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Abstract: Modern operating systems increasingly rely on enforcing mandatory access control through the use of secu-
rity policies. Given the critical property of policy correctness in such systems, formal methods and models are
applied for both specification and verification of these policies. Due to the heterogeneity of their respective
semantics, this is an intricate and error-prone engineering process. However, diverse access control systems
on the one hand and diverse formal criteria of correctness on the other hand have so far impeded a unifying
framework for this task.

This paper presents a step towards this goal. We propose to leverage core-based model engineering, a uniform
approach to security policy formalization, and refine it by adding typical semantic abstractions of contempo-
rary policy-controlled operating systems. This results in a simple, yet highly flexible framework for formaliza-
tion, specification and analysis of operating system security policies. We substantiate this claim by applying
our method to the SELinux system and practically demonstrate how to map policy semantics to an instance of
the model.

1 INTRODUCTION

In order to meet tightening security requirements
in most modern application areas, IT systems in-
creasingly rely on formally specified security policies
(Watson, 2013). These policies define rules that, re-
liably enforced by a system’s implementation, can be
proven to achieve application-specific formal proper-
ties concerning security goals such as confidentiality
and integrity of a system and the information it pro-
cesses. A major field of application for such secu-
rity policies is the operating systems domain, which
yielded an increasing number policy-controlled op-
erating systems over the past years (Spencer et al.,
1999; Loscocco and Smalley, 2001; Watson and
Vance, 2003; Smalley and Craig, 2013; Russello et al.,
2012; Bugiel et al., 2013; Faden, 2007; Grimes and
Johansson, 2007).

While new methods emerged for design, imple-
mentation and enforcement of OS security policies,
their specification and verification also received in-
creasing attention. Formal models have been devel-
oped for such policies based on two major objectives:
(1) To precisely specify the semantics of a particular
system, which are determined by its respective appli-
cation domain (such as roles (Sandhu et al., 2000) or

user relationships (Fong and Siahaan, 2011)); (2) to
formalize and subsequently analyze a security prop-
erty, which results from the security requirements of
a particular application domain (such as right prolif-
eration (Harrison et al., 1976; Ferrara et al., 2013)
or information flows (Kafura and Gracanin, 2013)).
Both approaches yield models that are available to
formal methods; however, models resulting from both
approaches are often incompatible: when focusing
on a formally analyzable property such as dynamic
right proliferation, system-independent access control
models based on state machines have proven to be
valuable; when focusing on a formal framework for
policy specification and communication on the other
hand, system-specific models such as for the SELinux
operating system have evolved, which may in turn
sacrifice analyzability with respect to a whole family
of security properties.

This problem has been addressed by the design
paradigm of model-based security policy engineer-
ing (Barker, 2009; Kühnhauser and Pölck, 2011; Ka-
fura and Gracanin, 2013; Amthor et al., 2014; Pölck,
2014). Its goal is to derive a uniform pattern for de-
signing security models, which flexibly fits (1) diverse
security policy semantics as well as (2) diverse formal
analysis goals. Such a uniform pattern would then
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serve as a fundamental prerequisite for both specify-
ing and verifying security policies.

According to Amthor et al. (2014); Pölck (2014),
this goal can be achieved through a flexible and ex-
tensible common model core based on a determin-
istic state machine (core-based model engineering).
In practice, it requires to adapt domain-specific ab-
stractions to a deliberately general formal framework.
This yields a twofold result: On the one hand, core-
based model engineering eliminates the need for a
formal approach from scratch, whenever a given se-
curity policy is to be analyzed with one of the two
objectives stated above. On the other hand, given the
versatile and thus domain-independent semantics of
the pattern, the actual engineering effort to create us-
able model instances is still significant in practice (as
pointed out by Pölck (2014, pp. 46 et seq.)).

This paper aims at further reducing this engi-
neering effort—and thus the probability of errors—
in the domain of policy-controlled operating systems
by presenting a refinement of the core-based model-
ing pattern. Its idea is based on the general principle
of entity labeling, which can be found in a large fam-
ily of access control (AC) policies for contemporary
operating systems. The resulting modeling pattern
will then be applied to the SELinux operating system,
which exhibits semantic features typical for OS secu-
rity policies. Based on the resulting SELinux access
control model, we will discuss the costs of model de-
sign and model instantiation.

Contributions and Paper Organization. To intro-
duce the context of this paper, we briefly discuss rele-
vant related work (Sec. 2), followed by a summary of
the fundamental concepts of one typical representa-
tive, SELinux (Sec. 3). Sec. 4 focuses on a formaliza-
tion of the discussed concepts: First, the fundamen-
tals of core-based modeling are introduced (Sec. 4.1).
We then present a novel, abstract policy modeling pat-
tern based on entity labeling (Sec. 4.2), which en-
riches the core pattern by adequate access control se-
mantics for the operating systems domain. It hence
eases analysis and verification of contemporary oper-
ating system security policies with respect to an actual
system’s protection state (dynamic analysis) using ex-
isting formal methods and tools.

To substantiate this claim, we applied our pattern
to SELinux. We create an entity labeling model of
the SELinux access control system (Sec. 5) and dis-
cuss, how a real-world system’s protection state and
security policy can be transformed into an instance
of this model (Sec. 6). This paves the way for sub-
sequently applying tried and tested analysis methods
for core-based models to SELinux. We conclude with
Section 7.

