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Abstract: We present an approach to track a point cloud with a 3D camera system with low latency and/or high frame 
rate, based on ground truth provided by a second 3D camera system with higher latency and/or lower frame 
rate. In particular, we employ human tracking based on Kinect cameras and combine it with higher frame-
rate/lower latency of Time-of-Flight (ToF) cameras. We present the system setup, methods used and 
evaluation results showing a very high accuracy in combination with a latency reduction of up to factor 30. 

1 INTRODUCTION 

The interaction of humans and robots in a shared 
workspace is an ongoing field of research. 
Applications cover a wide field from domains where 
robotic technologies have been traditionally 
employed, e.g. industrial scenarios, to relatively new 
fields such as surgical applications. In all domains, 
the safety of the human interacting with the robotic 
system is paramount. For appropriate safety 
considerations as well as for many applications in 
human-robot interaction, humans in the environment 
have to be perceived, e.g. detected and located in 3D 
space. Both the latency of the perception system and 
the frame rate heavily influence the possible 
application scenarios, especially for safety critical 
applications. 

This paper presents an approach for combining a 
fast 3D camera, i.e. with low latency and/or high 
frame rate, with a secondary, slower 3D camera that 
provides human tracking as a ground truth. The 
faster camera pre-calculates the full-body human 
point cloud in real time. To achieve this, the time-
delayed ground truth of the slower camera is 
propagated forward in the data stream of the faster 
camera using 2D optical flow and then refined to 
segment the full human point cloud from the scene. 
Segmentation is performed by calculating connected 
regions, rejecting outliers based on a simple tracking 

model and applying background subtraction. This 
results in a highly accurate tracking estimation in 
time with the faster camera, based on the time-
delayed ground truth of the secondary system.  

While the approach is implemented and 
evaluated using human tracking by a 3D camera as 
ground truth, the algorithm is not tailored to human 
tracking (either implicitely or explicitly). On the 
contrary, it is designed with the goal to be adaptable 
to other applications (different combinations of 
tracking tasks and modalities), e.g. using a thermal 
imaging camera as delayed ground truth for 3D 
tracking of objects with specific temperatures. 

The developed algorithm is applied to two 
different scenarios for tracking a human body as a 
point cloud in 3D space: a) low-latency tracking 
based on ground truth with a latency of one to 
several seconds, b) high frame rate tracking based on 
ground truth with a lower frame rate. 

Optical flow and depth information have been 
used in various works for segmenting and tracking 
humans and objects. Examples are (Okada, 2000), 
where depth and optical flow were used to estimate 
the 3D position and motion of a person; using 
optical flow to track persons between multiple 
cameras to avoid occlusions (Tsutsui, 2001) or 
applying optical flow and depth cues to vehicle-
based moving object segmentation (Klappstein, 
2009). The combination of 2D and 3D Kinect data 
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has been researched e.g. in (Jóźków, 2014) with the 
purpose of mobile mapping in indoor environments. 

However, the combination of different 3D 
cameras with 2D/3D propagation of tracking 
probabilities has not been investigated before. 

2 SYSTEM SETUP 

The Robot Operating System has been used as a 
communication framework (Quigley, 2009). It is 
based on sending time-stamped messages on named 
topics and provides transport mechanisms for both 
2D and 3D image data.  

Processing of data acquired by the different 3D 
cameras has been performed using OpenCV 
(Bradski, 2000) for 2D images and Point Cloud 
Library (Rusu, 2011) for 3D data. 

In the following, we give a short description of 
the scenarios and camera systems to which the 
algorithm has been applied. 

2.1 Latency Minimization Scenario 

The first scenario is based on the sensing system of 
OP:Sense, a research platform for surgical robotics 
(Moennich, 2011). Four RGB-D Microsoft Kinect 
cameras (first generation), featuring a resolution of 
640 x 480 pixel for both depth and color image at 30 
frames per second (fps), supervise a narrow scene 
from different points of view. Human tracking and  
fusion is performed based on the OpenNI tracking 
libraries (Beyl, 2013). Due to the distributed setup of 
the system, the Kinect system features a latency of 
about 950 ms. 

