
Practical IBE Secure under CBDH - Encrypting Without Pairing

S. Sree Vivek1, S. Sharmila Deva Selvi2, Aanchal Malhotra3 and C. Pandu Rangan4

1Samsung R&D Institute, Bangalore, India
2Microsoft Research India, Bangalore, India

3Boston University, Boston, MA, U.S.A.
4IIT-Madras, Chennai, India

Keywords: Identity based Cryptography, Encryption without Bilinear Pairing, Without Full Domain Hash, Provable
Security, Random Oracle Model.

Abstract: Since the discovery of identity based cryptography, a number of identity based encryption schemes were re-
ported in the literature. Although a few schemes were proposed after its introduction, the first efficient identity
based encryption scheme was proposed by Dan Boneh and Matthew K. Franklin in 2001. This encryption
scheme uses Weil pairing on elliptic curves during both encryption and decryption process. In this paper, we
propose a new identity based encryption scheme and prove its security in the random oracle model. There
are two highlighting features in our scheme. First, it does not employ bilinear pairing computation during
the encryption process. Second, our scheme does not require full domain hashing, which makes our scheme
more practical and efficiently implementable. Moreover, we prove the security of our scheme by reducing it
to the well known Computational Bilinear Diffie-Hellman problem. We first prove the security of our scheme
in weaker security notion i.e. we prove our scheme to be IND-CPA secure. Then using Fujisaki Okamoto
transformation, we convert our scheme to IND-CCA secure version.

1 INTRODUCTION

Identity-based (from now on, ID-based) cryptography
was introduced by Adi Shamir (Shamir, 1984) in his
seminal paper as an alternative to traditional public
key cryptography. Traditional public key cryptogra-
phy makes use of Public Key Infrastructures (PKI). In
PKI-based system, each user generates on his own his
private and public key. The certification authority of
the PKI provides a digital certificate which links the
identity of the user and his public key. The validity of
this certificate must be checked before using the pub-
lic key of the user, when encrypting a message to him
or when verifying a signature from him. Obviously,
the management of digital certificates degrades the ef-
ficiency of public key cryptosystems in practice. The
idea of ID-based cryptography is to use the identity of
a user (e-mail address, telephone number, etc.) as the
public key. The user contacts a trusted entity, Private
Key Generator (PKG), to obtain the private key cor-
responding to his identity. The PKG typically uses a
secret information called master secret to compute the
private key corresponding to the identity of the user.
This private key is then distributed to the authorised

user through a secure channel.
ID-based cryptography has been the object of a lot

of research during the last decade. ID-based encryp-
tion is an interesting technology because other public-
key algorithms have encountered difficulty in practi-
cal use. It provides an easy solution that provides for
the confidentiality of data. A number of ID-based en-
cryption schemes have been proposed in both stan-
dard model (Boneh and Boyen, 2011)(Agrawal et al.,
2010)(Kiltz, 2006)(Gentry, 2006)(Waters, 2005) and
random oracle model (Boneh and Franklin, 2005)(At-
trapadung et al., 2007)(Sakai and Kasahara, 2003).
The most efficient ID-based encryption schemes are
currently based on bilinear pairings on elliptic curves,
such as the Weil or Tate pairings. The first of these
schemes was developed by Dan Boneh and Matthew
K. Franklin (Boneh and Franklin, 2005) and performs
probabilistic encryption of arbitrary ciphertexts using
an Elgamal-like approach. Many ID-based encryp-
tion schemes have been proposed since then, adopting
many different strategies, thereby reducing the com-
putational cost and the ciphertext size.

Table 1 recollects the complete bibliography of
different ID-based Key constructs used till date.
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Table 1: Properties of existing ID-based Key constructs.

Scheme ID-based Key Constructs IBE Pairing Assumption FDH

Enc Dec
BLS DA = sQA 2G1 Y Y Y CBDH Y
(Boneh et al., 2004) QA = Ĥ(IDA) 2G1

Barreto DA = 1
s+qA

P 2G1 Y N Y q-SBDH N
(Barreto et al., 2005) qA = Ĥ(IDA) 2 Z�q
Galindo dA = (xA + s1qA) mod q 2 Z�q N - - - -
(Galindo and Garcia, 2009) XA = xAP 2G1

qA = Ĥ(IDA) 2 Z�q
Selvi dA = (s1qA + s2xA) 2 Z�q N - - - -
(Selvi et al., 2011) XA = xAP 2G1;YA = yAP 2G1

qA = Ĥ(IDA) 2 Z�q
Ours dA = (sqA + rA) 2 Zp Y N Y CBDH N

XA = rAQ+

r̄A(uo +
k
å

i=1
qA[i]ui) 2G1

YA = r̄AP 2G1
qA = Ĥ(IDA) 2 f0;1gk

Motivation. Typically, the computationally most ex-
pensive part of implementing ID-based encryption al-
gorithms is execution of bilinear pairings. Thus, our
main concern in this paper is to avoid bilinear pair-
ing during encryption. Till now, all but one scheme
by Sakai-Kasahara (Sakai and Kasahara, 2003) use
bilinear pairing during the encryption process. This
scheme is quite efficient, in terms of computational
complexity when compared with other ID-based en-
cryption schemes. Later, the security of this scheme
was proved by Chen and Cheng (Chen and Cheng,
2005) under q-SBDH assumption, which is a stronger
assumption. Our attempt was to construct a scheme
which reduces to a weaker and well known assump-
tion.