2 RELATED WORK

In the AC model community, considerable research
has already been done to unify model semantics
and formalisms. Notably, the access control meta-
model by Barker (2009), the Policy Machine (Fer-
raiolo et al., 2011), and core-based security models
(Kühnhauser and Pölck, 2011; Pölck, 2014) provide
general formal frameworks for a precise specifica-
tion of access control semantics and policies. While
Barker’s unifying meta-model and the Policy Ma-
chine are primarily designed for policy specification,
core-based modeling aims at both specifying and an-
alyzing/verifying a policy.

Another family of formal AC models is specifi-
cally tailored to OSs. Among numerous work in this
area, most is tailored to specific operating systems
such as SELinux (Sarna-Starosta and Stoller, 2004;
Zanin and Mancini, 2004; Xu et al., 2013) or spe-
cial types of OS policies such as MLS (Naldurg and
Raghavendra, 2011). While all of these approaches
emphasize policy analysis with respect to a partic-
ular formal security property, they cannot be easily
adapted to other OS AC semantics or other formal
analysis goals. In our approach, we aim for both:
streamlined adaption to versatile OS AC semantics
that share only the abstract concept of labeling, and
accessibility to a bandwidth of security properties and
their appropriate formal analysis methods.

The basic idea of label-based AC modeling is
far from being new. Dating back to the historical
BLP model (Bell and LaPadula, 1976), which ef-
fectively introduced access permissions based on la-
bels, a whole new class of attribute-based AC models
(ABAC) evolved based on this principle (Zhang et al.,
2005; Kuhn et al., 2010). However, they usually focus
policy specification in the domain of service-oriented
architectures (Yuan and Tong, 2005; Shen, 2009; Park
and Chung, 2014) rather than system architectures.
To this end, both the goal of formal policy analysis
and the focus on the OS domain cannot be easily in-
corporated into existing ABAC models.

3 SELinux ACCESS CONTROL

Today’s operating systems increasingly rely on
mandatory access control (MAC) mechanisms gov-
erned by a security policy. In large parts, their au-
thorization semantics are based on assigning policy-
specific labels to entities, which are divided into
subjects (an activity abstraction such as process or
thread) and objects (OS resources, described by ab-
stractions such as files, handlers, sockets, etc.). The
idea of label-based OS policies dates back to SELinux
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Figure 1: Processing an access request in the SELinux se-
curity architecture.

(Loscocco and Smalley, 2001), one of the first policy-
controlled OSs, and has been adopted by a wide range
of later operating systems such as SEBSD (Watson
and Vance, 2003), Oracle Solaris (Faden, 2007), Mi-
crosoft Windows (Grimes and Johansson, 2007), and
Google’s Android (Smalley and Craig, 2013).

The goal of this section is to take a closer look
at the security architecture and policy semantics of
SELinux as a typical representative of modern policy-
controlled operating systems.

3.1 Security Architecture
The original goal of SELinux was to enforce MAC in
the Linux operating system. To achieve this, the Flask
security architecture (Spencer et al., 1999) was imple-
mented, which clearly distinguished between policy
enforcement points (PEP) and a singular policy deci-
sion point (PDP). The PDP logically encapsulates the
whole security policy.

Today, SELinux is implemented as a dynamically
loadable kernel module. Its architecture merges into
the Linux kernel through the LSM interface (Linux
Security Modules). It provides ready-made PEP
hooks for all system call implementations, which are
connected to the PDP (the security server) via the
SELinux kernel module. In addition to the process-
ing logic, that translates information about an OS re-
source access into the policy-related data structures
that are used by the security server, this module also
includes a caching mechanism for previously made
decisions (the access vector cache, AVC).

To illustrate how an access request by an appli-
cation process (1) is handled in SELinux, we con-
sider the following example based on Linux kernel
3.19 (cf. Fig. 1): Once an according syscall is pro-
cessed by the kernel, e.g. read() for accessing a file
(2), the LSM hook (security file permission())

invokes the according interface of the SELinux
Security Module (3). Here, the permissions
needed for authorizing the specific request (here:
FILE READ) are checked against the AVC (calling
avc has perm()) or, in case of a miss, the secu-
rity server’s security compute av()-interface (4).
The decision is then returned through the LSM
hook and enforced by the read()-implementation in
vfs read() (either invoking the respective file sys-
tem interface to ultimately access the storage hard-
ware (5), or returning to the caller with an “access
denied” error).

Inside the security server logic, access decisions
are based on the policy rules and SELinux security
contexts associated to entities. The latter is a label
consisting of four attributes, which is usually repre-
sented by a string

user : role : type [: range]

where user is the name of an SELinux user the pro-
cess belongs to, role is the name of an SELinux role
the process assumes, and type is the name of the do-
main (or type) in SELinux type enforcement (TE) in
which the process currently runs. Finally, range is
a collection of confidentiality classes and categories
used by multi-level security (MLS) policy rules based
on the BLP model. Since support for the MLS mech-
anism is neither required by the SELinux policy se-
mantics nor by the security server, this fourth attribute
is optional. We will discuss the semantics of these at-
tributes in a security policy in the next section.

