
Non-consent Data Retrieval While using Web or Email Services

Jose Martinez Rivera, Luis Medina Ramos and Amir H. Chinaei
Department of Electrical and Computer Engineering, Univeristy of Puerto Rico,

Call Box 9000, Mayagüez, Puerto Rico, 00681, U.S.A.

Keywords: Security, Privacy, Web Server, Email, HTML, JavaScript.

Abstract: User’s private data might be secretly retrieved for or against them every time they browse the web or use
email services. This study addresses how these services could secretly retrieve such data. While users may
appreciate these techniques as a means of protecting them from hacking, fraud, etc., they may have some
privacy concerns against them. We have implemented two approaches to demonstrate how such data
retrievals help web and email services to properly identify a user. We have also conducted extensive
experiments to measure the success rates of our approaches. Results show 86.217% successful identification
for web services and 81.1% successful identification of emails that were attempted to be sent anonymously.

1 INTRODUCTION

With the recent increase of social mediums across
the internet, maintaining one’s personal information
private has been getting more difficult. Just as
criminals can steal your identity with some
information as simple as your street address or
through simple phishing websites, they can use
information posted by users on the internet. With the
advent of the internet and social networks, people
have been more alert of the material they upload to
the internet, in hopes of staying safe from such
attackers. As end-users upgrade their defenses,
hackers upgrade their methods, using social
engineering, email spoofing, phishing, etc.

Even with the popular countermeasures that
email services provide, such as removing scripting
from HTML code and disallowing the embedding of
interactive media, adversaries can get someone’s
information just by having users visit a website or
through other legitimate services such as email
tracking.

In this research, we focus on studying and
developing methods of identifying users through
both email and web browsing services, trying to
secretly retrieve information about the user directly
from reading an email or visiting a webpage. User
identification can be a useful tool, especially when
settling disputes or trying to identify a user
wrongfully accessing a network, for example. The
knowledge that comes from knowing if an email was

opened—and if so where, when and how—can aid
greatly in an investigation. In this research, we
propose a novel approach for this purpose. Deterring
possible scams can also be carried out within our
second contribution in this research. Discussions on
the limitations of each approach can definitely
inspire end-users by providing guidelines to protect
their privacy.

2 RELATED WORKS

There are many research projects in the areas of
handling spam and phishing emails, along with
protocol proposals and proofs (Abadi and Blanchet,
2005). Among many approaches, HTML and
JavaScript are known as good means to extract
information from computer devices. Sanchez et al.
defined a mechanism to battle against spam emails
(Sanchez et al., 2011). They have proposed a
“support vector machine” that separates end-user
devices from legitimate mail servers, using a set of
machine features that cannot be easily manipulated
by spammers. End-user devices often send particular
information within their messages. In particular,
viewing protocols and certain keywords in their
address help identify end-user devices from mail
servers. With this technique, one can establish which
emails would likely be part of a spam botnet be no
matter if the phishing email is submitted by a hacker
mail server or by a contaminated end-user device.

316 Martinez Rivera J., Medina Ramos L. and Chinaei A..
Non-consent Data Retrieval While using Web or Email Services.
DOI: 10.5220/0005549703160325
In Proceedings of 4th International Conference on Data Management Technologies and Applications (DATA-2015), pages 316-325
ISBN: 978-989-758-103-8
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)

Furthermore, in a follow up work, Sanchez and
Duan have introduced a sender-centric approach to
identify phishing emails by using headers (Sanchez
and Duan, 2012). The email headers use properties,
such as the “From”, “Reply-To” and “Return Path”
fields, by which one can properly filter phishing
emails with a success rate of 98.7%.

Abadi and Blanchet have designed a protocol to
help secure email sending by adding a form of
validation to each message sent (Abadi and
Blanchet, 2005). Their approach is as follows: an
email message will not be accessible to the receiver
unless a receipt automatically sent back from the
receiver to the sender is read by the sender. This
provides identity verification because in the case that
an email was spoofed, the one who receives the
receipt is the alleged sender and not the spoofer.
Hence, the legitimate senders can protect receivers
from malicious emails. It is worth noting that the
legitimate sender needs some form of protection,
since the spoofer may mimic how the message is
sent in its entirety. A parity check may prove useful.

