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Abstract: Sparse representation based image and video processing have recently drawn much attention. Dictionary
learning is an essential task in this framework. Our novel proposition involves direct computation of the
dictionary by analyzing the distribution of training data in the metric space. The resulting representation is
applied in the domain of grey scale image denoising. Denoising is one of the fundamental problems in image
processing. Sparse representation deals efficiently with this problem. In this regard, dictionary learning from
noisy images, improves denoising performance. Experimental results indicate that our proposed approach
outperforms the ones using K-SVD for additive high-level Gaussian noise while for the medium range of
noise level, our results are comparable.

1 INTRODUCTION

This paper addresses gray scale image denoising
problem in image science. Several years, re-
searchers have focused attention on this problem and
achieved continuous improvement both in terms of
performance and efficiency (Chatterjee and Milanfar,
2010). Surprisingly better results emerge with patch
based denoising algorithms (Elad and Aharon, 2006)
(Dabov et al., 2007). Patch based denoising algo-
rithms extract overlapping patches from a given noisy
image. Individual extracted patch were arranged in
column-wise one above other as a column vector. We
then either jointly or individually clean those patch
vectors and replace them appropriately in their cor-
responding locations in the image (Donoho et al.,
2006a).

Suppose the measured patch vector(y ∈ R n) cor-
responding to the patchy ∈ R

√
n×√

n from a given
noisy imageY ∈ R N×N ,N >> n follows ay = x+w
linear model, which estimates the original patch vec-
tor (x ∈ R n) in presence of zero mean Gaussian
noise(w ∈ R n;w ∼ N (0,σ2In)) by choosing an ap-
propriate score function. For the assumed model
the maximum likelihood estimate (MLE) leads to the
mean squared error (MSE) as the optimal score func-
tion. The performance improves dramatically with
the prior knowledge of the signal. Over time, re-
searchers applied several guesses about the prior for
the images and achieved improved results. In the
Bayesian context, such priors in most cases eventually

add a regularization term in the maximum a posteri-
ori(MAP) estimate formulation. Recently, sparse rep-
resentation has emerged as a powerful prior and has
been applied to many problems including image de-
noising (Elad and Aharon, 2006), restoration (Mairal
et al., 2009), super-resolution (Yang et al., 2008),
facial image compression (Zepeda et al., 2011) and
more. In a seminal article(Elad and Aharon, 2006)
Elad et.al. proposed a new model based on sparsity
prior and it was named asSparseland model. This
Sparseland model assumes that for an appropriate
overcomplete dictionary(D ∈ R n×M;n << M), tol-
erance(ε) and maximum sparsity depthL, the origi-
nal patch vector(x) can be approximately represented
asDz. The following equations estimate the original
vector

ẑ =argmin
z

‖z‖0 Sub.to.‖y−Dz‖2 ≤ ε (1a)

x =Dẑ (1b)

Where,‖.‖0 represents theL0-norm and‖z‖0 ≤ L.
In (1a)ε is replaced bynCσ2, where,n is dimension
of patch vector andC represents noise gain and em-
pirically set to 1.2. Pursuit algorithms are used to
solve the non-convex optimization problem in equa-
tion (1a). Among them, orthogonal matching pur-
suit (OMP)(Tropp and Gilbert, 2007) and its vari-
ants(Donoho et al., 2006b) (Needell and Tropp, 2009)
(Needell and Vershynin, 2009) (Chatterjee et al.,
2011) achieve suboptimal solutions with excellent
trade-off between efficiency and computation. It has
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been shown that performance is improved by adapting
dictionaryD for noisy patches, (for details see (Elad
and Aharon, 2006)). In (Aharon et al., 2006) the same
authors had proposed an elegant dictionary adapta-
tion algorithm called K-SVD and compared it with
its closest companion methods of optimal direction
(MOD) (Engan et al., 1999). Both techniques require
a set of training examples({yi}P

