 

In all comparisons, all algorithms have equal 
maximum number of the objective evaluations, but 
may differ in population sizes. 

The following criteria for estimating the 
performance of the SelfMMOGA over the 
benchmark problems are used for continuous 
problems: 
 Peak Ratio (PR) measures the percentage of all 

optima found by the algorithm (Equation 5). 
 Success Rate (SR) measures the percentage of 

successful runs (a successful run is defined as a 
run where all optima were found) out of all runs. = | ∈ | , |

 (5) 

where = , ,… ,  is a set of known optima, 
 is accuracy level. 

The maximum number of function evaluation 
and the accuracy level for the PR evaluation are the 
same as in CEC completion rules (Li et al., 2013b). 
The number of independent runs of the algorithm is 
50. 

In the case of binary problems, we cannot define 
the accuracy level in the PR, thus the exact points in 
the search space have to be found. This is a great 
challenge for search algorithms, thus we have 
substituted the SR measure with Peak Distance 
(PD). The PD indicator calculates the average 
distance of known optima to the nearest individuals 
in the population (Preuss and Wessing, 2013).  = 1 ,  (6) 

To demonstrate the control of algorithm 
interaction in the SelfMMOGA, we have chosen an 
arbitrary run of the algorithm on the cecF1 problem 
and have visualized the distribution of the 
computational resource (see Figure 2). The total 
population size is 200 and the minimal guaranteed 
amount of the computational recourse is 10. The 
maximum number of generations is 200 and the size 
of the adaptation period is 10, thus the horizontal 
axis contains numeration of 20 periods. 

As we can see, there is no algorithm that wins all 
the time. At the first two periods, Sharing (Alg2) and 
Clearing (Alg1) had better performance. The highest 
amount of the resource was won by Clustering 
(Alg3) at the 10th period. At the final stages, 
Deterministic Crowding showed better performance. 

The results of estimating the performance of the 
SelfMMOGA with the pack of binary problems are 
 

Multi-Strategy Genetic Algorithm for Multimodal Optimization

59



 
Figure 2: Example of the SelfMMOGA run. 

presented in Table 3. The table contains the values 
of the PR, the SR and the PD averaged over 50 
independent runs. We also have compared the 
results with Ensemble of niching algorithms (ENA) 
proposed in (Yu and Suganthan, 2010). There is 
only the SR value for the ENA. 

The setting for the SelfMMOGA are: 
 Maximum number of function evaluation is 

50000 (as for the ENA); 
 Total population size is 200 (the ENA uses 500); 
 Adaptation period is 10 generations (25 times); 
 All specific parameters of individual algorithms 

are self-tunable using the concept from 
(Semenkin and Semenkina, 2012).  
As we can see, binary problems are not too 

complex for the SelfMMOGA and the ENA. 
Therefore we will analyze the results in details. In 
Table 4, the results for stand-alone algorithms, the 
average of 6 stand-alone algorithms and the 
SelfMMOGA (6 algorithms ensemble) are 
presented. The average value (“Mean” column) can 
be viewed as the average performance of a randomly 
chosen algorithm. Such an estimate is very useful for 

black-box optimization problems, because we have 
no information about problem features and, 
consequently, about what algorithms to use. If the 
performance of the SelfMMOGA is better that the  
 

Table 3: Results for binary problems. 

Problem 
SelfMMOGA ENA 

PR SR PD SR 
binaryF11 1.00 1.00 0.00 1.00 
binaryF12 1.00 1.00 0.00 1.00 
binaryF13 1.00 1.00 0.00 1.00 
binaryF14 1.00 1.00 0.00 1.00 
binaryF15 1.00 1.00 0.00 1.00 
binaryF16 1.00 1.00 0.00 0.99 

Table 4: Detailed results for binary problems. 

