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Abstract: Human mortality modeling and forecasting are important study fields since mortality rates are essential in 
financial and social policy making. Among many others, Lee Carter (LC) model is one of the most popular 
stochastic method in mortality forecasting. Koissi and Shapiro fuzzified the standard LC model and 
eliminated the assumptions of homoscedasticity and the ambiguity on the size of the error term variances. In 
this study, a modified version of fuzzy LC model incorporating singular value decomposition (SVD) 
technique is proposed. Utilizing SVD instead of ordinary least squares in the fuzzy LC model allows the 
model to capture existing fluctuations in mortality rates and yields a better fit. The proposed method is 
applied to Finland mortality data for years 1925 to 2009. The results are compared with Koissi and 
Shapiro’s fuzzy LC method and the standard LC method. Numerical findings show that proposed method 
gives statistically better results in generating small spreads and in estimating mortality rates when compared 
with Koissi and Shapiro’s method. 

1 INTRODUCTION 

Human mortality modeling and forecasting are two 
important factors for development planning and 
decision making in various disciplines. Projecting 
and estimating issues such as unemployment rates, 
income levels, household consumptions, 
composition of labour force, and school enrolment 
are among mortality modeling application areas. In 
fact, mortality rates together with fertility and 
migration rates are the vital demographic indicators 
of population dynamics (Keyfitz, 1977). Mortality 
projections generate a basis for public financing, 
productivity growth, and monetary policy decisions 
(Lindh, 2003) and public and private retirement 
systems (Danesi, Haberman and Millossovich, 
2015), life insurance schemes (Ahmadi and Li 
2014), social security and healthcare planning 
(French, 2014), and etc.  

Stochastic mortality modeling methods have a 
significant area in demographic estimation studies 
since they come up with stochastic estimations for 
the mortality rates, and provide forecast intervals for 
them via considering their deviations (Booth, 2006). 
Time series methods are major extrapolative 
stochastic methods used for mortality forecasting 

based solely on historic data (Lee and Carter, 1992; 
Lee and Tuljapurkar, 1994; Li and Chan, 2005; de 
Jong and Tickle, 2006). Time series methods do not 
permit the inclusion of exogenous variables, that is, 
they do not involve the effects of technological 
developments and etc. in estimating the future 
population. 

Among the existing studies, Lee-Carter (LC) 
model is one the most extensively studied stochastic 
method in mortality forecasting. It simply takes age 
and sex into account together with matrix 
decomposition to obtain single time varying 
mortality indices. According to Lee and Carter 
(1992), mortality can be modeled as: 

ln( ), ,x xx t t x tε= + +m a b k  (1) 

where mx,t is the central death rate for age x at time t,   
ax and bx are age-specific constants and kt is time-
variant mortality index. The error term εx,t is 

normally distributed with mean 0 and variance 2
εσ , 

and stands for the past effects that are not reflected 
by the model. 

Lee and Carter use singular value decomposition 
method (SVD) to estimate mortality index kt and 
age-specific constants ax, and bx. Then, they use the 
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estimated kt to forecast the future kt values and their 
standard deviations.  

In literature, many improvements to the LC 
model have been suggested. Renshaw and Haberman 
(2003) add a double bilinear predictor structure to 
the model to include the effects of age differences, 
whereas Brouhns, Denuit and Vermunt (2002) fit the 
mortality rates at each age group via a Poisson 
regression model. The problems related with outliers 
in historic data are tried to be overcome by several 
parametric and nonparametric smoothing techniques 
(Currie, Durban and Eilers, 2004; de Jong and 
Tickle, 2006; Hyndman and Ullah, 2007; Lazar and 
Denuit, 2009; Hatzapoulos and Haberman, 2011). 
Further developments in LC model are 
accomplished by Giacometti et al (2012), Ahmadi 
and Li (2014).  