i=1;yi ∈ R n) selected
from either the given noisy image or a global set of
example images and arranged in column vectors of a
matrixY = [y1 . . .yi . . .yP]. Suppose, for the given ex-
amples, we have arranged the set of sparse represen-
tations appropriately in a matrixZ = [z1 . . .zi . . .zP].
For the given training matrix (Y), K-SVD dictionary
learning algorithm tries to minimize the score func-
tion (‖Y−DZ‖F), where‖.‖F represents Frobenius
norm. Furthermore preserves non-zero valued loca-
tion or support of each training vector’s sparse rep-
resentation corresponding to the dictionary. In each
iteration of the K-SVD algorithm, one dictionary col-
umn and the corresponding non-zero representation
coefficient of all training vectors are being updated
simultaneously by doing rank-1 approximation using
singular value decomposition (SVD). The rank-1 ap-
proximation is done column-by-column using SVD,
which explains its name (for detailssee (Aharon
et al., 2006)). MOD (Engan et al., 1999) solves a
quadratic problem, whose analytic solution is given
by D = YZ+ with Z+ denoting the pseudo-inverse.
Notice that dictionary learning is a non-convex prob-
lem, hence any above technique (K-SVD/MOD) pro-
vides only a suboptimal dictionary which depends on
the initially chosen dictionary for algorithm.

In this article, we design and study a dictionary
learning scheme based on geometrical structure of
the training data selected from a given noisy im-
age. For an(N ×N) noisy image and patch size of
(
√

n×√
n) the maximum possible number of training

data(N −√
n+ 1)2 to construct a large data set. In

practice, such a huge data set is heterogeneous since it
represents multiple different subpopulation or groups,
rather than one single homogeneous group. Cluster-
ing algorithms provides elegant ways to explore the
underlying structure of data. In the literature, some
algorithms like (Zhang et al., 2010) explore similar-
ities among patches within a local window. There-
fore, the similarity of a given patch is affected by
the chosen size of the window. It might be possi-
ble that similar patches exist outside of window. So,
we followed a simple global K-mean clustering tech-
nique. An algorithmic study of our proposed scheme
is done in section II. In section III, its effectiveness
is explored. Experimental results on several test im-
ages validate the efficiency of our proposed scheme

for low and high level additive Gaussian noise and
mostly surpasses the performance of denoising by a
K-SVD dictionary learning scheme. In the case of
additive medium level noise, the results are compara-
ble with the K-SVD learning scheme. The proposed
scheme can be easily extended to color image denois-
ing applications. Finally in section IV, the conclusion
and scope of further work is discussed.

2 ALGORITHM

Table 1 explains our proposed algorithm for dictio-
nary construction for denoising of an image. LetX is
an image vector andXi = RiX , i = 1,2, ...N, denotes
the ith patch vector of size(

√
n×√

n), whereRi is a
matrix extracting patchXi from X . Better clustering
of similar patches can be found by using a first round
of denoising on the patches (using the classical sparse
coding approach of Eq. (1a) presented in the previ-
ous section) before grouping them. In turn, as shown
by our experiments, our denoising output using sparse
coding approach greatly improves upon the use of this
initial denoising step.

Table 1: Algorithm.

Algorithm: Clustering Based Denoising

Task: Denoise the given imageY
Parameters: Patch Vector Size-n, Dictionary
size-M Noise Gain -C Lagrangian Multiplier-
λ, Number of Clusters-K and Hard Threshold
-ing Parameter T
Initialization: N-Examples patches fromY
Execute One time:
• Cleaning: Use pursuit algorithm (OMP)

to cleanN-example vectors
• Clustering: Apply clustering algorithm (K-

means) to cluster cleaned example vectors
• Dictionary: For each cluster, all non-zero

eigen value principal components (PCs) are
cascaded inD matrix

• Averaging: SetX̂ using below equation as
in (Elad and Aharon, 2006).Ri, jY represents
patch vector corresponding to(i, j) top left
patch location inY

X̂ = (λI +∑i, j RT
i, jRi, j)

−1(λY+∑i, j RT
i, jDzi, j)

Once cleaning of patches is done, K-means clus-
tering algorithm is applied to get similar patches in re-
spective groups. Here K-means is used due to the sim-
plicity of the algorithm. Afterwards PCA (principal
component analysis) is applied to respective cluster
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Table 2: Summary of the PSNR result in decibels. In each cell,two results are reported.Left: K-SVD trained dictionary.
Right: PCA trained dictionary. All reported results are average over 20 experiments.