Secondly, in practice it is difficult to build a
Full Domain Hash (FDH) which hashes directly onto
a group of points on an elliptic curve (Boneh and
Franklin, 2005). However with a slightly reduced cost
in computation, it is achieved by hashing onto some
arbitrary set, and then using some deterministic ad-
missible encoding function to map onto the elliptic
curve group. In our scheme, instead of FDH we make
use of a computation similar to Waters’ hash (Waters,
2005) and hence our scheme can be easily and effi-
ciently realized in practice.

Our Contribution. Our first interesting contribution
is a novel probabilistic PKI based signature scheme
(and this is of specific interest) described in section 3.
The novelty of this signature scheme is; it is based on
Schnorr’s signature (Schnorr, 1989) but does not take

the randomness used to generate the signature as an
input to the message hash. In an ID-based scheme,
the private key of the user is constructed using a PKI
based signature scheme. While randomized signa-
ture schemes such as Schnorr (Schnorr, 1989),(Selvi
et al., 2011),(Galindo and Garcia, 2009),(Herranz,
2006) are used to extract the private key of the user in
ID-based signatures, they can not be used for extract-
ing the private key of a user for an ID-based encryp-
tion scheme. This is because the randomness used to
extract the private key should also be a component of
the public key of the ID-based scheme. While in an
ID-based signature scheme, this randomness can be
sent along with the signature for verification, it can
not be done in IBE scheme, since in an IBE scheme,
the public key of the user must be the identity alone.
Thus, in our IBE scheme we use a construction simi-
lar to Waters’ hash (Waters, 2005), which helps us to
achieve binding between the identity of the user and
the private key, without including the randomness in
the message hash. In addition, this helps us in avoid-
ing the use of full domain hashes in the design of the
ID-based encryption scheme. Next we show the con-
struction of the novel ID-based encryption scheme in
section 4 which does not use pairing during encryp-
tion process. However, during the decryption process
we require pairing computation. The significant ad-
vantage of our scheme is that it does not compromise
on security and is proven secure under the well known
CBDH assumption.

Table 2 compares different ID-based encryption
schemes in random oracle model in terms of underly-
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Table 2: Properties of ID-based Encryption Schemes in Random Oracle Model.

Scheme Hard Problem Encryption Decryption Cipher Text
Assumption Complexity Complexity Size

Boneh Franklin CBDH 1P+2EM 1P jjGjj+jmj
(Boneh and Franklin, 2005)
Katz and Wang GBDH 2P+4EM 1P 2jjGjj+2jmj
(Katz and Wang, 2003)
(Attrapadung et al., 2007)
Attrapadung et al LBDH 2P+2EM+1SKE 2P+2EM jjGjj+jmj+2r

(Attrapadung et al., 2007)
Sakai and Kasahara q-SBDH 3EM 1P+1EM jjGjj+jmj+r

(Sakai and Kasahara, 2003)
Ours (G

0
scheme) CBDH rEA+3EM 2P+1EM 2jjGjj+jmj+r

P - Pairing, EM - Elliptic curve scalar point multiplication, EA - Addition of two elliptic curve points, SKE - Complexity of CCA-2
secure Symmetric Key Encryption, jjGjj - Size of one group element, jmj - Size of message, r - Number typically of size 128 bits.

CBDH - Computational Bilinear Diffie-Hellman, GBDH - Gap Bilinear Diffie-Hellman, LBDH - List Bilinear Diffie-Hellman,
q-SBDH - q- Strong Bilinear Diffie-Hellman.

ing hard problem assumption, computation complex-
ity of encryption and decryption processes, and size of
generated ciphertext. Our scheme involves the com-
putation of elliptic curve point additions and avoids
the use of bilinear pairing during encryption. How-
ever, the time complexity for executing one bilinear
pairing is roughly four times the time complexity for
executing upto 160 elliptic curve point additions (Is-
lam and Biswas, 2012). From table 2, it is clear
that compared to other schemes, we have reduced
the computation cost during encryption process to a
great extent in our scheme by avoiding bilinear pair-
ing. There is one other scheme by Sakai and Kasa-
hara (Sakai and Kasahara, 2003) that does not involve
pairing computation during encryption. Although the
decryption cost of our scheme is higher than that of
(Sakai and Kasahara, 2003), we argue that our scheme
is better than the scheme in (Sakai and Kasahara,
2003). This is because the security of our scheme is
reduced to the well known CBDH problem whereas
the scheme in (Sakai and Kasahara, 2003) has a se-
curity reduction to the stronger q-SBDH assumption.
Similarly, the decryption cost of our scheme is higher
when compared with (Boneh and Franklin, 2005) but
our scheme offers two advantages over (Boneh and
Franklin, 2005). First our scheme does not involve
bilinear pairing computation during encryption, and
second it does not use Full Domain Hash, thus mak-
ing it efficiently implementable.

