
Design of Adaptive Domain-Specific Modeling Languages for
Model-Driven Mobile Application Development

Xiaoping Jia and Christopher Jones
School of Computing, DePaul University, Chicago, IL 60604, U.S.A.

Keywords: Model-Driven Development, Domain-Specific Modeling Languages, Cross-platform Development, Mobile
Application Development.

Abstract: The use of a DSL is a common approach to support cross-platform development of mobile applications. How-
ever, most DSL-based approaches suffer from a number of limitations such as poor performance. Furthermore,
DSLs that are writtenab initio are not able to access the capabilities supported by the native platforms. This
paper presents a novel approach of using an adaptive domain-specific modeling language (ADSML) to sup-
port model-driven development of cross-platform mobile applications. We will discuss the techniques in the
design of an ADSML for developing mobile applications targeting the Android and iOS platforms, including
meta-model extraction, meta-model elevation, and meta-model alignment. Our approach is capable of gener-
ating high performance native applications; is able to access the full capabilities of the native platforms; and
is adaptable to the rapid evolutions of its target platforms.

1 INTRODUCTION

Mobile applications are popular and are becoming in-
creasingly sophisticated. In addition to some unique
constraints and requirements, such as high respon-
siveness, limited memory, and low energy consump-
tion, mobile application development faces particular
challenges with a short time-to-market, rapid evolu-
tion of technologies, and competing platforms. Cur-
rently, there are several competing mobile platforms
on the market, including Google’s Android and Ap-
ple’s iOS, which are similar in capabilities, but dras-
tically different in their programming languages and
APIs. It is highly desirable and often necessary for
a mobile application to run on all major mobile plat-
forms. However, it is very expensive to port mobile
applications from one platform to another.

One approach for supportingcross-platformmo-
bile application development is to use program-
ming languages and virtual machines that are avail-
able on different platforms, such as HTML5 and
JavaScript (Apache Cordova, 2015; Appcelerator,
2015) While this approach is adequate for certain
types of applications, it is less than satisfactory
with some serious shortcomings, including slower
response times when compared to equivalent na-
tive applications (Charland and Leroux, 2011; Corral
et al., 2012). This approach also suffers from sig-

nificant limitations, such as being able to use only
a small subset of the features supported by the un-
derlying platforms. Canappi (Canappi, 2011) uses a
domain-specific language(DSL) to define and gener-
ate cross-platform mobile applications as front-ends
to web services, but does not define the web services
themselves. Other DSL-based approaches include
Mobl (Hammel et al., 2010) and md2 (Heitkötter
et al., 2013).

A promising approach that may offer some solu-
tions to the challenges of mobile application devel-
opment ismodel-driven development(MDD) (Vau-
pel et al., 2014), and usingdomain-specific mod-
eling languages(DSML) to represent the platform-
independent models (PIM) (Jones and Jia, 2015;
Jones and Jia, 2014). While DSMLs can concisely
represent the model entities of various target plat-
forms, they often adopt theleast-common denomi-
nator approach to be able to model applications in a
platform-independent manner, and then transform the
models into implementations on different mobile plat-
forms. One limitation of this approach is that harness-
ing the full capabilities of the target platform would
either lead to language “bloat”, or render the language
platform-specific. Consequently, DSMLs that are de-
signedab initio are not capable of harnessing the full
power of the native APIs for the underlying platforms.
Currently, there is no satisfactory solution to develop-

413Jia X. and Jones C..
Design of Adaptive Domain-Specific Modeling Languages for Model-Driven Mobile Application Development.
DOI: 10.5220/0005557404130418
In Proceedings of the 10th International Conference on Software Engineering and Applications (ICSOFT-EA-2015), pages 413-418
ISBN: 978-989-758-114-4
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)

ing cross-platform mobile applications that is capa-
ble of both delivering high performance and provid-
ing full access to the API features supported by the
underlying platforms.