Other similar approaches are presented in
(Ateniese and Nita-Rotaru, 2002) and (Abadi et al.,
2002), where the receiver sends a receipt, but it does
not need to be read by the sender because of a
trusted entity acting as a middleman in the case of a
dispute. The trusted third party (TTP) verifies that
both sender and receiver act accordingly, with the
receipt only being read in case of a dispute between
the two. The latter work uses a TTP that strictly
verifies if the receipt is sent and read, and only if
both are processed, then it is authenticated. Both
methods require additional software to be installed
in the end-user’s device. A proxy is the most likely
choice, instead of, e.g., a plug-in. Such proxies offer
additional properties, such as increased privacy and
spam filtering.

In (Eckersley, 2010), Eckersley proposes and
implements a service that can identify the
uniqueness of a certain computer. This work details
how browser fingerprinting works and how the
service can track subsequent visits, up to a 99.1%
chance of identifying that unique browser.
Eckersley’s work is more concerned with measuring
uniqueness, while our work emphasizes on how we
can use a computer’s uniqueness to identify the user.
Also, Eckersley’s method of obtaining data to
compute uniqueness is majorly based off the
information in the browser’s cookies, while our
study tries to identify variables outside of the
browser environment.

The authors in (Louw et al., 2007) show some
malware installed as browser plugins (or browser

extensions). They assumed positions of malware
writers and managed to write an extension called
“Browser Spy” for Firefox. This browser extension
takes complete control of a user’s browser space and
can observe all the activity performed through the
browser while being undetectable. They have
developed two mechanisms: one validates the
installation integrity of extensions at load-time, the
other is an infrastructure for runtime monitoring and
policy enforcement to prevent attacks on a browser’s
core integrity and protect data confidentiality.

3 TERMINOLOGY

This section reviews key terms used in this paper
that although are common in computer science and
engineering, some readers may not be familiar with.
The internet protocol (IP) address and media access
control (MAC) address can aid in the identification
of a user. The IP address can refer to either a local IP
address or to an internet service provider (ISP)
assigned address. The local IP address can reveal
where in a local area network the user is, while the
public IP address is unique to the whole internet. On
common households, the local IP address is not
useful or important for identifying users since no
computer is geographically too far from the router.
In a professional environment, such as a university
or workplace, the local IP address has been proved
to be useful, since we can look up a computer on a
dynamic host configuration protocol (DHCP) table
and uniquely identify a specific user. Since the IP
address is the same for the whole network, we can
use the port number to identify the computer,
assuming we have access to the router and some
type of connection logs.

The local IP address is commonly referred to as
the private IP, while the ISP assigned address is
referred to as the public IP. There are currently two
versions of IP’s, version four and version six.
Version four was the first version of the internet
protocol deployed; it was followed by version six
due to IPv4 address exhaustion. Computers and
routers use network address translation (NAT) to
produce the address most people recognize from its
octet form. This process alters the IP header and
appends the transformed address, while most often,
leaving the rest of the packet untouched.

The MAC address is also used in networking and
is recognized as a great identifier. This address is
usually more difficult to acquire, since it is tied to
the hardware of the computer, more specifically on a
network interface card or read-only memory.

Non-consent�Data�Retrieval�While�using�Web�or�Email�Services

317

However, one still can spoof the MAC address by
tricking the operating system of the computer to
believe that the network interface card has another
address. This method of spoofing is not foolproof,
since the scope of the spoofing is limited to a local
network and its extensions. Ideally, the MAC
address is what is needed to be 100% of the
uniqueness of a computer.

4 METHODOLOGY

In this section, we describe two approaches by
which one can uniquely identify a user by secretly
collecting some data from their computer and
compare it against a database. One is an email-based
approach and the other is web-based. In the former,
we study the structure of an email and protocols
commonly associated with them to uniquely identify
the sender of an anonymously sent email. In the
latter, we study what (private) data a webpage can
extract from a visiting user’s computer to uniquely
identify who is the user or to verify if a user is who
they claim they are. In both approaches, we address
the limitations too.

Note that in the case that we do not have the
user’s email activity readily available, we can inject
the web based approach in order to compare users,
as described in the following sections.