σ/PSNR Lena Pepper Camera Lake Bridge Ship

2/42.110 43.599 43.486 43.247 43.161 46.693 46.268 43.167 43.099 42.689 42.668 43.134 43.081
5/34.164 38.524 38.535 37.793 37.623 41.375 40.899 36.873 36.872 35.771 35.805 37.119 37.108
7/31.236 37.07 36.978 36.189 36.044 39.505 39.022 34.91 34.947 33.429 33.509 35.339 35.284
20/22.102 32.405 32.008 32.207 31.817 33.376 32.867 29.984 29.68 27.377 27.206 30.388 29.918
40/16.062 28.981 28.635 29.203 28.716 29.702 29.252 26.715 26.286 24.243 23.999 27.05 26.585
60/12.571 26.838 26.649 26.979 26.661 27.599 27.042 24.709 24.441 22.685 22.525 25.086 24.783
100/8.117 24.498 24.467 24.233 24.174 24.151 23.921 22.349 22.299 21.19 21.162 22.753 22.678
140/5.227 22.972 23.013 22.687 22.704 22.242 22.254 21.057 21.067 20.276 20.282 21.558 21.583
160/4.056 22.313 22.369 21.963 22.021 21.685 21.7 20.605 20.626 19.971 19.993 21.086 21.12
180/3.026 21.719 21.783 21.336 21.39 21.056 21.105 20.208 20.251 19.585 19.611 20.75 20.801
200/2.117 21.161 21.254 20.903 20.990 20.535 20.593 19.714 19.778 19.221 19.276 20.188 20.258

patch vectors. All the eigenvectors from the clusters
are cascaded to form dictionary. Finally every patch
vector from the original noisy image is transformed
to sparse domain using the dictionary. Sparse code
is found using OMP until the reconstruction error is
above the threshold. Using the sparse code, the corre-
sponding patch vector is reconstructed and averaging
as shown in equation is applied. We have used over-
lapping patch vector from the noisy image to avoid
blocking artifacts.

3 RESULTS

In present section, we show the results achieved by
applying mentioned methods on several standard test
images with two dictionary learning techniques. In
order to enable a fair comparison, test images as well
as noise levels are same as used in denoising exper-
iments reported in (Elad and Aharon, 2006). Exper-
imental evidences suggested that except very fewer
cases overcomplete/redundant DCT (ODCT) dictio-
nary has inferior performance among three methods.
One such case is shown in figure??. However, other
methods eventually perform better as dictionary col-
umn size increases. Further, detailed discussion on
effect of dictionary size is done at end of present sec-
tion. Table 2 summarizes denoising results of pro-
posed and K-SVD based dictionary learning from cor-
rupted images. Furthermore, experiments are con-
ducted for various test images and for set of noise
parameter(σ) values. Every result reported is an av-
erage over 20 experiments, having different realiza-
tions of noise with fixed parameter valueσ in each
trial. The redundant DCT dictionary is obtained by
applying Kronecker product on square DCT matrix.
Furthermore, this redundant dictionary was also used

as initialization for learning K-SVD based dictionary.
The output of K-SVD trained dictionary is shown
on the bottom-left of Fig 2. Notice that all training
patches vectors were generated from uniform sam-
pling of given noisy image in overlapped manner.
In all experiments, the denoising process included a
sparse-coding of each patch of size 8 by 8 pixels from
the noisy image. Using the OMP, atoms were accu-
mulated till the average error passed the threshold,
chosen to be 1.20σ as suggested in (Elad and Aharon,
2006). The denoised patches were averaged, as de-
scribed in (Elad and Aharon, 2006).

A simulation is done for the proposed algorithm
for different numbers of clusters (1,4,9 and 16) result-
ing in corresponding dictionary sizes of 64, 256, 574
and 1024 respectively. Experimentally we have found
that performance almost saturates after dictionary size
greater than 256, therefore all result in table 2 and fig-
ure 1 shown for dictionary size 256.