1.1 Fuzzy LC Model 

LC model is a very popular method in mortality 
forecasting since it is a simple model that can be 
used for capturing the mortality trends in most of the 
developed countries (Christiansen, Niemeyer and 
Teigiszerová, 2015). However, in some cases the 
application of LC model has limited results. The 
outputs may not reflect a reasonable trend due to 
lack of relevant data for whole age and sex groups or 
in case of random fluctuations due to small sample 
size or exogenous effects (Ahcan et al., 2014).  
Standard LC model uses SVD method and assumes 
that error terms are normally distributed with 

constant variance, 2
εσ . This is a strict 

homoscedasticity assumption which is difficult to 
satisfy especially in cases where precise and enough 
historic data are not available. The magnitude of this 
variance is assumed to be small for acceptable 
forecasts but there is an obvious ambiguity in how 
small it should be (Lee, 2000). The ambiguity 
problem about homoscedasticity is studied by Koissi 
and Shapiro (2006). They reformulated the standard 
Lee-Carter model with incorporating fuzziness into 
the model. In their approach, minimum fuzziness 
criterion derived by Tanaka, Ueijima and Asai 
(1982) and Chang and Ayyub (2001) in a fuzzy 
least-squares regression method is used for 
estimating the mortality. 

The fuzzy formulation of the LC model is: 

,

1 1 1 1

Y A B K    

for , ... ,  , 1, ..., 1

W W
x t x x t

T T

Nx x x t t t t T

= ⊕ ⊗

= = + + −

  

 (2) 

where ,Yx t
  are known fuzzy log-mortality rate of 

age group x at time t, A x
 and Bx

  are the unknown 

fuzzy age-specific parameters, and K t
  is the 

unknown fuzzy time-variant mortality index. Here, 

A , Bx x
  , and K t

 can be defined as fuzzy symmetric 

triangular numbers as A ( , ),x x xa α=  

B (b , ),x x xβ= and K ( , )t t tk δ= , where  ,xa ,xb  

and tk  are the centers and ,xα  ,xβ   and tδ  are the 

spreads of the corresponding fuzzy numbers, and 
log-mortality rate refers to natural logarithm of a 
mortality rate. Equation (2) treats the log-mortality 
rate for age cohort x at time t as a confidence 
interval by fuzzifying it instead of considering it as a 
crisp number. Koissi and Shapiro argue that this 
sounds realistic as exact values of mortality rates are 
seldom known.  

1.2 Motivation for a Modified Fuzzy 
LC Model 

The fuzzy formulation of LC model requires the 
fuzzification of crisp Yx,t values. Koissi and Shapiro 
use fuzzy least squares regression based on 
minimum fuzziness criterion developed by Tanaka 
et al., (1982) and Chang and Ayyub (2001). They try 

to find 0 0 0A ( , )x xc s= , 1 1 1A ( , )x xc s= , and  

, , ,Y ( , e )x t x t x ty= with centers   0 ,xc  1 ,xc  and  , ,x ty  

and spreads 0 ,xs 1 ,xs and , ,x te so that: 

, , 0 0 1 1( , ) ( , ) ( , )x t x t x x x xy e c s c s t= + ×  (3) 

for each age group x. 
Koissi and Shapiro first apply ordinary least 

squares regression (OLS) to obtain center values 
such that 

, 0 1Y ,x t x xc c t= + ×  (4) 

Then, the spreads are determined by solving a 
linear programming (LP) problem based on 
minimum fuzziness criterion suggested by and 
Chang and Ayyub (2001). 

Equation (4) treats time t as an independent 
variable. Although in most of the mortality modeling 
techniques mortality rates are treated as time series, 
it may not be proper to use time directly as the only 
explanatory variable in the model. In fact, t, the 
independent variable in equation (3), is a 
monotonically increasing variable, hence the center 
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and spread of log-mortality rate (dependent variables 
in equation (3)) take a linear form. In this paper, to 
overcome this issue, a modified version of the 
fuzzification of crisp Yx,t values based on singular 
value decomposition (SVD) technique is proposed. 
Thus the fluctuations in log-mortality rates can be 
captured by the model. The modified fuzzy LC 
model proposed in this study also aims to eliminate 
the homoscedasticity assumptions and assumptions 
related to the magnitude of error term variances. 
Moreover, the modified model can be used in cases 
where there are concerns about the ambiguity of data 
and when the number of data prohibits the usage of 
standard LC or other stochastic methods. 