Technically, security contexts of processes are
stored in their management data structures, repre-
sented as a part of the non-persistent /proc file sys-
tem, while those of objects such as files or sockets
are stored in extended attributes of the respective file
system.

3.2 Policy Semantics
As already mentioned, the PDP logic in SELinux is
configured by a security policy. At runtime, a bi-
nary representation of this policy resides in kernel ad-
dress space; however, as for the rest of this paper,
we will refer to its human-readable specification in
SELinux policy language (Smalley, 2005) as “the (se-
curity) policy”.

An SELinux security policy consists of state-
ments, which can be classified into different types of
rules. Each rule basically supports one of three fun-
damental AC concepts supported by SELinux: type
enforcement (TE), role-based access control (RBAC),
and multi-level security (MLS). The most basic au-
thorization mechanism is implemented through TE,
using TE-allow-rules which basically associate a
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pair of types with a set of permissions: The rule
allow system_t etc_t : file {read execute}
for example will grant any process labeled with the
system t type the right to read and execute any
file-class object labeled with etc t. We call
hsystem t;etc t;filei the key of above TE-
allow-rule. A second authorization mechanism,
whose support by an SELinux kernel is still optional,
is MLS. Its rules are based on defining a dominance
relation over the attributes confidentiality class and
category, which is then used to limit all read- or write
access to particular objects.

Lastly, the RBAC mechanism is used for
limiting attribute changes of a process. Since
all attributes are changeable except for the user,
this provides a policy administrator with an ad-
ditional, user-centric layer of AC configuration.
RBAC rules define compatible combinations of all
three major attributes: The role declaration rule
role user_r types { user_t passwd_t } is
necessary to label any process with the user r role
with both types user t and passwd t. Similarly,
any role can be tied to one or more users by the user
declaration rule: user peter roles { admin_r }
is necessary to label any process with user attribute
peter with the admin r role.

As mentioned before, the type- and role-attribute
of a security context may change during runtime
(known as transitions). Accordingly, there are policy
rules to control these changes: For role transitions,
a role-allow-rule allow user_r admin_r is neces-
sary to change the role-attribute user r of a process
to admin r. Note that, despite of the same keyword,
this rule has nothing to do with access authorization
through TE.

For type transitions on the other hand, a special
set of SELinux permissions exists that must be as-
signed to types through the already discussed TE-
allow-rules. Rules with these permissions can be
used for fine-grained control over allowed, forbidden,
or even mandatory type transitions; however, it should
be noted that their semantics are entirely different to
those intended for object access:
� allow init t apache t : process
transition is necessary for a process to
change its type from init t to apache t.

� allow apache t apache exec t : file
entrypoint is necessary for a process to change
its type to apache t during execution of a
program file of type apache exec t.

� allow init t apache exec t : file
execute no trans is necessary for a pro-
cess with type init t to execute a program file
of type apache exec t without a type transition.

Since type transitions are intended to exclusively
happen on program execution, the regular permis-
sion execute on apache exec t : file will also
be necessary in each case.

As a last rule type, SELinux policies support con-
straints, that may further restrict (i.e. override) any ac-
cess decision based on the mechanisms discussed so
far. Supported by a limited syntax for nested boolean
expressions, constraints can be used to explicitly for-
bid an access based on the security contexts of both
involved entities and the given logical expression.

4 MODELING PATTERNS

This section introduces the two basic formal ap-
proaches we will use to model the SELinux AC sys-
tem: the core-based modeling pattern by Pölck, and
the novel EL pattern which aims at simplifying a
domain-specific model engineering for OS AC poli-
cies. Throughout the rest of this paper, we will use
the following conventions for formal notation:
j= is a binary relation between variable assign-

ments and formulas in second-order logic, where I j=
f iff I is an assignment of unbound variables to values
that satisfies f. In an unambiguous context, we will
write hx0; : : : ;xni j= f for any assignment of variables
xi in f that satisfies f.

For any mapping f , f [x 7! y] denotes the mapping
which maps x to y and any other argument x0 to f (x0).
For any mapping f : A! B, f �A0 denotes a restriction
of f to A0�A that maps any argument x0 2A0 to f (x0),
whereas f �A0 (x) is undefined for any x 2 AnA0.

For any set A, 2A denotes the power set of A. B=
f>;?g is the set of Boolean values, where> (true) is
interpreted as “allow”, ? (false) as “deny”.

4.1 Core-based Modeling
The goal of the core-based model engineering
paradigm is to establish a uniform formal basis for
specification, analysis and implementation of diverse
security models. In this work, we build our modeling
pattern on top of this paradigm to leverage its general-
ity regarding formal analysis methods and its uniform
yet flexible design.

A core-based access control model is described by
an extended state machine

hQ;S;d;l;q0;EXTi (1)

where Q is a (finite or infinite) set of protection states,
S is a (finite or infinite) set of inputs, d : Q�S!Q is
the state transition function, l : Q�S! B is the out-
put function, q0 2Q is the initial protection state, and
EXT is an arbitrary tuple of static model extensions.
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The state machine serves as a common basis for for-
malizing policy semantics, called model core, which
can be tailored to any domain-specific security policy
in terms of state members and model extensions.