In this paper, we present a novel approach of de-
signingadaptive domain-specific modeling languages
(ADSML) to support model-driven development of
cross-platform mobile applications. We will discuss
the techniques in the design of an ADSML for de-
veloping mobile applications targeting the Android
and iOS platforms, including meta-model extraction,
meta-model elevation, meta-model alignment, and
meta-model unification. Our approach will be able to
address the following challenges in cross-platform de-
velopment of mobile applications: a) generating high
performance native applications; b) accessing the full
capabilities of the native APIs of the underlying plat-
forms; and c) adapting to rapid evolutions of the target
platforms.

2 DSML-BASED MDD

The AXIOM project (Jia and Jones, 2013; Jia and
Jones, 2012; Jia and Jones, 2011) has successfully
demonstrated the feasibility and effectiveness of us-
ing a DSML to support model-driven development
of mobile applications. An internal DSML hosted
in Groovy is used to represent mobile applications in
the form ofabstract model trees(AMTs). A model
represented as an AMT is passed through a series
of transformations, resulting in new AMTs and ulti-
mately in native Android and iOS code. Preliminary
experiments have shown significant reductions in the
source code size, improvement in developer produc-
tivity, with the quality of generated native code com-
parable to handwritten native code produced by expe-
rienced mobile application developers.

The DSML supports capabilities that are com-
mon across our target platforms as well as platform-
specific capabilities when desired. However, the map-
pings of the DSML elements to the native platforms
is static and not easily adaptable. It requires changes
to the DSML itself when there are changes to the un-
derlying native API. Similarly, extending the AXIOM
DSL to a new platform, such as the Windows Mobile
OS, requires significant effort to align the DSML to
the new native platform. The DSML would be more
effective if it could evolve and adapt, automatically
incorporating new elements of its target platforms and
APIs. This is the motivation for anadaptive domain-
specific modeling language (ADSML).

3 ADAPTIVE DSML

A domain-specific modeling language(DSML) is a
domain-specific language (DSL) designed to repre-
sent models for model-driven development (MDD).

3.1 Meta-Models and Mappings

The definition and design of a DSML is based on a
meta-model. We introduce the following definitions.

Definition 1: Meta-model
A meta-model, MM, is formally defined as(C,R),
whereC is the set ofclassesin the meta-model, andR
is the set ofrelationsamong the classes.

Each class contains a set of attributes and meth-
ods. A model entityin a meta-model refers to any
entity contained in the meta-model, which can be a
class, an attribute, or a method. We useE(MM) to
denote the set of model entities in meta-modelMM.

We useMM∗ to denote a platform-independent
meta-model, and useMMa to denote the platform-
specific meta-model for platforma. For exam-
ple, to support cross-platform development of mo-
bile applications on Android and iOS, we will deal
with platform-specific meta-models,MMAndroid and
MMiOS, and platform-independent meta-modelMM∗.

Definition 2: Meta-model Mapping
A simple mapping, Φ[MMa,MMb], from meta-model
MMa = (Ca,Ra) to another meta-modelMMb =
(Cb,Rb) is a function fromE(MMa) to E(MMb),
i.e., every model element inMMa is mapped to a
unique model element inMMb.1 At the class level,
Φ[MMa,MMb] is a function fromCa to Cb.

We can also definecomplex mappings, where
some classes inCa are mapped to auxiliary classes
that need to be added to the native platform.

A platform-independent meta-modelMM∗ sup-
ports both Android and iOS if there exist two map-
pingsΦAndroid andΦiOS that mapMM∗ to MMAndroid
andMMiOS, respectively. A DSML for representing
PIMs of mobile applications can be designed based
on the meta-modelMM∗. We call a DSML designed
based on a fixed meta-model and fixed mappings a
staticDSML.

1For the sake of brevity, we will only include the class
level mapping in this paper. Mappings at the attribute and
method level can be defined similarly.

ICSOFT-EA�2015�-�10th�International�Conference�on�Software�Engineering�and�Applications

414

3.2 Characteristics of Adaptive DSML

We propose the concept ofadaptive DSMLs, which
possess the following characteristics:

• The platform-independent meta-model, on which
the DSML is based, is adaptive and is not de-
fined ab initio. The platform-independent meta-
model is constructed automatically from the na-
tive platform-specific meta-models, so that it can
evolve over the time to accommodate the evolu-
tion of the native platforms.