2 METHODOLOGY 

The modified fuzzy LC method can be analyzed in 
two parts: fuzzification of observed Yx,t values, and 
finding the fuzzy model parameters for estimating 
log-mortality rates. The proposed modifications are 
about the first part, while second part is dealt with 
the same approach as Koissi and Shapiro’s except 
the solution approach.  

2.1 Part I: Fuzzification of Yx,t Values  

A modified version of Koissi and Shapiro’s method 
that fuzzifies Yx,t values on SVD technique is 
proposed in this study. That is given the log-
mortality rates Yx,t, the task is to find  

0 0 0A ( , ),x xc s=
1 1 1A ( , ),x xc s= and , , ,Y ( ,e )x t x t x ty=  

with centers 0 ,xc  1 ,xc   and , ,x ty   and spreads  0 ,xs   

1 ,xs  and , ,x te  such that: 

, , 0 0 1 1( , ) ( , ) ( , )x t x t x x x x ty e c s c s f= + ×  (5) 

for each age group x, where ft is an unknown 
fuzzification index varying with time t. ft can be 

expressed as ( )t t xtf g m= 
, where tg  is a function 

mapping xtm


  to fuzzification index tf   for each 

time t, and xtm


  is a vector composed of mortality 

rates 
1 2

, , ..., m
Nx t x t x tm m   for each time t and age 

group 1, ... .i Nx x x= tf  can be viewed as the 

unknown regressor of equation (5) which is capable 
of capturing the fluctuations in log-mortality rates. t, 
the independent variable in equation (3) is a 
monotonically increasing variable, hence the center 

and spread of log-mortality rate (dependent variables 
in equation (2)) take a linear form. However, the 

proposed fuzzification index tf  which is based on 

the aggregated age group mortality rates, does not 
necessarily show a linear trend. Consequently 
equation (5) generates a better fitting model.   

In equation (5), since the value of the 

independent variable tf  is unknown, OLS cannot be 

used.  Substituting tf  in equation (4) yields the 

following equation (6) as: 

, 0 1y x t x x tc c f= + ×  (6) 

and the independent variable tf  is obtained by using 

SVD method. SVD is a dimension reduction method 
in which the original data points are approximated in 
a lower dimensional space by highlighting the 
underlying trend of the original data (Mandel, 1982). 
In general, the method is based on the linear algebra 
theorem asserting that it is possible to decompose an
m n×  rectangular matrix A into the product of three 

matrices: TA USV= , where U is an m m×  
orthogonal matrix whose columns are orthonormal 

eigenvectors of  ,TAA  V is an n n×   orthogonal 
matrix whose columns are orthonormal eigenvectors 

of ,TA A  and S is an m n×  diagonal matrix 
containing the square roots of eigenvalues from U or 
V in descending order. In fact the diagonal matrix S 
captures the characteristics of matrix A, because of 
the fact that it is composed of eigenvalues of its left 
and right eigenvectors.  

By expressing the matrix A with the eigenvalues 
in matrix S, new coordinate axes composed of the 
orthogonal vectors defined by the columns of 
matrices U or V can be generated. Then the 
projections of the original data points in matrix A to 
the new coordinate space can be defined with the 
help of the corresponding eigenvalues in matrix S. 

 

Figure 1: Geometric interpretation of SVD method for a 
matrix A. 
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That is, SVD method aims to reorient the coordinate 
axes in such a way that these axes follow a more 
similar pattern to the points of matrix A.  Figure 1 
shows the geometric interpretation of the method as 
an example. Assuming that matrix A is a 6 2×  
matrix composed of six data points, In Figure 1 
these six data points, defined in the coordinate plane 
of x1-x2, can also be expressed in the coordinate 
plane of v1-v2.   