 Alg1 Alg2 Alg3 Alg4 Alg5 Alg6 Mean 
Self-

MMOGA
Problem: binaryF11 

PR 0.94 0.84 0.91 1.00 0.97 0.78 0.91 1.00 
SR 0.90 0.84 0.88 1.00 0.94 0.80 0.89 1.00 
PD 2.40 3.37 2.40 0.00 2.33 3.30 2.30 0.00 

Problem: binaryF12 
PR 0.97 0.97 1.00 1.00 0.97 0.84 0.96 1.00 
SR 0.96 0.98 1.00 1.00 0.94 0.84 0.95 1.00 
PD 2.00 1.00 0.00 0.00 1.67 3.62 1.38 0.00 

Problem: binaryF13 
PR 1.00 0.96 0.96 0.93 0.96 0.89 0.95 1.00 
SR 1.00 0.96 0.94 0.90 0.94 0.84 0.93 1.00 
PD 0.00 2.50 2.67 2.80 2.67 3.37 2.34 0.00 

Problem: binaryF14 
PR 0.91 0.81 0.91 1.00 0.94 0.75 0.89 1.00 
SR 0.92 0.92 0.90 1.00 0.94 0.80 0.91 1.00 
PD 3.25 2.50 2.60 0.00 2.67 3.20 2.37 0.00 

Problem: binaryF15 
PR 0.88 0.88 0.84 0.88 0.88 0.72 0.84 1.00 
SR 0.88 0.86 0.84 0.86 0.84 0.64 0.82 1.00 
PD 2.33 2.57 2.62 2.71 2.37 3.06 2.61 0.00 

Problem: binaryF16 
PR 0.84 0.75 0.84 0.88 0.78 0.56 0.78 1.00 
SR 0.84 0.80 0.86 0.84 0.76 0.66 0.79 1.00 
PD 3.25 2.80 3.00 2.87 3.08 3.47 3.08 0.00 

Table 5: The SelfMMOGA results (PR and SR) for continuous problems. 

Accuracy 
level ε 

cecF1 cecF2 cecF3 cecF4 
PR SR PR SR PR SR PR SR 

1e-01 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
1e-02 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
1e-03 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
1e-04 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
1e-05 1.000 1.000 1.000 1.000 1.000 1.000 0.887 0.623 

Accuracy 
level ε 

cecF5 cecF6 cecF7 cecF8 
PR SR PR SR PR SR PR SR 

1e-01 1.000 1.000 0.843 0.540 0.851 0.540 1.000 1.000 
1e-02 1.000 1.000 0.834 0.536 0.792 0.223 1.000 1.000 
1e-03 1.000 1.000 0.814 0.378 0.762 0.029 0.966 0.775 
1e-04 1.000 1.000 0.560 0.140 0.731 0.000 0.964 0.753 
1e-05 1.000 1.000 0.000 0.000 0.687 0.000 0.954 0.670 
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Table 6: Average PR and SR for each algorithm. 

ε 
SelfMMOGA DE/nrand/1/bin cDE/rand/1/bin N-VMO dADE/nrand/1 

PNA-
NSGAII 

PR SR PR SR PR SR PR SR PR SR PR SR 
1e-01 0.962 0.885 0.850 0.750 0.963 0.875 1.000 1.000 0.998 0.938 0.945 0.875 
1e-02 0.953 0.845 0.848 0.750 0.929 0.810 1.000 1.000 0.993 0.828 0.910 0.750 
1e-03 0.943 0.773 0.848 0.748 0.847 0.718 0.986 0.813 0.984 0.788 0.906 0.748 
1e-04 0.907 0.737 0.846 0.750 0.729 0.623 0.946 0.750 0.972 0.740 0.896 0.745 
1e-05 0.816 0.662 0.792 0.750 0.642 0.505 0.847 0.708 0.835 0.628 0.811 0.678 

Average 0.916 0.780 0.837 0.750 0.822 0.706 0.956 0.854 0.956 0.784 0.893 0.759 

Table 7: Algorithms ranking over cecF1-cecF8 problems. 

Rank by  
PR criterion 

Algorithm 
Rank by  

SR criterion 
Algorithm 

1 N-VMO and dADE/nrand/1 1 N-VMO 
2 SelfMMOGA 2 dADE/nrand/1 
3 PNA-NSGAII 3 SelfMMOGA 
4 DE/nrand/1/bin 4 PNA-NSGAII 
5 cDE/rand/1/bin 5 DE/nrand/1/bin 
- - 6 cDE/rand/1/bin 

 
average of its component, we can conclude that on 
average the choice of the SelfMMOGA will be 
better. 