4.1 Data Retrieval through Emails

Our first part of the study revolved around
identifying the information that could be obtained
through an email. The ultimate goal was to study the
possibilities of retrieving the receiver’s information,
without consent. To identify a single individual, the
information we looked to obtain included the media
access control (MAC) address, its internet protocol
(IP) addresses and other hardware specific
information, such as the amount of RAM memory
the computer has available, etc.

This is challenging because of the limitations
imposed by email structure. One is able to embed
HTML code inside an email, but most popular email
services, if not all, filter any HTML email that could
contain malicious code. Specifically and most
importantly, the script tag is disabled. This filter
does not permit any user to execute code on another
computer through email, while other formatting
tools available in HTML are left untouched.
JavaScript is our primary way of obtaining
information about the receiver, or at least displaying
it, and is not available in emails.

One particular approach that seemed to bypass
the removal of script tags was the use of Email
Tracking Services. The user uses these services to
send an email to a specific person (receiver) and
track whether the email has been opened or not.
Other than tracking the email, the sender is able to
view the geographical position of the receiver, its IP
address, its operating system, its web browser, the
exact time the email opened and how long the
receiver had it open. Some of these services work by
executing a script when an image (jpg, gif and
png formats)—that is hosted by the service
provider—is loaded on the webpage or email
content. It is a clever approach to remove the script
tags, which many email services do provide, but
since it is an image, most email servers give the user
(receiver) the option to display the image or not. If it
is displayed, the script starts running; otherwise, it
simply does not run any code.

Another similar technique is to send an invisible
image along with the email message to a user of
choice. The image is hosted on our own server, and
when it is accessed, our server collects the
information about the user. Other information, such
as the date and time that the receiver has received
the email and whether or not the user actually read
the email, can be collected too. Furthermore, emails
that have not been read can be deleted after a
specified time. Notice that not all email services
allow the embedding of images inside an email.
Some warn the receiver that the email contents
require being loaded, as safety precautions. This
defeats the purpose of the above-mentioned service,
where we do not necessarily want the receiver to
know about the security exploit.

Taking advantage of email servers by finding
security exploits could provide the solution, but this
requires careful study of the server’s architecture
and may bring up legal ramifications. From this
study though, we can probably infer ways to
countering attacks of this manner by establishing
different security protocols.

We have also embedded Java applets in the
HTML code of webpages as well as embedding it in
emails, with similar results. Although
JavaScript does not offer many tools to aid in
information retrieval, certainly general-purpose
languages (e.g. Java) provide more freedom as to
what information one could obtain from the user.
This is still a challenging task as Java, similar to
JavaScript, fails in providing the IP address
assigned by an internet service provider (ISP) and
only provides the local IP address. The local IP
address is not very helpful in identifying a user,

DATA�2015�-�4th�International�Conference�on�Data�Management�Technologies�and�Applications

318

because the port number can vary within the same
computer, depending on the computer’s network
adapter and the connected router’s configurations.
To obtain the public IP address, one would need to
use a more online-centered language, such as PHP.

In this research, we also found an issue on
sandboxing as a security measure in modern web
browsers and email services. The sandbox provides
an isolated space for the execution of unknown code,
so that it may not tamper with what the system
deems inappropriate. This means that our approach
would not yield results if our code was entirely
sandboxed, meaning no information can be obtained
from the user’s computer. However, the fact that
the user has gone to great lengths to protect their
identity may, in fact, identify them if we use a
process of elimination, taking into account the
security measures other users have taken in
comparison to that of the victim. In Sections 5 and 6,
we detail how we use this approach to identify a sole
individual from a group of users.

4.2 Data Retrieval through Web
Browsing

The second approach is to exploit web browsing
towards user’s data retrieval. With JavaScript
on a web browser, information such as the brand of
the web browser, the operating system, can be
obtained. The user’s public IP address can be
obtained from the server connection when the user
accesses the webpage. The combination of this
information helps to identify the user. When the user
is part of a local area network (LAN), multiple users
may have the same IP address with different port
numbers. Singling out a user from a pool of dozens
or hundreds of other users, with common qualities,
is challenging yet possible.