To utilize SVD method in equation (6) for 

estimating the unknown parameters 0 ,xc  1 ,xc  and 

;tf  the following procedure is applied. First, tf  ’s 

are normalized to sum to 0 and 1xc ’s to sum to 1. 

Then, 0 xc  must equal the average over time of  ,yx t  

(this follows from the fact that the average value of 

tf  ’s is set to 0). Moreover, each tf  must equal to 

the sum over age of , 0(y ),x t xc−  since the sum of 

1xc ’s is set to unity. Then, 1xc ’s are estimated by 

regressing , 0(y )x t xc− on tf  without a constant term 

separately for each age group x (Lee and Carter, 
1992). The spread optimization part of Koissi and 
Shapiro’s model which is rewritten as: 

      minimize 
0

0

1

0 1 | |
t T

x x t
t t

Ts s f
+ −

=
+   (7) 

subject to:  

0 1 0 1 ,

0 0 0

(1 )[ | |] ,    

for , 1, ..., 1

x x t x x t x tc c f h s s f y

t t t t T

+ + − + ≥

∀ = + + −
 (8) 

0 1 0 1 ,

0 0 0

(1 )[ | |] ,    

for , 1, ..., 1

x x t x x t x tc c f h s s f y

t t t t T

+ − − + ≤

∀ = + + −
 (9) 

0 1, 0x xs s ≥  (10) 

Here, the objective is to minimize the total 
spreads. Equations (8) and (9) guarantee that each 

log-mortality rate ,Yx t
  falls within the estimated 

Ŷxt
  at a level h, which is a predetermined small 

parameter (Koissi and Shapiro prefer using h = 0).  

2.2 Part II: Finding the Model 
Parameters 

Once the log-mortality rates are fuzzified, the next 
step in Koissi and Shapiro’s method is to find 

appropriate parameters A ,x
  Bx

  and Kt
  for equation 

(2). At this point it is worth mentioning that with 
multiplication of triangular fuzzy numbers, the 
characteristics of the numbers are not preserved 
although addition of triangular fuzzy numbers also 
results in a triangular fuzzy number. Mesiar (1997) 
shows that with weakest triangular norm (TW) based 
multiplication and addition the shape of the 
membership function is preserved for LR-type fuzzy 
numbers.  

For two symmetric triangular fuzzy numbers 

A ( , )Aa l=  and B ( , ),Bb l= the shape preserving TW 

-based multiplication and addition are (Koissi and 
Shapiro, 2006): 

A B ( , max( , ))
W

A B
T

a b l l⊕ = +   (11) 

A B ( , max( | b |, | a |))
W

A B
T

ab l l⊗ =   (12) 

Using equations (11) and (12), equation (2) can 
be rewritten as: 

,Y ( ,  max( ,| | , | |))x t x x t x x x x ta b k b kα δ β= +  (13) 

To find the unknown parameters ,xa  ,xb ,tk

,xα ,xβ  and tδ ; Koissi and Shapiro suggest a 

solution to equation (2) by minimizing the total 

squared distance between A B K
W W

x x t
T T
⊕ ⊗    and ,Y .x t

  

Here, they make use of Diamond distance as the 
fuzzy distance measure. Diamond distance 
(Diamond, 1988) between two symmetric triangular 

fuzzy numbers 1 1 1A ( , )a α=  and 2 2 2A ( , )a α= is 

defined as: 
2

1 2 1 2 1 1

2 2
2 2 1 1 2 2

(A , A ) ( ) [( )

( )] [( ) ( )]

LRD a a a

a a a

α

α α α

= − + −

− − + + − +

 
 (14) 

Minimizing total Diamond distance leads to 
following optimization problem for each age cohort 
x and time t: 

Minimize 2
,[A (B K ), Y ]