 

Figure 1: Sensor node with Kinect (top), ToF camera 
(bottom center); the optical tracking (bottom right) was 
not used for this work. 

A secondary camera system consists of six Time 
of Flight (ToF) pmd[vision] S3 cameras. With a 
resolution of 64 x 48 pixels, they provide depth 
sensing (e.g. point clouds and depth image) as well 
as an amplitude image that contains the signal 

strength of the measurement. Figure 1 shows one 
sensor node with both Kinect and ToF camera. 

2.2 Frame Rate Optimization Scenario 

In this scenario, a RGB-D Microsoft Kinect II has 
been used for human tracking. The camera provides 
a color stream with 1920 x 1080 pixels and a depth 
data stream with 512 x 424 pixels, both at 30 fps. 
Human tracking was performed using the Microsoft 
Kinect SDK 2.0 on a Windows system and 
streaming to ROS has been realized using a custom 
bridge based on the win_ros stack. 

A Bluetechnix Argos 3D P100 ToF camera with 
a resolution of 160 x 120 pixels provides depth data 
and an amplitude image, both at a rate of up to 160 
fps. Figure 2 shows the demonstration setup. 

 

Figure 2: Argos P100 3D mounted on top of Kinect II. 

3 METHODS 

For easier reading and consistency with the 
scenarios and evaluation, we designate the source of 
the ground truth in the following as “Kinect camera” 
and the secondary camera as “ToF camera”. 
However, the presented algorithm is naturally 
applicable to a wide range of different cameras. 

Similarly, the tracking application, which will be 
referred to throughout the article, is the tracking of 
humans (based on ground truth provided by the 
Kinect camera). As the presented approach is 
deliberately based on processing an external ground 
truth (opposed to implementing custom detection 
and/or tracking algorithms), applications to arbitrary 
different tracking scenarios are possible. In general, 
the only requirement is that an external ground truth 
is available in regular intervals and that 
correspondences can be established between ground 
truth and data acquired by the secondary camera. 

3.1 Processing Pipelines 

The   proposed  algorithm  consists  of  two different 
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Figure 3: Processing pipeline for newly acquired ToF frame at time t. (1) A flow field is calculated based on amplitude 
images of frame t-1 and frame t. (2) The flow field is applied to the tracking probability map of frame t-1, resulting in a 
tracking probability map for frame t. (3) The tracking probability map is processed based on the tracking information of 
frame t-1 and a global background model to provide an extended tracking map. (4) Applying the extended tracking map to 
the point cloud results in the final tracking estimate. 

processing pipelines which are executed in parallel. 
The first one processes all data acquired by the ToF 
camera (data which doesn’t contain any tracking 
information) and propagates tracking information 
based on the delayed ground truth. Thereby, a 
tracking estimate is provided in each time step. The 
second one processes the user tracking information 
from the Kinect camera (ground truth) and updates 
the ToF tracking state as well as the background 
model. 

3.1.1 ToF Processing 

In the following, we use the term “ToF frame” to 
refer to all ToF data associated to a single time step: 
source data such as the 3D point cloud, the 
amplitude image, the depth image and the time 
stamp of the data acquisition as well as processed 
data such as a flow field, a tracking probability map 
and geometric information about tracked targets. To 
enable applying the results of filtering in the 2D 
image domain to the 3D space of the point cloud, the 
pixel-to-point correspondences have to be preserved. 
For this reason, only operations are employed on the 
ToF point clouds that keep them organized, i.e. that 
don’t alter the original points in the cloud. 

Figure 3 visualizes the data processing of 
incoming ToF frames: Upon receiving a new ToF 
frame, the point cloud is transformed into a shared 
coordinate system and 2D optical flow from the 
previous frame is calculated based on the respective 
amplitude images (see Section 3.3). The ToF frame 
is then stored in a ring buffer. A tracking probability 
map is calculated that provides a first estimation of 

the current position of the tracked target(s), based on 
the optical flow and the tracking probability map 
stored in the previous ToF frame. Last, a refinement 
and rejection step is performed based on the tracking 
probability map, the background model and the 
spatial information encoded in the depth map (see 
Section 3.5). This yields the extended tracking map 
for the current time step which is then applied to the 
point cloud to calculate the human body point cloud 
tracking estimate. 