The above problem can be solved if the target is
not sharing the computer, and only sharing the LAN.
The idea is to isolate its machine by verifying other
information such as browser information, installed
plug-ins, etc. Our method also utilizes the geo-
location function present in HTML5, used to
successfully locate the user, as long a proxy is not
being used and consent is given. Currently, most
popular web browsers enable the geo-location
function, as long as it is with the user’s consent.
Internet Explorer, Firefox, Chrome, Safari and
Opera all enable the function. This is not restricted
to desktop computers. On mobile devices, such as
tablets and smartphones, the geo-location function
uses the GPS coordinates to pinpoint the exact user’s
location, down to latitude and longitude.

Furthermore, the geo-location function uses online
maps, such as Google Maps, to display a map of the
surrounding area, along with a marker in the center
indicating the user’s location.

By using the webpage approach, we can
comfortably record webpage visits in a database and
filter them as such. In Sections 5 and 6, we detail
how we use this approach to identify a sole
individual from a group of users.

5 IMPLEMENTATION

Requiring a web server to run tests, we implemented
a Node.js server where we could host the
necessary HTML and JavaScript code to
properly obtain user information. The following two
sections describe these approaches.

5.1 Email-based Approach

Using the email’s capability to have an embedded
HTML code, we constructed a basic message, with
the intent of observing its limitations. As expected
and described in Section 4.1, images and hyperlinks
respond without any issue. We also embedded a
JavaScript code to verify if any basic functions
can be called. As scripts are blocked, no command
can run from inside the JavaScript code.
Furthermore, we embedded Java codes inside the
HTML code. In particular, we have developed an
applet by which we extract the user’s IP address as
well as the MAC address. Because the MAC address
is unique, it is significantly important towards
identifying a specific device. The applet uses the
InetAddress and NetworkInterfaces
packages. In particular, we invoke the method
getHardwareAddress() on an object
NetworkInterface to get the MAC address.
This method returns a byte array and requires some
formatting to properly read it. We also obtain the IP
address by using the getHostAddress()
method. This method returns an IP address assigned
to a network interface, but only one if there are
many. Notice that this method does not always
prove to be useful since it only displays the local IP
address of the network interface. Yet, if it were to
host the applet on the internet, the private IP address
would be of more interest.

When the applet runs, it returns the local IP
address and the MAC address of the device as long
as Java is installed on the computer. The problem is
that one cannot run Java applets from emails, just

Non-consent�Data�Retrieval�While�using�Web�or�Email�Services

319

similar to JavaScript codes. Furthermore, we
tested opening the Java applet in an HTML file and
achieved the same result, because of the
aforementioned sandboxing limitations (Section
4.2). Yet, server-based web services where the
message contains only HTML code can still be
exploited towards this goal. In particular, once the
connection is opened, for instance along with the
image, the server obtains information—such as the
IP address—and uses the time the connection
remains open as an indicator of whether or not the
message is read. Obviously, the latter cannot
evidently prove whether the user has read the
message too or has just opened it without reading it.

5.2 Web-based Approach

In contrast to the email-based approach, the web-
based approach is more promising towards
information retrieval since we are not restricted to
limited services. One can freely host any code on a
server, with the only restrictions being the ones
imposed by web browsers, especially sandbox-based
browsers. Since JavaScript has proved useful in
a web environment, we have implemented a
Node.js server. The server is entirely written in
JavaScript, as can host pages be. Once the user
opens the webpage, the script embedded in the
HTML code of the page extracts information about
the user and the device and sends it to the server
where it is saved for further use.

This approach extracts information such as type
of the operating system, IP address, web browser
and its version, plugins installed and a geological
map should the user accept for their location to be
sent. The MAC address can be obtained too, but it
would require prompts for the user to accept and
may reveal the server’s intentions.

5.3 The Web Server

Following the web-based approach, we setup a
Node.js server with MongoDB as our database.
Since we receive unstructured data since browser
components vary between browsers, storing the data
in a MongoDB database seemed ideal. The core files
in the web server are app.js and getInfo.js.
Other systems include the Node.js software
package and modules such as: Express for a
flexible web application framework, Jade
format/template for HTML files, Socket.io to
open a web socket between the user and the server,
Forever to continuously run the server and

mongojs to interface between MongoDB database
and our Node.js server. The app.js script
contains the code that represents and runs the
hypertext transfer protocol (HTTP) server. Its main
function is to retrieve the data from the user who
accesses the website and to store the information in
the server’s database. A secondary function is to
match the visiting user’s data to previous records to
check if it matches. If it does, we can identify the
user after multiple visits at different time spans.