Based on the abstract definition above, three
steps are required to describe a particular AC system
through a core-based model (cf. Pölck, 2014, pp. 25
et seq.): (1.) Specializing Q, i.e. explicitly defining
the automaton’s state space members (dynamic model
components). (2.) Specializing EXT, i.e. defining
static model components which are not part of the
automaton’s state. (3.) Specializing d and l, i.e.
describing the dynamic behavior of the AC system.
Depending on step (1), the initial protection state q0
has to be specified according to the particular anal-
ysis goal. Depending on both steps (1) and (2), the
input alphabet S has to be specified according to the
interface of the modeled access control system.

In step (3), protection state dynamics are de-
scribed by the state transition function d through pre-
and post-conditions of every possible state transition.
This is done by comparing each input with two formu-
las in second-order logic, PRE and POST. We then
define d by formally specifying the conditions that
each pair of states q and q0 has to satisfy w.r.t. an
input s 2 S for a state transition from q to q0 to occur:

d(q;s) =
�

q0; hq;si j= PRE^ hq0;si j= POST
q; otherwise.

(2)
Since an access control system is usually determin-
istic, POST fundamentally requires that q0 equals q
where not redefined.

Finally, to describe authorization decisions at an
AC system’s interface, the automaton features an out-
put function l. It enables the analysis of correct pol-
icy behavior and thus supports a formally verified
specification. l defines a binary access decision based
on PRE:

l(q;s), hq;si j= PRE. (3)

4.2 Entity Labeling
This section describes entity labeling (EL), an ab-
stract semantic modeling pattern for the formalization
of contemporary operating system security policies.
Based on the observations on OS policy semantics
discussed in Section 3, the design goal of an entity
labeling model is to describe access control policies
which
1. use attributes (labels) of system entities for access

decisions
2. have a dynamic protection state
3. are governed by additional constraints, possibly

subject to a dynamically changing context

The domain-specific semantics of such models is
directly derived from these goals: (1.) To support la-
beling, a basic set of possible label values is needed.
Since our goal is a complete description of an access
control system, a set of entity identifiers is needed as
well as an association of these entities with one or
more label values. Then, label-based access rules can
be formalized as well. (2.) To model a dynamic pro-
tection state, these formal concepts can be mapped on
the model core as discussed in Section 4.1. On top
of it, the rules for changing labels of existing entities
(which are also part of a system’s policy) have to be
modeled. (3.) Lastly, model constraints express time-
invariant side conditions for correct behavior of the
AC system. Due to their static nature, such condi-
tions are not part of the automaton’s state; however,
they can of course include variables referencing any
system interface outside the AC system—which is of
increasing importance in mobile systems (e.g. time of
day, NFC device proximity, geographic location, etc.)
(Conti et al., 2012; Shebaro et al., 2014).

In summary, we define six abstract components of
an EL model, which may be specialized by the se-
mantically appropriate components for describing a
particular policy:
Label Set (LS): A set containing legal label values.
Relabeling Rule (RR): Rule for legal label changes.

Formally, it is usually expressed by a graph.
Entity Set (ES): A set containing identifiers of ex-

isting entities in the system.
Label Assignment (LA): An associations between

each entity and its label (or labels). It is usually
expressed by a mapping.

Access Rule (AR): Rule that describes, based on
two or more labels, which operations entities with
these labels are allowed to perform. It is usually
expressed by a mapping or a relation.

Model Constraints (MC): Constraints over the
other components that must be satisfied in every
model state. It is usually modeled by a logical
formula.

This design follows the basic idea of model compo-
nent specialization, which has been adopted by the
core-based modeling paradigm from object-oriented
programming.

The above list already implies a suitable formal
notation of these components that we will adhere to;
however, the modeling pattern itself does not dictate
any specific formalism (other than the extended state
machine required by the model core).

For specializing these abstract model components,
their semantics have to be matched to policy abstrac-
tions of a real system. In order to support model
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dynamics, this also includes decisions about which
specialized components are modifiable during policy
runtime—these should be defined within the core-
based model’s state—and which are not. Again, the
EL design does not impose any restrictions on this.

Note that EL spans a subfamily of core-based
models by adding domain-specific semantic abstrac-
tions to the calculus, which are however orthogonal
to those of the core paradigm. Models in this family
can be further tailored to match contemporary OS se-
curity policies. In the next section, we will show an
example of this based on the SELinux security policy.

5 SELinux SECURITY MODEL

In this section, we will demonstrate the application of
EL on the SELinux operating system. In Section 5.1,
the concepts of the SELinux security policy as de-
scribed in Section 3 will be formalized using the EL
modeling scheme. In Section 5.2, a full core-based
access control model will be defined from these com-
ponents. At last, Section 5.3 proposes a specification
for the SELinux-specific commands and their impact
on protection state transitions and model output.

5.1 EL Components
The abstractions of system resources that are man-
aged by the Linux operating system are completely
covered by the SELinux security policy. Therefore,
we could define a separate entity set for each of these
abstractions (processes, files, message queues, sock-
ets, ...). However, the policy semantics are written on
a higher level of granulariy: instead of singular enti-
ties, object classes are used to distinguish between OS
abstractions. Since these classes are assigned to each
system entity on runtime much similar to its respec-
tive security context, we will uniformly model these
information as labels. Consequently, we define the
following label sets:

� C is the set of SELinux object classes

� U is the set of SELinux users as defined in the
policy

� R is the set of all roles as defined in the policy

� T is the set of all types and domains as defined by
the policy

Moreover, a single entity set E represents all pro-
cesses and other system resources (such as files, sock-
ets, etc.).