3.1.2 Ground Truth Processing 

Upon reception, the point cloud corresponding to the 
tracked human(s) is transformed to the shared 
coordinate system. Based on the acquisition time of 
the received point cloud, the closest matching ToF 
frame is located in the ring buffer (see Figure 4). By 
determining correspondences between the ground 
truth and the point cloud stored in the ToF frame, a 
tracking probability map with full certainties is 
established and the ToF frame is marked as a key 
frame. The background model is updated using this 
tracking probability map and the corresponding 
depth map (see section 3.2). These calculations are 
performed for each incoming ground truth frame and 
are therefore independent of the actual delay of the 
ground truth. 

Using the respective flow fields, the tracking 
probability map is propagated forward throughout 
the ring buffer until the most recent ToF frame (see 
Section 3.4). Here, the number of forward-
propagations is directly proportional to the length of 
the  delay.  Thereby, the tracking probability  map of  
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Figure 4: Processing pipeline of new ground truth data acquired at time t-6 and is received at time t. First, the corresponding 
ToF frame in the ring buffer is identified using the associated time stamps. Next, correspondences are estimated to calculate 
a tracking probability map for the ToF frame at time t-6. Last, the tracking probability map is propagated forwards using the 
flow fields associated with each ToF frame.  

the next arriving ToF frame will be calculated based 
on the updated information from this frame.  

3.2 Background Modelling 

In the presented approach, almost all information is 
stored and processed on a frame-by-frame basis, e.g. 
optical flow between two frames and the tracking 
probability map are directly assigned to a specific 
ToF frame. There are two exceptions which are 
modelled as global components: The number of 
tracked humans and a background model of the 
scene. 

Our approach to modelling the background of the 
scene is based on the works of (Zivkovic, 2005) that 
extended the common Gaussian mixture models for 
pixel-wise background subtraction by an automatic 
calculation of the correct number of Gaussian 
distributions per pixel. We have modified the 
OpenCV implementation of this algorithm in two 
ways in order to take advantage of the data flow in 
our approach. First, we introduce a masking 
capability that enables restricting an update of the 
background model to specific areas of the image. 
Second, we split the update step of the original 
algorithm into two different parts: A background 
maintenance that only updates the model (without 
performing background subtraction on the input) and 
a foreground detection stage that allows performing 
background subtraction on an image and calculating 
a foreground mask without updating the background 
model. 

Based on these modifications, the background 
model is being used as follows: 

When a new ground truth frame arrives and 

correspondences to the according ToF frame have 
been calculated, the background model is updated 
using the depth image of this ToF frame. The 
tracking probability map is used to mask the tracked 
humans, thereby ensuring that they are not 
incorporated into the background model. This 
prevents the common problem that non-moving 
entities will be included in the background after a 
certain number of update-steps (Sobral, 2014). 

When a new ToF frame is processed, an 
extended tracking map is calculated that contains the 
location of all pixels belonging to a tracked human. 
However, this map is prone to inclusion of false 
positives, e.g. pixels that belong to the background. 
For correction, a foreground mask is retrieved by 
querying the background model with the depth 
image of the ToF frame. By masking the extended 
tracking map with the foreground mask, we remove 
potential false positives. 

3.3 Optical Flow Estimation 

As described in Section 3.1.2, optical flow applied to 
2D images is used to propagate the tracking 
probability map between the ToF frames. 

When using RGB images, the sensitivity of 
optical flow for moving targets such as humans or 
objects is highly dependent on the kind of motion 
performed. When applying optical for the purpose of 
tracking, rotations prove more difficult to detect than 
translations: During rotation of a tracked target, 
previously visible parts of the object vanish from the 
image while new parts appear. For these new 
elements, no corresponding parts exist in the 
previous image. Performing optical flow 
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calculations on the amplitude images acquired by 
ToF cameras partially overcomes this problem: The 
reflectivity of a tracked target, especially in the case 
of human tracking, is usually less affected by 
rotations than its appearance in color space. 