2 PRELIMINARIES

In this section, we briefly recall the basics and secu-
rity models.

2.1 Bilinear Pairing

Let G1 be a cyclic additive group generated by P, with
prime order q, and G2 be a cyclic multiplicative group
of the same order q. A bilinear pairing is a map ê :
G1�G1!G2 with the following properties.
Bilinearity. For all P; Q; R 2 G1,
ê(P; Q+R) = ê(P; Q) ê(P; R).
ê(aP; bQ) = ê(P; Q)ab [Wherea;b 2R Zp].
Non-degeneracy. There exist P;Q 2 G1 such that
ê(P;Q) 6= IG2 , where IG2 is the identity element of
G2.
Computability. There exists an efficient algorithm to
compute ê(P,Q) for all P;Q 2G1.

2.2 Computational Assumptions

In this section, we review the computational assump-
tions related to bilinear maps that are relevant to the
protocol we discuss.

Let ê : G1�G1!G2 be a bilinear map. Let P be
a generator of G1, whose order is a large prime q. Let
a;b;c be elements of Zp.
Definition 1 (Computational Diffie-Hellman Prob-
lem (CDHP)). Given (P;aP;bP) 2G3

1 for unknown a,
b 2 Zp, the CDH problem in G1 is to compute abP.
The advantage of any probabilistic polynomial time
algorithm A in solving the CDH problem in G1 is de-
fined as:

AdvCDH
A = Pr[A(P;aP;bP) = abPja;b 2 Zp]

The CDH assumption is that, for any probabilistic
polynomial time algorithm A , the AdvCDH

A is negligi-
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bly small.

Definition 2 (Computational Bilinear Diffie-Hellman
Problem (CBDH)). Given (P;aP;bP;cP) 2G4

1 for un-
known a, b, c 2 Zp, the CBDH problem in (G1;G2)

is to compute ê(P;P)abc 2 G2. The advantage of any
probabilistic polynomial time algorithm A in solving
the CBDH problem in (G1;G2) is defined as:

AdvCBDH
A = Pr[A(P;aP;bP;cP) = ê(P;P)abc ja;b;c 2

Zp]

The CBDH assumption is that, for any probabilistic
polynomial time algorithm A , the AdvCBDH

A is negli-
gibly small.

2.3 Generic Framework for PKI-based
Signature Scheme

The framework for a PKI based signature scheme
consists of the algorithms KeyGen; Sign; andVerify.
The algorithms are defined below:

KeyGen: takes a security parameter k as input, and
outputs a private key sk and the corresponding public
key pk.

Sign: takes private key sk, public key pk and the
message m 2M as input. It outputs the signature s.

Verify: takes signature s, message m 2M and the
public key pk as input. It either accepts or rejects the
message claim to authenticity.

These algorithms must meet the standard consistency
constraint. For all (pk;sk) KeyGen and all m 2M ,
we have Verify = (pk;m; Sign (pk;sk;m)) = accept.

2.4 Security Model for PKI-based
Signature Scheme

Existential unforgeability is a standard acceptable no-
tion of security for signature schemes. We say that
any signature scheme is existentially unforgeable un-
der adaptive chosen message attacks if any polynomi-
ally bounded adversary A has negligible advantage in
the following game with the challenger C .

KeyGen: C runs the KeyGen algorithm and generates
the system parameters params and the secret key sk.
It gives params to A and keeps sk secret.

Training Phase: After the KeyGen phase is over, A
starts interacting with C by querying various oracles
provided by C in the following way:

� Random Oracle: A queries hash function listed
in params for any arguments, and C responds by
treating the hash function as a random function.

� Sign Oracle: A issues signature queries on mes-
sage m. Using sk, C runs the signing algorithm
and returns a resulting signature s as response.
Additionally, C maintains a set W (W = ffg ini-
tially) and when m is queried by A to the sign or-
acle, C updates W as W =W [fmg.

Sign Forgery: On obtaining sufficient training, A
outputs a valid message-signature (m�;s�) pair such
that the following two conditions hold: 1. Verify
(pk;m�;s�) = accept, and 2. (m�) =2W where W is
set of all messages queried by A in Sign Oracle.