• As the native platforms change and evolve,
the mappings from the platform-independent to
platform-specific meta-models are constructed
automatically. The transformation and code gen-
eration tools are also adaptive to automatically ac-
commodate the changes.

• While the basic syntactic structure of an adaptive
DSML is fixed, its vocabulary may include en-
tities in the platform-independent as well as the
platform-specific meta-models. The interpreta-
tion of the vocabulary is dependent on the tar-
get platform and the current mappings among the
meta-models.

We will discuss some of the techniques to implement
adaptive DSML in the next several sections.

Due to the adaptive nature of the language, it is
more practical to implement adaptive DSML as an
internal DSL in a host language with strong support
for DSL. In our prototype, the adaptive DSML for
modeling mobile applications and targeting the An-
droid and iOS platforms is implemented as an internal
DSL of Groovy. Its basic syntactic rules are defined
by the host language. Our adaptive DSML uses the
Groovy Builder pattern to construct the object hier-
archies that represent models of mobile applications.
The Builder pattern offers a simple and intuitive syn-
tax to express the model compositions. Each compo-
nent is expressed as follows:

ComponentName(attributes...) {
... nested child components...

}

The components can be nested to form a hierarchy,
with the root component representing the application.
The component names allowed are the names of the
classes in the platform-independentmeta-modelMM∗

as well as the names of the classes in the platform-
specific meta-modelsMMAndroid andMMiOS. In other
words the component names supported by the adap-
tive DSML can evolve over the time.

3.3 Meta-Model Evolution

A meta-model evolutionis triggered when the API of
one or more of the native platforms have been up-
dated, such as changes or new releases of the API.
The meta-model evolution process involves:

• Meta-model extraction (section 4),

• Meta-model elevation (section 5), and

• Meta-model alignment (section 6).
It constructs an updated and unified platform-
independent meta-modelMM∗ and a set of updated
transformation rules to transform models inMM∗

to each of the platform-specific meta-models, e.g.,
MMAndroid or MMiOS. The updatedMM∗ will become
the new basis of the adaptive DSML.

4 META-MODEL EXTRACTION

Meta-model extractionis a process that extracts
platform-specific meta-models from the native API of
the target platforms. The primary source of input for
meta-model extraction is the API documentation of
the native platform in HTML. We extract the follow-
ing information for each class:

• The name, inheritance, subtype, and use relation.

• The textual description of the class (in English).

• For each attribute of the class, the name, type, and
textual description.

• For each method of the class, the name, signature,
and textual description of the method and each pa-
rameter.

The initial platform-specific meta-model extracted
from the native API of platforma is denoted asMM0

a,
which is a complete and accurate representation of the
native API, and serves as the starting point of the sub-
sequent model elevation and model alignment.

For programming languages that support reflec-
tion, part of the information can also be extracted
from the binary code of the libraries. However, all
information obtainable from the binaries that is useful
in our analysis should also be obtainable from the API
documentation. The textual descriptions and some
other useful information are not available in the bi-
naries. Hence, we choose not to use the binaries as
the sources of meta-model extraction.

5 META-MODEL ELEVATION

Meta-model elevationsimplifies and elevates the
level of abstraction of platform-specific meta-models.

Design�of�Adaptive�Domain-Specific�Modeling�Languages�for�Model-Driven�Mobile�Application�Development

415

Meta-model elevation is carried out through the fol-
lowing operations on the meta-model:

1. Visibility analysis: to determine thepublicportion
of the native APIs;

2. Tagging key architectural elements: to identify
the key elements of the meta-models;

3. Pattern-based transformation: to simplify the
meta-models through a series of semantics pre-
serving transformations of the meta-models.

The result of meta-model elevation is a set of elevated
platform-specific meta-models for each native plat-
form. For native platforma, the elevated meta-model
is denoted asMM1

a.

5.1 Visibility Analysis

The API of a native platform typically consists of two
parts: thepublic part, which is intended to be used
directly by developers; and theprotectedpart, which
is intended for customizing and extending the native
API. We will limit our DSML to support thepublic
API only. It is more sensible to customize and extend
the native API using the native languages supported
by the platform. The additional classes for the cus-
tomized or extended API can be incorporated in the
DSML as auxiliary classes.