To allow label changes, an SELinux policy
uses special permissions such as transition or
entrypoint, whose semantics drastically differ from
those of other permissions used in TE-allow-rules

(cf. Section 3). To this end, we refrain from modeling
these elements of the policy language as actual access
rules. Instead, type- and role-transitions are modeled
by two relabeling rules as follows:
� 7!r� R2 is a binary relation defined as r 7!r r0 iff

a role transition from r to r0 is allowed according
to the policy’s role-allow-rules

� 7!t� T 3 is a ternary relation defined as t et7�!t t 0 iff
a type transition from t to t 0 via an entrypoint type
et is allowed according to the policy’s TE-allow-
rules

User transitions can never be allowed by an SELinux
policy and are therefore not modeled. The above no-
tation serves as a shorthand here; for model checking
purposes, both relations can be interpreted as edges
(weighted in case of 7!t ) of directed graphs.

Consequently, the remaining portion of TE-
allow-rules in a policy is modeled by the following
access rule. The mapping allow : T � T �C ! 2P

represents the combined semantics of all TE-allow-
rules:

allow(t1; t2;c) =fp jan allow-rule for p with key
ht1; t2;ci exists in the policyg

where P is the set of SELinux permissions.
As already mentioned, SELinux stores label as-

signments as part of its protection state rather than in
the policy. Nevertheless, we need to model the fol-
lowing label assignments for a meaningful analysis
of the model’s dynamic protection state:
� cl : E ! C is the class assignment, which labels

each entity with its SELinux object class.
� con : E! SC is the context assignment, which la-

bels each entity with its SELinux security context.
Here, the set of security contexts SC =U�R�T
represents all possible security contexts (labels)
for entities under the given policy.
Concluding, two further restrictions on type- and

role transitions have to be taken into account: those
imposed by user and role declarations. For both, we
use the following model constraints:
� UR � U �R associates users with roles they are

allowed to assume according to the security pol-
icy’s user declaration statements

� RT � R� T associates roles with types they are
allowed to assume according to the security pol-
icy’s role declaration statements

� tUR ::= 8e 2 E : con(e) = hu;r; ti ) hu;ri 2 UR
ensures that no role is assumed a user is not au-
thorized for

� tRT ::= 8e 2 E : con(e) = hu;r; ti ) hr; ti 2 RT
ensures that no type is assumed a role is not au-
thorized for
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Table 1: Classification of SELX model components in EL
and core-based modeling patterns.

EL Component Q Members EXT Members
LS — C;U;R;T
RR — 7!r; 7!t
ES E —
LA cl;con —
AR — allow;P
MC — tUR;tRT ;UR;RT

5.2 Core-based Model
The formal EL components defined above will be put
into context of a core-based model now. Therefore,
it has to be decided which component is part of the
automaton’s state (thus dynamic) and which is part of
the extension vector (thus static). In case of SELinux,
these components directly reflect the semantics of a
policy that configures the security server, which again
is static during runtime—except for E, cl and con.
This results in the classification shown in Table 1.1

According to the basic definition of the model core
(1), we define an EL model for SELinux as a tuple

SELX = hQ;S;d;l;q0;EXTi

where

Q = 2E �CL�CON
S = SC�SX

EXT = hC;U;R;T; 7!r; 7!t ;allow;P;tUR;tRT ;UR;RTi

Each state q 2 Q of the model is a triple

Eq;clq;conq

�
with the semantics defined above,

where we use the sets Eq � E of all entities in state
q, CL = fclqjclq : Eq ! Cg of all state-specific class
assignments, and CON = fconqjconq : Eq ! SCg of
all state-specific context assignments. The input set
S is defined by a set of commands SC (that may be
SELinux system calls, but also operations on applica-
tion level for different implementations) and a set of
arbitrary parameter sequences SX = (E [C[P[U [
R[T )�. d and l are defined as in definitions (2) and
(3) on page 5. The extensions in EXT are defined as
given in Sec. 5.1.

Both d and l are controlled by the conditions PRE
and POST, which are partially defined using the fol-
lowing scheme. For each element of a model-specific
set of commands cmd 2 SC along with its parameters
vector xcmd 2 SX , we write:

1For the sake of brevity, we refrained from including
both MLS and constraints in this model. Note that, how-
ever, amending the formal components by LSs and LAs for
“classification” and “category”, an AR for the dominance
relation and another set of MC expressions is a straight-
forward task.

I cmd(xcmd) ::=
PRE: f0^�� �^fn ;

POST: yE ^yCL^yCON ^yMC

where fi and y j are expressions that q, q0 and xcmd
should satisfy. While the above notation is used to
define PRE(cmd) and POST(cmd) of each command,
these conditions constitute the global terms:

PRE =
_

cmd2SC

�
s = hcmd;xcmdi^PRE(cmd)

�
POST =

_
cmd2SC

�
s = hcmd;xcmdi^POST(cmd)

�
While any number of arbitrary pre-condition

clauses can be used in this scheme, post-conditions
require a stricter pattern due to the fact that each
command definition should yield exactly one possible
follow-up state: Since post-conditions describe the
modifications that q0 should undergo with respect to
q, the first three boolean clauses ensure an unambigu-
ous definition of the entity set (yE ), class assignment
(yCL), and context assignment (yCON) of q0. This re-
quirement has to be considered for each specific EL
model based on its particular state members. The last
clause yMC is mandatory, since it ensures that model
constraints are satisfied in each follow-up state. In
case of SELX, it is defined as

yMC ::= q0 j= tUR^q0 j= tRT

while q0 j= tUR ^ q0 j= tRT must also hold for every
correct SELX model instance.