W W
LR x x t x t

T Tx t
D ⊕ ⊗      (15) 

where  
2 2

, ,

,

2
,

2
, ,

[A (B K ),Y ] ( )

[ max{ ,| | , | |} (

)] [ max{ ,| | , | |}

( )]

W W
LR x x t x t x x t x t

T T

x x t x x t x t x t

x t x x t x x t x t

x t x t

D a b k y

a b k b k y

e a b k b k

y e

α δ β

α δ β

⊕ ⊗ = + −

+ + − −

− + + +

− +

   

 (16) 
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This is an unconstrained nonlinear problem as 

finding the optimal values of parameters ,xa  ,xb

,tk ,xα ,xβ and tδ  require dealing with a maximum 

function. Applying SVD, xa  can be obtained as: 

,

1
x x t

t
a y

T
=   (17) 

Finding the parameters ,xb ,tk ,xα ,xβ and tδ    

is less straightforward, because, the structure of 
equation (15) does not allow using a derivative 
based solution algorithm. Hence, fminsearch tool of 
MATLAB optimization application for 
unconstrained optimization problems can be utilized 
to find the unknown parameters. fminsearch is a 
derivative free method for unconstrained nonlinear 
optimization problems based on Nelder-Mead 
simplex algorithm (Nelder and Mead, 1965).   

3 NUMERICAL FINDINGS 

The proposed method is applied to mortality data for 
Finland. The reason why Finland dataset is selected 
for application is that the mortality rates in Finland 
show some fluctuations due to some exogenous 
effects such as World War II. Furthermore, Koissi 
and Shapiro also apply their method on Finland 
dataset. In this study, standard LC and the fuzzy LC 
models are also applied to the same dataset and the 
outcomes are compared with the results obtained 
from the proposed method. The data is obtained 
freely from “Human Mortality Database” at 
www.mortality.org. In all computations total 
mortality rates (for both sexes) of seventeen 
consecutive five-year-periods 1925-1929, 1930-
1934 …, 2005-2009, and twenty two age cohorts of 

[0, 1), [1-5), [5, 10), …, [100, 105) are used (making 
374 data points in total). 

To demonstrate the results, three example 
periods are selected and given in Table 1, 2, and 3. 
These tables display the spreads of fuzzified    
values of Finland for selected five-year-periods of 
1925-1929 (the first time period), 1965-1969 (the 
mid-time period in dataset) and 2005-2009 (the last 
time period) respectively. The results in these tables 
are calculated via Koissi and Shapiro’s fuzzified LC 
model (spreadOLS) and the modified fuzzy LC model 
(spreadSVD). 

Tables 1 to 3 illustrate that proposed method give 
smaller spreads compared to Koissi and Shapiro’s 
method for ten age groups in 1925-1929 period, for 
sixteen age groups in 1965-1969 period, and for 
twenty age groups in 2005-2009. This shows that the 
number of smaller spreads generated during 
fuzzification of Yx,t by the proposed method are 
increasing by time. This trend can be explained by 
the advances in accurate data approaches which 
result in vagueness reduction, thus smaller spreads. 
When the whole dataset is considered, paired t-test 
results show that the proposed method is superior to 
Koissi and Shapiro’s method in terms of smaller 
spread generation (t-value=13.53, p-value=0.000), 
smaller absolute distances between observed Yx,t and 
center values of fuzzified Yx,t (t-value=5.07, p-
value=0.000) and smaller squared distances between 
observed Yx,t and center values of fuzzified Yx,t (t-
value=3.88, p-value=0.000) during the fuzzification 
of log-mortality rates.  

The two methods are also compared in terms of 

their ,Yx t
  estimations based on the model 

parameters obtained from the second parts of the 
methods. Figure 2 and 3 illustrate the observed Yx,t, 

and estimated centers of ,Yx t
 with Koissi and 

 

Table 1: Spreads of fuzzified log-mortality values for Finland, 1925-1929. 