We define a set of rules to identify the classes, at-
tributes, and methods that are intended solely for the
purpose of customizing and extending the native API.
These entities will be removed from the meta-model.

5.2 Tagging Key Architectural Elements

Tagging is the process of attaching tags, which are
simple keywords or strings, as meta-data to model en-
tities in a meta-model. Tagging associates model enti-
ties with key concepts in the domain. A model entity
may be tagged with multiple tags.

In a given domain, there are usually a number of
key architectural elements(KAE) that are typically
present and play important roles in every application
in the given domain. For example, in the domain of
user interfaces (UI) of mobile applications, we can
identify the following key architectural elements:

• View: a self-contained unit of UI, e.g., a single
screen, a popup, etc. Typically contains a hierar-
chy of view objects.

• Transition: a connection between two views, the
source, and the destination of the transition. It is
also commonly associated with a trigger event.

• Action: code to be executed in response to certain
event. It can also be associated with a source ob-
ject that triggers the event, or a transition.

One or more tags can be associated with a key ar-
chitectural element to indicate its potentially differ-
ent roles and subtypes. We define a set of rules to
determine whether a model entity is tagged as being
associated with a key architecture element.

5.3 Pattern-based Transformation

We start by identifying common design patterns and
idioms. When a pattern is recognized, it is replaced
with a more concise but equivalent representation.
Some of the patterns and idioms being considered are:

• The Property Pattern. APIs often define the getter
and setter methods associated with apropertyfol-
lowing a number of well-established naming con-
ventions. When such a pattern is recognized, the
getter and setter method can be replaced with the
associated property.

• The Enumeration Pattern. APIs of mobile plat-
forms often use integers rather than enumerations
for the sake of better performance. However, enu-
merations are often safer and easier to use. When
such a pattern is recognized, we replace the inte-
gers with enumerated types.

For each of the transformations of the meta-model,
we also introduce code generation rules that reverse
the transformation at code generation time.

6 META-MODEL ALIGNMENT

Meta-model alignmentestablishesalignment rela-
tionsamong the entities in different platform-specific
meta-models. Entities in different meta-models are
consideredaligned if the entities are considered to
have the similar functions or behaviors, or play a sim-
ilar role in their respective platform.

Definition 3: Alignment Relation
Given two platform-specific meta-modelsMMa =
(Ca,Ra) andMMb = (Cb,Rb), an alignment relation
among the meta-models, denoted asΞ[MMa,MMb],
is a relation that contains all the pairs ofaligned enti-
ties(e1,e2), wheree1 ∈ E(MMa), ande2 ∈ E(MMb).
At the class level,Ξ[MMa,MMb] is the relation of
aligned classes, betweenCa andCb.

Meta-model alignment is carried out through the
following steps:

1. Similarity analysis: to discover the similarities
between the model entities in different platform-
specific meta-models.

ICSOFT-EA�2015�-�10th�International�Conference�on�Software�Engineering�and�Applications

416

2. Entity alignment: to determine the alignment re-
lation among the entities in different platform-
specific meta-models.

3. Meta-model unification: to construct a platform-
independent meta-model by unifying the aligned
entities in the platform-specific meta-models.

6.1 Similarity Analysis

We first analyze the similarity among the classes in
MMa = (Ca,Ra) andMMb = (Cb,Rb). For each pair
of classesc1 ∈Ca andc2 ∈Cb, we define a class simi-
larity functionθ0(c1,c2) ∈ [0,1]. The similarity func-
tion is calculated based on the following factors:

• the tags of each class and the relation with other
classes;

• the similarity of the attributes and methods belong
to the respective classes;

• the similarity of the words in the class names;

• the similarity of the textual descriptions of the
classes.

We will use the text analysis techniques developed in
Natural Language Processing (NLP) research (Noyrit
et al., 2013) to calculate the semantic similarity be-
tween words and textual descriptions.