For the actual calculation of optical flow 
between two amplitude images, we use the TV-L1 
algorithm proposed by (Sanchéz, 2013). The flow 
field is calculated upon receiving a new ToF frame 
and stored within the frame. As the flow field based 
propagation of the tracking probability map is only 
used as a first approximation which is refined in 
subsequent steps, our parameterization of the optical 
flow algorithm is targeted on a higher computation 
speed rather than an optimal accuracy. Therefore, we 
set the number of warps to 2 with 3 levels.  

3.4 Tracking Probability Propagation 

In ToF frames, information about the location of 
tracked humans has to be stored and propagated. We 
represent this information as a 2D probability map 
where the value of each pixel denotes the probability 
of this pixel belonging to a tracked human.  

When a ground truth frame is received and the 
ToF frame with the closest matching timestamp was 
located in the ring buffer, point-to-point 
correspondences between both frames have to be 
established. These correspondences are calculated 
by creating a k-d-tree of the downsampled ground 
truth cloud, iterating over all points in the ToF point 
cloud and determining whether the distance to the 
ground truth cloud is smaller than a pre-defined 
threshold. For all points where this check is 
successful, the according pixel in the zero-initialized 
probability map is set to one. 

Propagation of the tracking probability map from 
ToF frame Ft to subsequent frame Ft+1 is performed 
using the flow fields associated with each ToF 
frame: Using the flow field, each pixel pi,t with a 
positive probability value is projected onto the 
tracking probability map of frame Ft+1. To map its 
new coordinates (xi,t+1, yi,t+1) to whole-numbered 
coordinates, the probability value associated with pi,t 
is distributed onto the four adjacent pixels pj1,t+1 .. 
pj4,t+1 based on their L2 distance to the new position, 
provided that these pixels are inside the region of the 
image. 

In addition to populating the tracking probability 
map, the current total number of tracked targets is 
determined based on the ground truth frame and 
stored as part of the global tracking state.  

 

3.5 Tracking Estimation 

At the arrival of each new ToF frame, a tracking 
probability map is calculated that provides a first 
estimation which points in the point cloud 
correspond to the tracked human. However, this 
estimation has to be refined due to potential errors 
introduced by the flow field based propagation of 
the tracking probability. In our experience, 
especially human extremities such as arms are prone 
to misdetection during optical flow propagation with 
low-resolution ToF cameras (false negatives). Also, 
tracking probabilities might be erroneously 
associated to non-tracked objects in the surrounding 
environment (false positives). 

For this reason, the tracking estimation step is 
split into two stages: tracking refinement stage and 
outlier rejection stage. 

3.5.1 Tracking Refinement Stage 

The tracking refinement stage is primarily targeted 
at correcting false negative detections, e.g. non-
detected extremities. The tracking probability map is 
first binarized by comparison against a pre-defined 
threshold and then segmented into connected 
probable tracking regions ri. For each region, the 
center of mass mi is calculated. Using mi as a seed, a 
floodfill operation is performed on the associated 
depth image in order to connect previously 
undetected pixels with local continuity in 3D space. 
The result is a refined tracking estimate ri’ for each 
connected region. 

3.5.2 Outlier Rejection Stage 

While false negative detections have been resolved 
in the previous stage, there is still a possibility for 
false positive detections to be present due to 
erroneous propagation of the tracking probability 
map onto untracked pixels. To reject these outliers, 
the current number of probable tracking regions is 
first checked against the number of tracked targets 
(see Section 3.4). If there are more regions than 
tracked targets, we perform a similarity comparison 
between each tracked region rj,t-1’ of the last frame 
and all current probable tracked regions ri,t’ in order 
to detect the correct correspondences. The similarity 
comparison is based on both 2D similarity metrics 
(e.g. 2D center location and area of a region) and 3D 
similarity metrics (e.g. Euclidean distance between 
the center points in 3D space). For each region rj,t-1’ 
of the previous frame, the best matching region ri,t’ 
is determined and its features are stored as detected 
tracked regions in the current ToF frame. In order to 
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avoid merging of multiple regions rj,t-1’ onto a single 
region ri,t’, regions ri,t’ are exempt from further 
similarity comparisons once they have been 
successfully matched. 