As we can see from Table 4, the SelfMMOGA 
always outperforms the average of its stand-alone 
component algorithms for binary problems. 
Moreover, for problems F15 and F16 no stand-alone 
algorithm has a SR value equal to 1, but the 
SelfMMOGA does. 

The results of estimating the performance of the 
SelfMMOGA with the pack of continuous problems 
are presented in Tables 5-6. Table 5 shows detailed 
results, Table 6 shows a comparison of average 
values with other techniques and Table 7 contains 
ranks of algorithms by separate criteria. 

All problems and settings are as in the rules of 
the CEC’13 competition on MMO. For each 
problem there are 5 levels of accuracy of finding 
optima ( ={1e-01, 1e-02,…, 1e-05}). Thus, each 
problem have been binarized 5 times. The 
dimensionalities of binarized problems are presented 
in Table 2.We have also compared the results of the 
SelfMMOGA runs with some efficient techniques 
from the competition. The techniques are 
DE/nrand/1/bin and Crowding DE/rand/1/bin (Li et 
al., 2013b), N-VMO (Molina et al., 2013), 
dADE/nrand/1 (Epitropakis et al., 2013), and PNA-
NSGAII (Bandaru and Deb, 2013). 

The settings for the SelfMMOGA are: 
 Maximum number of function evaluation is 

50000 (for cecF1-cecF5) and 200000 (for cecF6-
cecF8); 

 Total population size is 200; 

 Adaptation period is 10 generations 25 times (for 
cecF1-cecF5) and 25 generations 40 times 
(cecF6-cecF8); 

 All specific parameters of individual algorithms 
are self-tunable. 
As we can see from Tables 5-7, the 

SelfMMOGA shows results comparable with 
popular and well-studied techniques. It yields to 
dADE/nrand/1 and N-VMO, but we should note that 
these algorithms are specially designed for 
continuous MMO problems, and have taken 2nd and 
4th places, respectively, in the CEC competition. At 
the same time, the SelfMMOGA has very close 
average values to the best two algorithms, and 
outperforms PNA-NSGAII, CrowdingDE and DE, 
which have taken 7th, 8th and 9th places 
respectively. 

In this study, we have included only basic MMO 
search techniques in the SelfMMOGA. 
Nevertheless, it performs well due to the effect of 
collective decision making in the ensemble. The key 
feature of the approach is that it operates in an 
automated, self-configuring way. Thus, the 
SelfMMOGA can be a good alternative for complex 
black-box MMO problems. 

5 CONCLUSIONS 

In this study, a novel genetic algorithm (called 
SelfMMOGA) for multimodal optimization is 
proposed. It is based on self-configuring 
metaheuristic, which involves many different search 
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strategies in the process of MMO problem solving 
and adaptively control their interactions. 

The SelfMMOGA allows complex MMO 
problems to be dealt with, which are the black-box 
optimization problems (a priori information about 
the objective and its features are absents or cannot 
be introduces in the search process). The algorithm 
uses binary representation for solutions, thus it can 
be implemented for many real-world problems with 
variables of arbitrary (and mixed) types. 

We have included 6 basic MMO techniques in 
the SelfMMOGA realization to demonstrate that it 
performs well even with simple core algorithms. We 
have estimated the SelfMMOGA performance with 
a set of binary benchmark MMO problems and 
continuous benchmark MMO problems from 
CEC’2013 Special Session and Competition on 
Niching Methods for Multimodal Function 
Optimization. The proposed approach has 
demonstrated a performance comparable with other 
well-studied techniques. 

Experimental results show that the SelfMMOGA 
outperforms the average performance of its stand-
alone algorithms. It means that it performs better on 
average than a randomly chosen technique. This 
feature is very important for complex black-box 
optimization, where the researcher has no possibility 
of defining a suitable search algorithm and of tuning 
its parameters.  The proposed approach does not 
require the participation of the human-expert, 
because it operates in an automated, self-configuring 
way. 

In further works, we will investigate the 
SelfMMOGA using more advanced component 
techniques. 
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