We first establish a thresholdT−
0 for two classes

to be consideredpossiblysimilar. For each pair of
classesc1 and c2 that θ0(c1,c2) ≥ T−

0 , we perform
further similarity analysis on the attributes and meth-
ods of the classes. The attribute and method similarity
functions are calculated using the following factors:

• the tags of each attribute or method and the re-
spective types or signature;

• the similarity of the words in the attribute or
method names;

• the similarity of the textual descriptions of the at-
tribute or method.

6.2 Entity Alignment

Entity alignment is the key step in model alignment to
compute the alignment relationΞ[MMa,MMb] among
the model entities inMMa andMMb.

We start with a relation ofanchored alignments
Ξ0[MMa,MMb], which consists of pairs of aligned
model entities that are manually identified and ver-
ified. The computed alignment relation must be a
super set of the anchored alignment relation, i.e.,
Ξ0[MMa,MMb]⊆ Ξ[MMa,MMb].

We then establish the alignment thresholdT+
0 for

similarity functionsθ0, to compute the alignment re-
lation:

• For a pair of classesc1 ∈ Ca and c2 ∈ Cb, if
θ0(c1,c2)≥ T+

0 , we consider classesc1 andc2 to
be aligned.

A similar process will be applied to the attributes and
methods.

For an alignment relation, we define the following
metrics to measure its degree of success in aligning
the meta-models:

• Aligned class ratio: the ratio of the classes that
are aligned with some class over the total number
of classes.

ACa =
|domain(Ξcla[MMa,MMb])|

|Ca|

ACb =
|range(Ξcla[MMa,MMb])|

|Cb|

• One-to-one ratio: the ratio of the number of one-
to-one class alignment pairs over the total number
of class alignment pairs.

• Degree of alignments: the maximum number of
classes that are aligned with any class.

A successful alignment relation should satisfy the
following requirements:

• The aligned class ratio for both meta-models
should be sufficiently high;

• A majority of the alignments should be one-to-
one, i.e., the one-to-one ratio should be near 100%

• The degree of alignments should be fairly low,
typically 3 or less.

We will also apply the techniques in ontology
alignment (Shvaiko and Euzenat, 2013; Granitzer
et al., 2010) in entity alignment.

6.3 Meta-Model Unification

A unified platform-independent meta-model,MM∗,
can be derived from the platform-specific meta-
models MMa, MMb, and the alignment relation
Ξ[MMa,MMb]. Meta-model unification produces two
mappings:Φ[MM∗

,MMa] andΦ[MM∗
,MMb].

If we have a one-to-one alignment between classes
c1 and c2, a unified classU(c1,c2) is added to the
unified meta-modelMM∗. The classU(c1,c2) can be
referred to using the name ofc1 or c2 or a new unique
name. All these names are considered aliases. The
mappings are updated as follows:

• U(c1,c2) 7→ c1 is added toΦ[MM∗
,MMa]

• U(c1,c2) 7→ c2 is added toΦ[MM∗
,MMb]

Design�of�Adaptive�Domain-Specific�Modeling�Languages�for�Model-Driven�Mobile�Application�Development

417

If we have a one-to-many alignment between class
c1 and classesc2,1 . . .c2,n, and none ofc2,1 . . .c2,n
is aligned with any other class,n unified classes
U(c1,c2,1) . . .U(c1,c2,n) will be added to the unify
model meta-modelMM∗ The classU(c1,c2,i) can be
referred to using the name ofc1 orc2,i or a new unique
name. All these names are considered aliases. The
mappings are updated as follows:

• U(c1,c2,1) 7→ c1, ... , U(c1,c2,n) 7→ c1 are added
to Φ[MM∗

,MMa]

• U(c1,c2,1) 7→ c2,1, ... , U(c1,c2,n) 7→ c2,n are
added toΦ[MM∗

,MMb]

The mappingsΦ[MM∗
,MMa] andΦ[MM∗

,MMb]
produced during the unification process can be used
to derive transformation rules from theMM∗ to MMa
andMMb.

A similar approach is used to unify the aligned at-
tributes and methods for each pair of aligned classes,
which will produce the attribute and method level
model mappings.