The Node.js software provides a lightweight
alternative to other server models, perfect for short-
term experiments as the one carried out in this study.
One drawback of this software is that a session must
stay open by a secure shell client so that the server
can run. To circumvent this, we can use server
scripts as a daemon to keep the software running.
We use Forever, a command line interface, which
is able to run a script for an indefinite amount of
time. The script will stop when we run the command
“stop”, connection is lost, or server crashes. Yet,
Forever ensures that if the script is terminated
prematurely, it will execute again.

The other core file, getInfo.js, runs on the
client-side and retrieves as much information from
the browser and the operating system of the visiting
user. Among the obtained information are the web
browser that the user used to access the webpage,
along with the language that is being used, type of
operating system the machine is using (e.g.
Windows, Mac, Linux, etc.), information about the
plugins that the web browser has installed and the IP
address and port number the user is connected to.

The IP address can properly identify a user that
is not behind a proxy. However, solely by the IP
address, we may not identify an individual who is
part of a LAN. We often can filter out users by using
their operating system, browser and plugins.
Therefore, we can single out a specific computer
from a network. The rationale of using plugins is
that users tend to visit various websites regularly,
and most likely downloads applications that make
browsing easier and more efficient. This action is
almost unique, meaning each user can have a
collection of diverse plugins that almost no other
user has. Hence, plugins act as quasi-identifiers.

Furthermore, we can often infer behavioral
information about the user. In particular, we can
identify an individual if they access the page
repeatedly. This approach along with other
information, such as the IP addresses and browser
information can uniquely identify most users with a
very high success rate. The implementation of the
server and client-side script also includes generating

DATA�2015�-�4th�International�Conference�on�Data�Management�Technologies�and�Applications

320

unique keys that are used for experiments and
testing our approach.

6 EXPERIMENTS

6.1 Overview

To prove that our webpage approach works, we
conducted a series of tests. To conduct even more
stressed tests, we called for experiment participants
throughout our department students. Notice that
when participants are from a smaller community
with a lot of similarities, it is harder to identify them
compare to a case that participants are diverse.
Furthermore, to have participants confident about
the research intentions, we ensured that no
information that may harm them if handled wrong
was going to be obtained. In particular, Table 1
illustrates types of information we retrieved. We
recorded the application version of the web browser,
the default language setting of the user, the type and
version of the operating system, the IP address, port
number, time of access and the plugins the user has
installed. If the user accepts the prompt that appears
when the webpage is first visited, we can also obtain
the user’s coordinate (latitude and longitude). The
database stores all this information along with the
unique key that is generated, the date and the time
the webpage is visited.

A total of 110 participants completed our various
experiments, providing a small scale, but useful,
preliminary result of the study. Since the population
is limited, the numerical results present some
deviations. We split the experiments in two, to study
each approach independently and also to monitor
users’ behavior in each approach separately. It is
important to note that when the population is
restricted to a smaller community (such as students
of a department) in which subjects are more likely to
present similar devices, it is in fact harder to
uniquely identify them correctly.

We sort the information based on which keys
have the same IP address, and similar plugins if
needed. Then, a list of pseudo-distinct devices is
generated based on the information gathered by the
server, accompanied with a list of keys that match
that same specification. The importance of this
approach is that the sort is actually blind, meaning
we have no external knowledge on the users who
visited the target webpage.

Table 1: Device Information Retrieved.

Parameter Information

App Version
Contains the user’s browser version
and type (Firefox, Internet Explorer,
etc.)

Operating System
The device’s operating system, e.g.:
Mac OSX, Linux

Plugins Plugin components of the browser

Browser Language
User set browser language: English
(en-us), Spanish (es-us), etc.

IP Address
The IP Address of the time of
connection

Geolocation
(Optional) – User’s location
coordinates.

Date and Time
The date and time the user accessed
the webpage.