As a last step, for each detected tracked region 
all corresponding points in the ToF frame cloud are 
selected. This results in the full body point cloud of 
the respective tracked human being available for 
further processing. 

4 RESULTS 

The developed algorithm has been evaluated in the 
two scenarios presented in Sections 2.1 and 2.2. 
Evaluation was performed by comparing the 
extended tracking map, which is calculated 
immediately on the arrival of each new ToF frame, 
against the corresponding ground truth, which 
becomes available with a certain delay. This also 
means that only frames for which a corresponding 
ground truth was received are taken into account. 

All tests were performed under Linux Ubuntu 
12.04 using an AMD Phenom II 1090T processor 
with six cores at 3.2 GHz and 12 GB of RAM. All 
cameras have been registered against an optical 
tracking system. 

Table 1 lists the metrics employed for accuracy 
evaluation. 

Table 1: Metrics for accuracy evaluation. 

Metric Definition 

True positives tp 
Pixels correctly classified as part 

of the tracked human 

True negatives tn 
Pixels correctly classified as not 

part of the tracked human 

False positives fp 
Pixels incorrectly classified as 

part of the tracked human 

False negatives fn 
Pixels incorrectly classified as not 

part of the tracked human 

Precision  

Recall  

ToF frame 
processing time 

Time required for processing a 
single ToF frame (ms) 

Ground truth 
processing time 

Time required for forward 
propagation of the ground truth of 

a single Kinect frame (ms) 

Tracking loss 
Percentage of frames with 
complete loss of tracking 

4.1 Latency Minimization 

For the latency minimization scenario, evaluation 

was performed on two recorded data sets. Set A has 
a duration of 53.5 seconds, contains 317 ToF frames 
and 265 ground truth frames. The cameras are 
located with a distance of 31.2 cm between each 
other and share the same field of view. The desired 
latency for evaluation was artificially introduced by 
playing back the Kinect data with a delay between 1 
and 10 seconds. The average processing time per 
ToF frame was 39 ms, independently of the induced 
delay. 

In set A, the tracked person comes into the field 
of view two times. To allow for a detailed 
examination, evaluation has been performed on two 
different subsets of the measurements: A1 takes into 
account all frames of each measurement, A2 
includes only the frames in which recall and 
precision were positive, i.e. tracking was actually 
performed. As a consequence, subset A1 is directly 
influenced by the delay of the ground truth: On entry 
of a person into the field of view, there is no ground 
truth available until the delayed ground truth is 
received. A higher delay therefore directly results in 
more frames in which no forward propagation 
happens and no tracking is performed which in turn 
lead to a higher rate of false negative classifications 
and thereby a lower recall. 

In all following figures, obtained results are 
shown over the respective delay; the continuous line 
corresponds to subset A1 whereas the dotted line 
corresponds to subset A2. All reported results are 
averaged over all frames of each measurement. 

Figure 5 shows the ground truth processing time. 
Figure 6 and Figure 7 show the numbers of false 
negative and false positive classifications. Figure 8 
shows the resulting precision of the tracking 
estimate and Figure 9 shows the achieved recall of 
the tracking estimate.  

 

Figure 5: Ground truth processing time (shown for subset 
A1 only). 

Set B was recorded with the aim of evaluating 
the proposed algorithm in terms of robustness 
against data acquired from different points of view. 

It contains data of six ToF cameras that are 
ceiling-mounted in four corners as well as on the 
sides  of a rectangle  of about  2 m x 2 m (see  Figure 
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Figure 6: Number of false negative classifications. 

 

Figure 7: Number of false positive classifications. 

 

Figure 8: Precision of the tracking estimate. 