7 CONCLUSION

Domain-specific modeling languages make the de-
velopment of applications for a particular domain
much simpler than hand-written approaches. How-
ever, DSMLs are often “frozen” as static mappings
from DSML elements to native language elements.

An adaptive domain-specific modeling language
uses information about the target platforms and APIs
to evolve its syntax and capabilities. Our approach
extracts a meta-model for each target platform. These
platform-specific meta-models undergo a process of
elevation, where an appropriate subset of the ex-
tracted meta-model is selected for further analysis.
Similarity analysis aligns the meta-models by map-
ping one platform to the other. Finally, these map-
pings are unified into a platform-independent meta-
model on which the DSML can be based.

Our approach enables access to the full capabil-
ities of the native platforms and is thus capable of
generating high performance native applications. It is
also adaptable to rapid evolutions of the target plat-
forms. This adaptability depends on effective on-
tology and tag management since it is based on the
derivation of semantically useful information from
the documentation of the native platform and its APIs.

We are currently developing an adaptive version
of the AXIOM DSML to demonstrate the feasibility
and effectiveness of the techniques proposed in this
paper.

REFERENCES

Apache Cordova (2015). https://cordova.apache.org/.
Appcelerator (2015). http://www.appcelerator.com/.
Canappi (2011). http://www.canappi.com/.
Charland, A. and Leroux, B. (2011). Mobile application

development: Web vs. native.Communications of the
ACM, 54(5):49–53.

Corral, L., Sillitti, A., and Succi, G. (2012). Mobile mul-
tiplatform development: An experiment for perfor-
mance analysis.Procedia Computer Science, 10:736
– 743. MobiWIS 2012.

Granitzer, M., Sabol, V., Onn, K. W., Lukose, D., and
Tochtermann, K. (2010). Ontology alignment - A sur-
vey with focus on visually supported semi-automatic
techniques.Future Internet, 2(3):238–258.

Hammel, Z., Visser, E., et al. (2010). mobl: the new lan-
guage of the mobile web. http://www.mobl-lang.org/.

Heitkötter, H., Majchrzak, T. A., and Kuchen, H. (2013).
Cross-platform model-driven development of mobile
applications with md2. InProceedings of the 28th An-
nual ACM Symposium on Applied Computing, SAC
’13, pages 526–533, New York, NY, USA. ACM.

Jia, X. and Jones, C. (2011). Dynamic languages as model-
ing notations in model driven engineering. InICSOFT
2011, pages 220–225, Seville, Spain.

Jia, X. and Jones, C. (2012). AXIOM: A model-driven ap-
proach to cross-platform application development. In
ICSOFT 2012, pages 24–33, Rome, Italy.

Jia, X. and Jones, C. (2013). Cross-platform application
development using AXIOM as an agile model-driven
approach. InCommunications in Computer and Infor-
mation Science, volume 411, pages 36–51. Springer
Berlin Heidelberg.

Jones, C. and Jia, X. (2014). The AXIOM model frame-
work: Transforming requirements to native code for
cross-platform mobile applications. InENASE 2014,
pages 26–37, Lisbon, Portugal.

Jones, C. and Jia, X. (2015). Using a domain specific lan-
guage for lightweight model-driven development. In
Communications in Computer and Information Sci-
ence. Springer Berlin Heidelberg.

Noyrit, F., Gérard, S., and Terrier, F. (2013). Computer
assisted integration of domain-specific modeling lan-
guages using text analysis techniques. InMODELS
2013, Miami, FL, USA, September 29 - October 4,
2013. Proceedings, pages 505–521.

Shvaiko, P. and Euzenat, J. (2013). Ontology matching:
State of the art and future challenges.IEEE Trans.
Knowl. Data Eng., 25(1):158–176.

Vaupel, S., Taentzer, G., Harries, J. P., Stroh, R., Gerlach,
R., and Guckert, M. (2014). Model-driven develop-
ment of mobile applications allowing role-driven vari-
ants. InMODELS 2014, Valencia, Spain, September
28 - October 3, 2014. Proceedings, pages 1–17.

ICSOFT-EA�2015�-�10th�International�Conference�on�Software�Engineering�and�Applications

418