The results of the experiments serve to address
two main concerns. One is whether we can identify
and separate individual users based only on the
information of their pseudo-distinct devices. The
answer is, with a high success rate, “yes”. To
confirm it, after the experiments were done, we
manually compared the actual users against gathered
information. Also, the users were asked to send their
information anonymously. We then use the
information the server generates, the date and time,
to infer behavioral information about the user. In
particular, via email, the users were asked to confirm
their participation in the test: every day, they
received an email from us prompting them to visit
our target webpage and report us latest information
they see there. On some occasions, some participants
did not visit the page, for any reasons they had,
although the majority of them continued visiting the
page every time they were prompted to. Also, some
users may skip visiting the webpage, in which case,
they just send their previous unique keys. This added
a layer of realistic behavior, since users are not
obligated to check their email every day or to visit
every page they are asked to. Consequently, the
results are skewed because the users’ behavior is not
controllable. For the experiments, we focus more on
desktops and laptops as pseudo-distinct devices, as
the following section covers.

Non-consent�Data�Retrieval�While�using�Web�or�Email�Services

321

6.2 Pseudo-distinct Device

We define the devices found on the database as
pseudo-distinct, since it is not certain that an entry is
a single individual computer. Participants of our
experiment are students of our department. They
would have access to the supplied university
network, and as such, any computer that connects to
our webpage will be assigned the private IP address,
which corresponds to that of the university. Adding
to this, students are provided access to various
laboratories, where most computers have the same
specifications and the department provides accounts.
Such computers are not private, so students tend to
not install as much software as they would on their
own personal computers. Also, students have limited
space on which they can download and install
software. As one can guess, these conditions would
put our identifying algorithms under a lot of stress.

On the other hand, pseudo-distinct devices share
operating systems, IP addresses and plugins are not
limited to laboratory computers. Our webpage can
also identify whether the user connected through a
smart phone or tablets. If the user connects through
their service provider, i.e. a cellular phone company,
then we can say that their device is more distinct
than other devices. Users can also connect through
the wireless network. This can show up as a single
device due to how the database sorts the keys.

These devices are sure to have various keys
associated to them, making it difficult to identify a
single user. If access to connection logs were
available for this study, we can then compare those
to the time and keys provided by the database to
properly single out an individual. Not only would we
have specific information about the computer used
to connect to the webpage, but specific information
about the user, if institution complies.

6.3 User Identification Test

The first part of the experiment consists of
identifying unknown users based on information
gathered from their devices. We prompted the
participants to visit our target webpage for six days
whenever they can. Every time, a user visits the
webpage, they send back us a key as the information
they received from the page. We stored those keys
and respective participants in a spreadsheet, for
manual verification of the results of our algorithm.
Such information was obviously hidden from the
participants who conducted the experiments, just to
avoid contaminating the study. Every time there is a
new visitor (not necessarily a new user) in the

webpage, their device information is collected and a
unique key is generated. The webpage uses the
collected information in an algorithm to map the
current visitor to one of the previous ones, or to open
a new record in the database if it is the first time that
the visitor (or its device) is browsing the page. Then,
we sort the keys in the database and compare them
with the keys sent by users. To confidently prove
that a computer is an individual entity, we need all
unique keys sent from the same machine to exactly
match with information we collected in each visit.

As users’ activity is recorded during each visit,
we can infer behavioral information about them.
This information can give us an idea as to where the
user lives, when they usually check their email and
what kind of content they view on internet.

6.4 Anonymous Email Test

We also asked participants to create (or use) an
anonymous (or private—if sounds anonymous)
email and communicate with that email without
revealing their real identity. Then, at some point, we
prompted all participants both through their real
email addresses as well as through their anonymous
emails to visit the target webpage. As many users
check their email accounts consequently, we
anticipated receiving two entries in the database not
too distant apart from each other.

We initially gave the entries a grace period of
five minutes; yet, the initial test resulted in an
appropriate gap of six minutes and thirty-four
seconds for our slowest participant. We continued to
repeat this test with all participants (through their
both email addresses); we compared the keys in the
database to those the users sent in. Using keys from
this test in conjunction with the keys from the other
test we were able to verify what anonymous email
account belonged to which actual participants.

Our method provides accurate results when the
user is consistent in using the same device to check
their email, and as such, participants that used a
cellular phone connection or campus internet are
harder to identify. We can also add to this that if the
participants accessed only one of the email accounts
or forgot to check both accounts at almost the same
time, we cannot safely deduce whether the two email
accounts belong to one user. Note that we mainly
used the user’s IP address and access time.