It is clear from Table 2, performance of different
algorithms are closed. Average PSNR of denoised im-
age using proposed algorithm for noise level less than
σ = 7 performs better than both ODCT and K-SVD
based dictionary learning approach. Results corre-
sponding to proposed algorithm for noise levels 2 are
better than K-SVD. For mid level noise the proposed
approach performs slightly lower then K-SVD. For
higher noise power, experiments demonstrated better
performance of proposed method then other methods.
In order to better visualize the results and compar-
ison, Fig. 4 presents the difference of the denois-
ing results of the proposed methods and the overcom-
plete DCT. Similarly difference between K-SVD and
ODCT is plotted. Both are compared with that of a
zero straight reference line. This comparison is pre-
sented for the images Lena, Peppers, Camera, Lake,
Bridge and Ship. Notice that, for these images, the
proposed dictionary performs better than the reported
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Figure 1: Comparison between the two methods: K-SVD based dictionary trained on patches from the noisy image and our
proposed approach results shown for four test images.

(a) (b)

(c) (d)

Figure 2: Denoising results for the image Lena corrupted with additive Gaussain noise,σ = 20. (a). The original Lena image.
(b). The noisy image. (c). Denoised image using K-SVD. (d). Denoised image using our proposed approach.
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(a) (b)

(c) (d)
Figure 3: Denoising results for the image Lena corrupted with additive Gaussain noise,σ = 180. (a). The original Lena image.
(b). The noisy image. (c). Denoised image using K-SVD. (d). Denoised image using our proposed approach.

results of K-SVD for noise levels greater than 100,
while the ODCT dictionary often achieves very close
results. In the image Barbara, however, which con-
tains high-frequency texture areas, the adaptive dic-
tionary that learns the specific characteristics has a
clear advantage over the proposed dictionary.

Table 3: Time taken in denoising by K-SVD algorithm and
proposed approach at variousσ values.

σ K-SVD Proposed Approach

2 149.296 69.939
5 57.083 54.823

7 39.033 53.230
20 14.389 54.414
40 9.414 60.875

60 8.280 64.123
100 7.498 49.755

140 7.367 49.152
160 7.267 49.646
180 7.302 49.206

200 7.344 49.677

The system used for simulation is Intel(R)
Core(TM) i7-2600 CPU @ 3.40GHz, 4GB RAM,
running on Windows 7. Programming language used

is MATLAB. Time taken by K-SVD and our pro-
posed approach for denoising is calculated for differ-
ent sigma values of noise. As can been seen clearly
from Table 3 for smaller values ofσ our proposed ap-
proach takes very less time as compared to K-SVD
based denoising method. As theσ value increases
time taken by both our proposed approach and K-
SVD decreases. This decrease in time is expected
as the threshold while calculating sparse code using
OMP increases (threshold is directly proportional to
σ.). Asσ increases time taken by K-SVD decreases at
sharper rate than our proposed approach. This behav-
ior is also expected as OMP is used in K-SVD during
dictionary learning and not in our proposed approach.

To conclude this experimental section, we refer to
our arbitrary choice of dictionary atoms (this choice
had an effect over all three experimented methods).
We conducted another experiment, which compares
between several values of the number of clustersk.
In this experiment, we tested the denoising results of
the three proposed methods on the image House for
an initial noise level of sigma value 15. The tested
dictionary size were 64, 128, 256, and 512. As can
be seen, the increase of the number of dictionary el-
ements generally improves the results, although this
improvement is small.
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Figure 4: Effect of changing the number of dictionary ele-
ments (k) on the final denoising results for the image House
and for sigma = 15.

4 CONCLUSION

In this paper, a novel, intuitively appealing dictionary
construction algorithm has been developed which
achieves performance comparable to the K-SVD ap-
proach at medium noise levels, and visibly better
PSNR for high levels of noise in the denoised im-
age. The algorithm developed is intuitive and effi-
cient. The work presented here has been compared to
the state of the art technique of image denoising.
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