For brevity, we will omit any of these clauses
when writing command definitions iff the respective
state component in q and q0 is equal. yMC will be
generally considered implicit due to its mandatory na-
ture.

5.3 Specifying SELX Commands
As an input to the state machine that triggers state
transitions and output (access decisions), commands
are the interface between a formalized security policy
and a formalized analysis goal. As in most complex
security architectures, security-relevant commands in
an SELinux system may be modeled on at least two
different levels of abstraction (see Fig. 2): (I) at PEP
level, i.e. based on the access handling logic in the
SELinux security module; (II) at API level, thus cov-
ering the rich and complex semantics of all API calls.2

2In practice, there is another choice to make here: ei-
ther modeling library wrapper functions only, or including
the syscall interface of the Linux kernel. Again, the deci-
sion depends on whether our respective analysis scenario
includes applications that directly use syscalls. We will not
further go into detail on when to prefer which degree of de-
tail, and assume in the following that both are modeled.
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Figure 2: Semantical levels for modeling commands.

Both semantical levels may be used depending
on a particular analysis scenario: If a security engi-
neer has the goal to verify a given policy based on
the behavior of the security server, she will opt for
Level I (in practice, this may be relevant e.g. if an
attacker model includes control flow or code manipu-
lation in a user process’ address space). On the other
hand, if the focus is on OS behavior from a user space
perspective—considering kernel implementation as a
black box—Level II commands have to be specified,
accepting the more comprehensive and detailed de-
gree of security-relevant interaction that is capsuled in
an SELinux API call. In practice, given the huge flex-
ibility of the Linux kernel with respect to differing li-
brary wrappers, kernel features and architectures, API
implementations may vary in any case—thus yielding
different command specifications in the model.

Moreover, complexity of the state transition func-
tion that results from command specification is an-
other important point in question. As previous work
on model analysis has shown (Harrison et al., 1976;
Sandhu, 1992; Stoller et al., 2011; Amthor et al.,
2013), most approaches stand or fall with a certain de-
gree of complexity. Thus, a clean separation of Level
I and Level II commands serves two goals:

I. Keep command specifications as small and uni-
form as possible, even across different SELinux
implementations, to support dynamic model
analysis.

II. Enable flexible specification of tailored,
implementation-specific model dynamics that
expose a high-level interface for security
analyses on application level.

Since Level II commands have to partially in-

clude the semantics of Level I commands, a two-
step approach for modeling dynamics in SELX seems
promising: We first specify a small number of com-
mands on Level I (Sec. 5.3.1), that are general enough
to be used for every SELinux implementation. We
then define a pattern for specifying commands on
Level II (Sec. 5.3.2), that leverages the previous spec-
ifications and may thus be disassembled into Level I
commands.

5.3.1 Basic Commands

Level I commands, which we call basic commands,
are access, create, remove, and relabel. They are de-
fined as follows.

access specifies the semantics of any access
decision. It does not model any state transitions and
thus impacts only the automaton’s output (l). Any
access by a process e to an entity e0 that requires
permission p is defined as
I access(e;e0; p) ::=

PRE: fe;e0g � Eq
^ clq(e) = process
^ clq(e0) = c0

^ conq(e) = hu;r; ti
^ conq(e0) = hu0;r0; t 0i
^ p 2 allow(t; t 0;c0) ;

POST: >

create specifies how a new entity is created in the
protection system. In SELX, this entity may represent
a resource such as a file, directory, or a socket, but
also a process. Any creation of an entity e0 of class c0

with parent entity3 e is defined as
I create(e;e0;c0) ::=

PRE: e 2 Eq
^ e0 2 E nEq
^ c0 2C
^ conq(e) = hu;r; ti ;

POST: Eq0 = Eq[fe0g
^ clq0 = clq[e0 7! c0]
^ conq0 = conq[e0 7! hu;r; ti]

Corresponding to create, remove specifies remov-
ing an entity e from the system:
I remove(e) ::=

PRE: e 2 Eq ;
POST: Eq0 = Eq nfeg

^ clq0 = clq �Eq0

^ conq0 = conq �Eq0

3SELinux uses the term “parent entity” to generalize the
concept of label inheritance: whenever a process is created,
e is its parent process; whenever a file or directory is cre-
ated, it is the respective parent directory.
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In an EL model, assigning new permissions to
entities is done through labels. For SELX, a last
basic command is needed that describes relabeling
processes with a new security context. In SELinux,
such process transitions occur on the execution of
an “entrypoint” program. Changing the security
context of a process e to a role r0 and a type t 0 via an
entrypoint program file f is defined as
I relabel(e; f ;r0; t 0) ::=

PRE: e 2 Eq
^ clq(e) = process
^ conq(e) = hu;r; ti
^ conq( f ) = huf ;rf ; tf i
^ r 7!r r0

^ t
tf7�!t t 0 ;

POST: conq0 = conq[e 7! hu;r0; t 0i]

Note that, from an abstract view, this collection of
basic commands expresses operations fundamental to
every EL model—even though their particular PRE
and POST terms have been tailored to SELinux poli-
cies. This is another example for our basic assump-
tion towards the generality of the EL model family,
and how it can be leveraged to enhance the model-
based engineering idea in the OS domain.