Age group SpreadOLS SpreadSVD Age group SpreadOLS SpreadSVD

[0, 1) 0.3220 0.4419 [50, 55) 0.0750 0.1560 
[1, 5) 0.4920 0.3556 [55, 60) 0.1250 0.1533 
[5, 10) 0.5300 0.1723 [60, 65) 0.1540 0.1837 
[10, 15) 0.4890 0.2333 [65, 70) 0.1860 0.2686 
[15, 20) 0.9170 0.4520 [70, 75) 0.1920 0.3123 
[20, 25) 1.6470 0.9371 [75, 80) 0.2137 0.2960 
[25, 30) 1.3170 0.6741 [80, 85) 0.1970 0.2603 
[30, 35) 1.0320 0.4829 [85, 90) 0.2110 0.2300 
[35, 40) 0.7380 0.3062 [90, 95) 0.2340 0.2473 
[40, 45) 0.3860 0.1300 [95, 100) 0.2340 0.2556 
[45, 50) 0.1380 0.1173 [100, 105) 0.3750 0.4252 
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Table 2: Spreads of fuzzified log-mortality values for Finland, 1965-1969. 

Age group SpreadOLS SpreadSVD Age group SpreadOLS SpreadSVD 
[0, 1) 0.3700 0.3161 [50, 55) 0.0750 0.0931 
[1, 5) 0.4923 0.2088 [55, 60) 0.1250 0.1498 
[5, 10) 0.5300 0.1304 [60, 65) 0.1540 0.1627 
[10, 15) 0.4890 0.1914 [65, 70) 0.1860 0.1847 
[15, 20) 0.9170 0.4520 [70, 75) 0.2080 0.2074 
[20, 25) 1.6470 0.4548 [75, 80) 0.2194 0.2331 
[25, 30) 1.3170 0.3177 [80, 85) 0.1970 0.2184 
[30, 35) 1.0320 0.2312 [85, 90) 0.2110 0.2300 
[35, 40) 0.7380 0.1385 [90, 95) 0.2340 0.1424 
[40, 45) 0.3860 0.1300 [95, 100) 0.2340 0.1717 
[45, 50) 0.1380 0.0754 [100, 105) 0.3750 0.1945 

Table 3: Spreads of fuzzified log-mortality values for Finland, 2005-2009. 

Age group SpreadOLS SpreadSVD Age group SpreadOLS SpreadSVD 
[0, 1) 0.4180 0.2102 [50, 55) 0.0750 0.0401 
[1, 5) 0.4926 0.0852 [55, 60) 0.1250 0.1468 
[5, 10) 0.5300 0.0951 [60, 65) 0.1540 0.1450 
[10, 15) 0.4890 0.1561 [65, 70) 0.1860 0.1141 
[15, 20) 0.9170 0.4520 [70, 75) 0.2240 0.1192 
[20, 25) 1.6470 0.0487 [75, 80) 0.2251 0.1801 
[25, 30) 1.3170 0.0175 [80, 85) 0.1970 0.1831 
[30, 35) 1.0320 0.0194 [85, 90) 0.2110 0.2300 
[35, 40) 0.7380 0.0028 [90, 95) 0.2340 0.0542 
[40, 45) 0.3860 0.1300 [95, 100) 0.2340 0.1011 
[45, 50) 0.1380 0.0401 [100, 105) 0.3750 0.0003 

 
Shapiro’s and modified methods for age groups [5, 
10) and [40-45) respectively. These two age groups 
are selected randomly as examples. In both figures, 
the horizontal axis stand for time periods (1=1925-
1929, …, 17=2005-2009), whereas the vertical axis 
depicts the log-mortality rates. The numerical 
findings show that the proposed method displays 
better similarity between observed and estimated 
log-mortality rates compared to Koissi and Shapiro’s 
method. In fact, paired t-test results show that the 
modified method is superior to Koissi and Shapiro’s 
method in terms of smaller spread generation (t-
value=13.97, p-value=0.000), smaller absolute 
distances between observed Yx,t and center values of 
fuzzified Yx,t (t-value=2.69, p-value=0.004) and 
smaller squared distances between observed Yx,t and 
center values of fuzzified Yx,t (t-value=4.19, p-
value=0.000) in estimating the log-mortality rates. 