We also took into account the number of devices
each user has connected from, and comparing it to
the number of devices we know belongs to that user.
This yields results similar to the first part of the
experiment. Results indicate that our approach

DATA�2015�-�4th�International�Conference�on�Data�Management�Technologies�and�Applications

322

matched users by 81.1% successes. We assume the
user accessed the webpage from both emails through
the same device. This assumption takes into
consideration users that accessed the website from a
different device each time, used a LAN connection
to carry out the last part of the test, and did not send
every key required for the test.

If the user does not check both emails one after
the other, this method has less reliability. Also, in
this method, time of connection is very useful, in
particular in small populations of suspects. The ideal
case would be for the case of one suspect. If that one
user checks both emails at the same time, we can
identify that user with a very high confidence.

6.5 Results

As mentioned earlier, 110 participants completed
our two types of experiments. Every participant had
access to the campus wireless network. This makes
it harder to uniquely identify a user from another.
Yet, it would be interesting to apply the algorithm to
bigger and more diverse population scattered along a
bigger geographical area. The important question
there would be whether the diversity of users would
cancel out (or at least significantly reduce) the stress
imposed with the big population.

In the seven-day period of the experiments, the
webpage was visited 475 times by non-mobile
devices. This gives an average of 4.32 visits per
user. We found out that 86.17% of the user entries
were unique (in the sense of pseudo-distinct device
components, explained above). Users connected to
the server using 162 pseudo-distinct devices. This
provides an average of 1.5 pseudo-distinct devices
per user. This will probably grow in future as more
computing devices will access the internet.

In the user verification test, 37 out of the 110
participants were selected. Individual users were
recorded to have visited the webpage through their
home computers, campus supplied computers, smart
phones and tablets connected through both the
campus supplied wireless network and their cellular
phone carrier connection. The campus supplied
computers will set up every time the user logs in for
the first time. This means that everything a user
downloads in a specific computer may not be
available to them on another computer. As such, the
plugins the browser uses will not be reliable in
identifying a user across different machines. In this
case, it is better to use the time of connection if we
have access to user logs. If users access the webpage
every time through their personal computer, the
results yielded will be more reliable. We note that

identifying a computer is easy, but for identifying a
user, we will need other parameters such as an email
address, since it is a more personal tool. (Email
verification test proves this).

When a user enters the webpage the algorithm in
the server, matches browser components to previous
entries based on the Operating System, Web
browser, browser language & Plugins. The IP
Address was not directly dependable since user’s IP
Address will change with respect to which location
they’re in. This initial algorithm yielded an 86.17%
successful matching. It would have been a higher
percentage but users tend to update their plugins: for
instance update a Microsoft Word plugin from
version 2010 to 2013. Another added measure to
solve this issue was match with a possible saved IP
Address. For this issue we introduced the algorithm
in Figure 1 to match a user’s sequential visits more
successfully; this could possibly increase the chance
that the user will be correctly matched up to 95.2%
(distinct from other computers that access the page).

Figure 1: Device Sequential Detection Algorithm.

When we reduce the domain and assume the user
will use the same personal computer to access the
webpage (which is usually the case), with the
algorithm in Fig. 1, we can sequentially detect a
user’s machine through their browser with better
accuracy since we track it down by both IP Address
and plugin changes. The 0.80 factor is from the
worst-case scenario is that users change up to three
plugins (updates or downloads) during the period we

Non-consent�Data�Retrieval�While�using�Web�or�Email�Services

323

experimented but other plugins remain intact. For
example, if a user has 13 plugins and they change
two plugins, 11/13 of the plugins will be the same.
This means 84.6% of the plugins are the same before
and after the plugin updates.

The anonymous email test provides a more
useful method of identifying a user; if, for example,
we want to prove whether a suspect is a scammer (or
a spoofer). These results tend to venture more into
behavioral data. Our worst-case scenario uses the
approach taken in the first part of the experiments.
Users were recorded to check their various email
accounts from a myriad number of devices and not
always recorded their unique keys. The email
verification test shows that 81.1% of the machines
were completely matched through email services.