5.3.2 Composed Commands

Based on the specifications of basic commands, we
can now give a design pattern for such commands that
model a specific system’s API. For this purpose, we
compose such Level II commands by using the com-
position operator � : S�S[feg ! S, which is de-
fined as follows:

hc1;xc1i � e ::= hc1;xc1i
hc1;xc1i � hc2;xc2i ::= hc12;xc1xc2i

where xc1xc2 2 SX is a concatenated parameter
sequence and c12 2 SC is a composed command
defined as
I c12(xc1xc2) ::=

PRE: PRE(c1)^PRE(c2) ;
POST: POST(c1)^POST(c2)

We can then model any interface to the SELinux
security policy by the resulting composed commands.
As an example, an execve() call may be composed as
follows:
. execve(caller, exec file, exec dir, post r, post t) ::=

access(caller, exec dir, search)
� access(caller, exec file, execute)
� access(caller, exec file, read)
� access(caller, exec file, open)
� access(caller, exec file, getattr)
� relabel(caller, exec file, post r, post t)

where caller 2Eq is the calling process, exec file2Eq

is the program file to execute, exec dir 2 Eq is the
directory of the program file, post r is the role that
should be assumed by caller after execution, and
post t is the type that should be assumed by caller
after execution.

Note that using composed commands, access con-
trol semantics of different granularity can be mod-
eled: since basic commands cover all relevant behav-
ior of the security policy, they can be composed on
API level (outlined above), but as well on bare syscall
level or even on level of a particular middleware in-
terface.

6 MODEL INSTANTIATION

The goal of this section is to demonstrate how to ex-
tract model components from a real-world SELinux
system. Note that this is only one of two possible
model analysis use cases in practice: the other one
focuses on designing an SELinux-based AC system
from scratch, including API design and the policy it-
self. The practical process however can be considered
symmetrical to the one outlined in the following.

As discussed in Sec. 4.1, there are generally three
specialized definitions required to tailor a core-based
model to a particular AC system: the automaton’s
state space (Q), model extensions (EXT), and model
dynamics (d and l). In the following, we present our
methods to perform each of these three steps in prac-
tice. We used a Linux 3.19 kernel in a Debian distri-
bution with SELinux enabled; for most of the follow-
ing steps, tools of our model engineering workbench
WorSE (Amthor et al., 2014) have been used.

6.1 State Space

A protection state in SELX consists of an entity set
and label assignments. Entities in SELinux are pro-
cesses, whose labels are stored in the attr names-
pace of the /proc file system, and files representing
OS objects, whose labels are stored in extended file
system attributes.

Consequently, a protection state can be extracted
from an SELinux system by parsing the whole file
system. In practice, we build on our previous work
described in Amthor et al. (2011) and Amthor et al.
(2014, p. 49): a file system crawler, originally in-
tended for extracting ACLs from inodes, was slightly
modified to recursively scan through a file system and
extract each inode number i along with its associ-
ated file type ft and the associated SELinux security
context sec using stat. These information are then
compiled to form the initial state of the model, where

SECRYPT�2015�-�International�Conference�on�Security�and�Cryptography

96



i 2 Eq0 ;clq0(i) = ft;conq0(i) = sec.4 For processes,
the directories /proc/pid/attr are scanned with a
similar result.

Further information about more technical ques-
tions such as snapshot consistency can be found in
the aforementioned papers.

6.2 Model Extensions

The static model extensions in SELX consist of autho-
rization and relabeling rules, which are equivalent to
particular rule types in the SELinux security policy,
and label sets these rules are based on. Model con-
straints regarding user-/role-/type-compatibility cor-
respond to another type of policy rules.

To extract model extensions, we have modified the
policy compiler sepol2hru from Amthor et al. (2011).
It parses policy source files in plain syntax, i.e. af-
ter expanding auxiliary m4-macros, and produces an
XML-based specification for the components of EXT.
For evaluation purposes, we have applied it on a ba-
sic, non-MLS configuration of the reference policy by
Tresys Technology (PeBenito et al., 2006).

The modified compiler is designed to isomorphi-
cally map statements in the SELinux policy language
to definitions of the EXT components as follows:

Elements of C;P;U;R and T are explicitly de-
clared through the statements class, common, user,
role, and type.

allow is defined by assembling all TE-allow-
statements as described in Sec. 5.1. We do not take
into account the neverallow rule of the policy lan-
guage, since it acts similar to an assertion tested by
the policy compiler, but not reflected in any way in the
resulting binary policy that steers the security server.