 

Figure 9: Recall of the tracking estimate. 

10). A Kinect camera mounted in one of the corners 
is used as ground truth. Set B has a duration of 
85 seconds, contains approximately 230 ToF frames 
per camera and 294 ground truth frames. Again, the 
results are split into two subsets B1 and B2 where 
B2 only contains frames where a detection was 
performed. Further information about the spatial 
relation between each ToF camera and the Kinect 

camera as well as the achieved results (recall and 
precision) for both subsets B1 and B2 are shown in 
Table 2. 

 

Figure 10: Spatial configuration of cameras (displayed as 
axes): six ToF cameras (y-axis pointing upwards) and one 
Kinect camera (front, y-axis pointing downwards). The 
combined point cloud depicts the surface center of an OR 
table (green) with an attached robot arm (turquoise) as 
well as the delayed ground truth (red) with the current 
human position visible directly behind it (green/turquoise). 

Table 2: Spatial configuration and accuracy evaluation for 
six ToF cameras with different points of view compared to 
the Kinect camera and latency of 1 s. 

 1 2 3 4 5 6 
Angle 
compared to 
Kinect (est.) 

0° 90° 90° 180° 45° 135°

Distance to 
Kinect (cm) 

31 163 192 251 92 189 

Recall B1 .71 .71 .80 .66 .80 .64 
Precision B1 .99 .96 .97 .88 .97 .92 
Recall B2 .90 .90 .91 .96 .91 .96 
Precision B2 .99 .90 .97 .88 .97 .96 

 

Figure 11: Delayed ground truth (left scene, red) and pre-
calculated tracking estimate (right scene, green) in latency 
minimization scenario. 

Figure 11 shows a side-by-side exemplary view 
of the point cloud of a single ToF camera with the 
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delayed ground truth and the pre-calculated tracking 
estimate for this scenario. 

4.2 Frame Rate Optimization 

Contrary to the camera system used in the scenario 
above, which has already been well-tested and 
optimized, e.g. with regards to crosstalk of the 
different cameras illuminating the scene with 
infrared light, the combination of the Kinect II with 
the Argos 3D P100 is employed as a proof of 
concept for the purpose of evaluating the presented 
algorithm. Currently, the maximum frame rate of 
160 fps for the Argos camera can only be achieved 
with a low integration time that drastically decreases 
the sensing range of the camera. As a compromise, 
we operated the camera at 80 fps which yielded an 
acceptable sensing range for object with a medium 
to high reflecivity (i.e. people wearing white 
clothes). In addition, we observed infrequent 
crosstalk. Figure 12 shows the pre-calculation with 
the Argos 3D P100. 

 

Figure 12: Delayed ground truth (left scene, red) and pre-
calculated tracking estimate (right scene, green) in frame 
rate optimization scenario. 

Evaluation was performed using four different 
data sets of lengths between 30 s and 68 s. Each data 
set contains at least 2.300 frames acquired by the 
ToF camera and 600 frames taken by the Kinect II. 
Again, the measurements were split as before into 
subsets C1 and C2. 

Table 3: Accuracy evaluation for high frame rate ToF at 
normal and reduced speed. 

 1x Speed 0.1x Speed 
Average Recall C1 0.73 0.87 
Average Precision C1 0.87 0.90 
Average Recall C2 0.96 0.94 
Average Precision C2 0.95 0.91 

As the processing of each ToF frame took more than 
230 ms on average, which resulted in dropped 
frames, we slowed back the playback of the recorded 
data by a factor of 10. In proportion, this 
corresponds to a processing time of about 20 ms, and 

can serve as an indication for the potential accuracy 
of the algorithm. Table 3 lists the resulting accuracy 
metrics. 

5 DISCUSSION 

For the latency minimization scenario, Figure 5 
shows that the ground truth processing time starts at 
47 ms at a delay of 1s and increases with longer 
delays. This corresponds to a first processing step of 
about 45 ms, in which transformation of the ground 
truth cloud and correspondence calculation are 
performed, followed by the forward propagation of 
the ground truth which takes about 1.7ms per second 
of delay and is therefore also applicable to longer 
delays. 