As depicted in Figure 2 and 3, the proposed 
method gives better fits mainly due to the utilization 
of SVD in fuzzifying Yx,t values. On the other hand, 
Koissi and Shapiro make use of OLS, therefore, the 

resulting centers of ,Yx t
  follows a linear trend which 

is incapable of capturing the fluctuations in data. 

However, in Finland mortality rates during 
World War II are higher compared to the other 
periods, thus the data show fluctuations and even 
outlier points for some age groups. In contrast to 
Koissi and Shapiro’s method, the proposed method 
has the ability to reflect data pattern, thus it gives 
better fits as the estimation of model parameters 

phase utilizes the better fitted ,Yx t
  values. 

Finally, the standard LC method is applied to the 
same dataset as well (although the homoscedasticity 
assumption is violated). When the proposed method 
is compared with the standard LC method, paired t-
tests on absolute and squared distances between the 

observed Yx,t and the estimated centers of ,Yx t
  show 

that standard LC method gives better results than the 
modified one (t-value=6.20, p-value=0.004; t-
value=4.09, p-value=0.000 respectively). However, 
as mentioned before, standard LC model cannot be 
applied in cases where there is vagueness in 
assumptions related with the homoscedasticity and 
the magnitude of variance of error terms. In fact, the 
standard LC method cannot be used in this data set 
as it requires the data in each age group to be 
normally distributed with mean 0 and a small
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Figure 2: Comparison of observed ,x tY and estimated centers of ,Yx t
 with Koissi and Shapiro’s and modified methods for 

age group [5, 10). 

 

Figure 3: Comparison of observed ,x tY and estimated centers of ,Yx t
 with Koissi and Shapiro’s and modified methods for 

age group [40, 45). 

variance 2
εσ . In Finland data set, there are seventeen 

data points for each age group separately which do 
not a normality test to be performed to see whether 
the homoscedasticity assumption is met. Thus, the 
better results obtained by standard LC method do 
not make sense as the basic assumption of standard 
LC approach is violated.  
 
 

4 CONCLUSIONS 

In this paper, a modified version of Koissi and 
Shapiro’s fuzzified LC method is proposed. The 
proposed method makes use of SVD in fuzzification 
of observed log-mortality rates instead of taking 
time as the independent variable. Numerical findings 
show that proposed method is better in smaller 
spread generation and mortality rate estimation even 

-10

-9,5

-9

-8,5

-8

-7,5

-7

-6,5

-6

-5,5

-5
0 2 4 6 8 10 12 14 16 18

lo
g-

m
or

ta
lit

y 
ra

te

time period

Yxt-OLS

Yxt-SVD

Yxt-
observed

-6,5

-6

-5,5

-5

-4,5

-4
0 2 4 6 8 10 12 14 16 18

lo
g-

m
or

ta
lit

y 
ra

te

time period

Yxt-OLS

Yxt-SVD

Yxt-
observed

A Modified Fuzzy Lee-Carter Method for Modeling Human Mortality

23



the utilized dataset reveal some fluctuations within 
time.  

The proposed method can be used in cases of 
heteroscedasticity and other violations where 
standard LC method cannot be applied. In fact the 
method gives reasonable estimations when the 
number or the quality of data do not permit standard 
LC or similar stochastic methods to be used.  

The future mortality rates can be forecasted via 

estimating future Kt


 
values with some suitable 

fuzzy time series analysis based on the Kt


 
values 

obtained from the modified model. As well as this, 
the modified fuzzy LC method for estimating 
mortality rates can be extended to model fertility and 
migration rates. Once the three vital rates (mortality, 
fertility, and migration rates) are known it may be 
possible to develop a fuzzy population forecasting 
model, which may be a research topic of a future 
work.  
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