UR and RT are defined by assembling all user-
and role-statements as described in Sec. 5.1.
7!r is defined by assembling all role-allow-

statements. For each parsed rule i > 0 of the form
allow f r0 : : :rn g f r00 : : :r

0
m g, 7!r is extended iter-

atively as follows:

� 7!0
r= /0

� 7!i+1
r = 7!i

r [fr0 : : :rng�fr00 : : :r0mg
The result is 7!r= 7!n

r , where n denotes the total num-
ber of parsed role transition rules.
7!t is defined by assembling all TE-allow-

statements for one of the three permissions
transition, entrypoint, and execute no trans
(we investigated their respective semantics in
Sec. 3.2). Depending on which permission p is
assigned to a key ht1; t2;ci by a parsed rule i > 0,

4Technically, there is another, isomorphic mapping of
file types to object classes that yields clq0(i) based on ft.

7!t is extended iteratively using the transition graph
union operator t as follows:

� 7!0
t = /0

� p = transition^ c = process
) 7!i+1

t = 7!i
t tht1;e; t2i

� p = entrypoint^ c = file
) 7!i+1

t = 7!i
t the; t2; t1i

� p = execute no trans^ c = file
) 7!i+1

t = 7!i
t tht1; t2; t1i

where t : 2T 3 �T 3 ! 2T 3
is defined as in Def. 4 on

page 11. The result is 7!t = 7!m
t , where m denotes the

total number of parsed type transition rules.

6.3 Model Dynamics

The dynamic behavior of the SELinux AC system is
based on the implementation of both the SELinux
security module and library wrappers of API calls.
While the combination of both leads to the definition
of composed commands, basic commands solely de-
pend on the PDP logic and thus stick to their funda-
mental semantics, independent from an actual AC in-
terface. As already discussed in Sec. 5.3, we consider
this one of their essential merits.

In contrast to the other model components, ex-
tracting the definitions of composed commands is a
task that cannot be automated. It requires insight into
the implementation behind the desired interface, in
our case both of the kernel and any wrapper func-
tions. We have restricted to a subset of common
syscalls in this study, such as fork(), execve(), read()
etc. Once LSM hooks involved in a syscall have been
identified, such as security file permission()
in the example of read() in Sec. 3.1, specifying a
composed command usually boils down to tracking
subsequent calls of the avc has perm()-function in
the SELinux security module. These give informa-
tion about which parameters for the access basic
command are needed. Moreover, protection-state-
changing system calls such as fork() or execve() in-
clude more logic such as for relabeling or entity cre-
ation, and thus require the corresponding basic com-
mands. An example of this was shown in Sec. 5.3.2.

Note that, when specifying composed commands,
we are not interested in mere information retrieval
concerning entity names and contexts, default type
transitions and the like (which is why we did not con-
sider the latter in the execve composed command). In-
stead, our goal is to model AC-related logic as pre-
cisely as possible, while any additional management
logic for protection state data is deliberately excluded.
This supports a clean separation of security model and
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Atha1;a2;a3i=

8<: A[ fha1;a02;a3i j he;a02;a3i 2 Ag[fha1;e;a3ig; a2 = e

A[ fha01;a2;a3i j ha01;e;a3i 2 Ag[fhe;a2;a3ig; a1 = e

A[ fha1;a2;a3ig e =2 fa1;a2;a3g
(4)

analysis scenario, that may provide any of this infor-
mation through the model’s formal interface (i.e. via
command parameters).

6.4 Result

Using the techniques described in this section, our
method yields a machine-readable specification of
a formal SELX model in ELM, an XML-based EL
model format, which can be parsed by model anal-
ysis and verification tools such as WorSE (cf. Amthor
et al., 2014, Sec. 4).

To get a better understanding of model complex-
ity and scalability in real-world scenarios, we are
currently conducting studies on different SELinux-
based setups whose evaluation with respect to dif-
ferent analysis goals will be subject to future work.
As a quantitative example, a real policy of one of our
group’s web servers included 2,847 types, 22 roles, 18
users, 4,330 relabeling rules, and 130,912 authoriza-
tion rules. The corresponding protection state consists
of approx. 390,000 entities, each with their associated
security context labels.

7 CONCLUSIONS

In this paper, we addressed the problem of creating
a uniform yet flexible access control model for oper-
ating system security policies. We aimed at comple-
menting the core-based model engineering approach
with an abstract, label-based modeling pattern that
helps in tailoring the automaton’s components to an
OS AC system.

After discussing essential properties of a typical
policy for the SELinux OS, we have presented the de-
sign of a formal policy model for this OS based on
core-based entity labeling pattern. We have substanti-
ated its feasibility by demonstrating a model instanti-
ation method for the analysis of a real-world system.
This provides the basis for a tool-based formal analy-
sis of SELinux-style security policies.

Regarding the costs of model engineering in this
case study, we made two major observations: First,
tailoring the core-based pattern to the SELinux AC
system was streamlined considerably by using the
ready-made abstract categories of the EL pattern. We
thus argue that, based on these categories, other OS
security policies can be formalized in a very similar

manner. Second, instantiating the model for a real-
world system essentially required manual effort for
formalizing commands. Here, a two-stage pattern
consisting of basic commands and composed com-
mands helps to reduce modeling complexity; again,
we argue for this approach to be adaptable to other
policy-controlled OSs.

Major ongoing work includes (1) an adaption of
formal analysis methods for standard security proper-
ties based on state reachability, (2) generalization and
evaluation of our framework based on a large family
of OS policies, and (3) a pattern-based formal proof
of model-to-policy isomorphism.
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