The total latency of the pre-calculated tracking 
can be calculated as the sum of the latency of the 
ToF cameras in the six-camera setup of about 
240 ms and the ToF frame processing time of 39 ms. 
The resulting total latency of less than 300 ms is 
independent of the induced delay, so the observed 
speedup of the tracking is between 3x and 33x for a 
respective delay of 1 s to 10 s. 

As expected, the number of false negative 
classifications as depicted in Figure 6 is 
approximately proportional to the induced delay for 
the subset A1 (see in Section 4.1). For subset A2, 
from which frames without a ground truth were 
excluded, the number of false negative 
classifications was negligible and clearly 
independent of the delay. The number of false 
positive classifications is not dependent on the delay 
and also negligible (see Figure 7). 

These results lead to a high precision (see Figure 
8), e.g. close to nil points are erroneously classified 
as belonging to the tracked human. For subset A1, 
recall is again proportional to the delay as with a 
higher delay, there is no ground truth for a large 
number of frames. If only frames for which a ground 
truth was available during the measurement are 
taken into account (subset A2), recall is close to 1 
which means that almost all points that belong to the 
tracked human have been classified as such (see 
Figure 9). 

Measurements with six ToF cameras show that 
the proposed algorithm shows good results also on 
different camera configurations, i.e. when the ToF 
camera and the Kinect camera are not mounted with 
a similar point of view, as can be seen from Table 2. 
Subset B1 shows worse results on recall than subset 
B2, due to the fact that with different fields of view, 
the tracked human is often not visible in both 
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cameras at once, so no correspondences can be 
established. For the six-camera scenario specifically, 
we expect to solve this by utilizing the fused output 
of four spatially distributed Kinect cameras as 
ground truth. 

The rather long processing time when using the 
Argos 3D P100 camera is consistent with the 
timings measured for the pmd[vision] S3 cameras: 
The Argos3D P100 nominally provides about six 
times more points per frame, for which 
correspondences have to be determined, which leads 
to an increase in processing time from 46ms to about 
230ms. However, this calculation is currently 
performed on CPU in a single thread so we are 
expecting to achieve a large speedup by parallelizing 
on CPU and/or GPU. Further optimizations of the 
frame rate and image quality are expected by using a 
different high-speed ToF camera, the upcoming 
Argos 3D P320, which features 12 instead of 2 
LEDs for illumination and thereby increases the 
effective sensing range. 

6 CONCLUSIONS 

We have proposed a new approach for pre-
calculating the body point cloud of a human based 
on time-delayed ground truth. It features two distinct 
processing pipelines: One pipeline processes the 
ground truth, that corresponds to a past measurement 
frame, and propagates it forward to the current 
frame. The other pipeline handles the incoming data 
from the faster 3D camera system and calculates a 
tracking estimate based on 2D optical flow in 
combination with a customized background model 
and various refinement steps. 

The algorithm has been implemented and 
evaluation has been performed on two different 
scenarios. Results for the latency minimization 
scenario show that the presented approach 
consistently achieves very good results for the 
evaluated data sets. The distinction between two 
different data sets for each evaluation shows that 
apart from the initial delay until a tracking is 
established, the magnitude of the latency doesn’t 
affect the high tracking quality of the algorithm. 
While still good, the accuracy of the second scenario 
is lower than that of the first scenario and the current 
processing time prohibits its intended usage. For this 
reason, optimization of the algorithm in terms of 
computational costs and the optimization of our test 
bed for the second scenario will be addressed as 
detailed above. 

In addition, we plan to integrate the algorithm 

into the full OP:Sense supervision system by pre-
calculating human tracking simultaneously on all six 
ToF cameras, based on fused ground truth from four 
different Kinect cameras. We envision that the 
fusion of the results will further improve the 
accuracy and thereby provide a reliable modality to 
be used for human-robot interaction. Also, we aim to 
apply the algorithm to other kinds of tracking 
scenarios using different input modalities. 
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