6.6 Behavioral Data

Along with the information that we set out to
retrieve, we obtained also some extremely useful
data concerning how a user acts on the internet. On a
LAN connection, we can use its operating system to
identify someone in a population containing a large
range of different OS’s. This can help us isolate a
group of users to handle issues they may present.
Plugins present very useful information concerning
the user’s browsing habits. Plugins also reflect what
software they have installed on their computers,
making it an extremely useful marketing tool.

From the information we obtained, we can
clearly see uniqueness in the parameters: 333
different plugins, 10 different language settings, 4
different operating systems, 304 different IP
Addresses and 96 different browser app versions.

The plugins contain information about media
players that a device has installed and information
directly related to helping the browsing experience
of certain websites. These websites include popular
social networks, so developers who are interested in
understanding where a user spends most of their
time online can help them target those users, and
either incorporate elements of those social networks
or implement their own version of software that
proves useful to users. Another application is video
game developers as plugins often reflect what games
they play. This can give developers insight on
whether their competition is strong, or whether they
have market dominance.

We have already presented some important
identifying information one can easily obtain form
users browsing the internet, concerning the software
properties. Furthermore, certain programming
languages—such as C++—can obtain information

about what type of hardware, e.g. video card model
and type of the processor, is used. This gives the
developer more useful insight into how they should
build their software, and what kind of usage they can
expect from the user.

7 CONCLUSION

Users’ security and privacy have been important
factors in communication and computer sciences.
This study has shown the limits of what type of data
one can retrieve from a user without their consent
and how useful such data can be towards
identification. We showed that the combination of IP
address, port number, operating system, browser
version, and plugins installed could provide amazing
insight as to what the identity of a particular user is
and how that user behaves on the internet.

As an application, this non-consent information
retrieval can highly identify the sender of an
anonymously sent email. This can be applied to
various users to increase chances of success by
process of elimination.

Our web server implementation was able to
provide the amount of information necessary to
identify someone on the internet. Keeping track of a
user throughout a period of time proves to be
difficult, even though someone uses different
devices connected through different networks. Our
experiments show that we can extract useful
information about that individual through periodic
observations; by recording their online behavior and
the browsers’ components and configurations. We
found that 86.17% of the users were successfully
uniquely identified. In particular, in the case of
verifying whether a suspected user has malicious
intent, we can apply the second part of our
experiment. Through careful observation, we can
infer behavioral data. Although the smaller the
group of suspects is, the more accurate their
information and our matching is, we would suspect
that the diversity of users and machines in bigger
groups would significantly reduce—if not cancelling
it out—the stress imposed by the big population as
future direction of this research.

ACKNOWLEDGEMENTS

We would like to acknowledge the Department of
Electrical and Computer Engineering at the
University of Puerto Rico at Mayagüez for funding

DATA�2015�-�4th�International�Conference�on�Data�Management�Technologies�and�Applications

324

this research.

REFERENCES

M. Abadi and B. Blanchet, 2005, "Computer-Assisted
Verification of a Protocol for Certified Email,"
Science of Computer Programming, pp. 3-27.

F. Sanchez, Z. Duan and Y. Dong, 2011, "Blocking Spam
By Separating End-User Machines from Legitimate
Mail Server Machines," in CEAS, Perth, Australia.

F. Sanchez and Z. Duan, 2012, "A Sender-Centric
Approach to Detecting Phishing Emails," in ASE
International Conference on Cyber Security,
Washington D.C.

G. Ateniese and C. Nita-Rotaru, 2002, "Stateless-
Recipient Certified E-mail System Based on Verifiable
Encryption," Proceedings of The ryptographer's Track
at the RSA Conference on Topics in Cryptology, pp.
182-19.

M. Abadi, N. Glew, B. Horne and B. Pinkas, 2002,
"Certified Email with a Light On-line Trusted Third
Party:," Proceedings of the 11th International
Conference on World Wide Web, pp. 387-395.

P. Eckersley, 2010, "How Unique Is Your Browser?," in
Proceedings of the Privacy Enhancing Technologies
Symposium.

M. Ter Louw, J. Soon Lim and V. N. Venkatakrishnan,
2007, "Extensible Web Browser Security," in 4th
International Conference, DIMVA, Lucerne,
Switzerland, pp. 1-19.

Non-consent�Data�Retrieval�While�using�Web�or�Email�Services

325