The advantage of an adversary A in breaking the
chosen plaintext security of signature scheme is de-
fined as:

AdvEUF�CMA
A = Pr[A ! (m�;s�) : Verify
(pk;m�;s�) = accept

V
(m�) =2W ].

2.5 Generic Framework for ID-based
Encryption Scheme

An ID-based encryption scheme can be defined as a
tuple hS ;K ;E ;Di, where S is the setup algorithm,
K is the key extract algorithm, E is the encryption
algorithm, and D is the decryption algorithm. The
algorithms are defined as shown below:
Setup: takes a security parameter k and returns
params (system parameters) and master key. Params
include a definition of finite message space M , and
a description of a finite ciphertext space C . Intu-
itively, params will be publicly known, while the mas-
ter key will be known only to the “Private Key Gener-
ator”(PKG).
Key Extract: takes params, master-key, and an arbi-
trary ID as input, and returns a private key d. Here
ID is the identity string that is used as a public key,
and d is the corresponding private decryption key. K
extracts a private key from the given public key.
Encrypt: takes params, ID, and M 2M as input. It
returns a ciphertext C 2 C .
Decrypt: takes params, C 2 C , and a private key d as
input. It returns M 2M .
These algorithms must satisfy the standard consis-
tency constraint. When d is the private key generated
by the Key Extract algorithm and corresponds to the
identity ID, the following should hold.
8M 2M :Decrypt: (params;C;d) = M; where C=

Encrypt: (params; ID;M).

2.6 Security Model for ID-based
Encryption Scheme

Chosen plaintext security (IND-CPA) is the standard
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acceptable notion of security for encryption schemes.
We say that an ID-based encryption scheme is seman-
tically secure against adaptive chosen plaintext attack
(IND-CPA) if any polynomially bounded adversary A
has negligible advantage in the following game with
the challenger C :
Setup: Challenger C runs the Setup algorithm. It
gives A the resulting system parameters params. It
keeps the master key msk to itself.
Phase I: A issues queries q1;q2; : : : ;qm where qi is as
follows:
KeyExtract Query hIDii: C corresponds by running
KeyGen algorithm to generate the private key di. It
sends di to A . These queries may be asked adap-
tively i.e. each query qi may depend on the replies
to q1;q2; : : : ;qi�1.
Challenge: A after getting sufficient training gives
two messages (m0;m1) of equal length, and an iden-
tity ID� on which it wishes to be challenged to C .
C picks a random bit b 2 f0;1g and sets the chal-
lenge ciphertext to C� = Encrypt (params; ID�;mb).
It sends C� as a challenge to A .
Phase II: A is again allowed to get training after get-
ting the challenge ciphertext C�. The only restriction
is that the private key of ID� should not be queried to
the key extract oracle.
Guess: Finally, after getting training in Phase II, A
produces an educated guess b

0 2 f0;1g. A wins if
b
0
= b. The advantage of A in breaking the chosen

plaintext security of an ID-based encryption system is
given by,

AdvIND�CPA
A = Pr[b

0
= b]� 1

2
.

3 BASIC SIGNATURE SCHEME
(BasicSign)

We will now construct a secure public key signature
scheme in the random oracle model under the CDH
assumption. This signature scheme is weakly un-
forgeable, i.e. the adversary is not allowed to submit
as forgery a message signature pair for which mes-
sage it has already queried the signature oracle. This
is a PKI based signature scheme and this will be used
by the PKG to generate the private key for the users
of an ID-based encryption scheme.
User KeyGen: Let k be the security parameter and
G1, G2 be cyclic prime order groups of order p, where
G1 is an additive group and G2 is a multiplicative
group. Choose P;Q 2R G1, and let ê : G1�G1!G2
be a bilinear map. To generate the key, user chooses

s 2R Zp and computes the public key Ppub = sP. The
user also chooses random values u0;u1:::::::uk 2 G1
and a cryptographic hash function H1(:) defined by,

H1 : f0;1gn ! f0;1gk

Here k is a number typically of size 128 bits, to
ensure collision resistance against birthday attack.
And n is the size of message. The public key is

G1;G2;P;Q; p; ê;H1;Ppub;u0;u1:::::uk

�
. The private

key of the user is hsi.
Sign: For generating the signature on message m 2
f0;1gn by the user, this algorithm uses the private key
of the user and performs the following:

� Computes qm = H1(m) 2 f0;1gk. Here, qm repre-
sents a k-bit number. Let qm[i] represent the ith bit
of qm.

� Chooses random rm; r̄m 2 Zp.

� Sets dm = sqm + rm 2 Zp.

� Sets Ym = r̄mP 2G1.

� Sets Xm = rmQ+ r̄m(uo +
k
å

i=1
qm[i]ui) 2G1.

� Outputs the signature s = hdm;Ym;Xmi.

Verify: Now, the generated signature can be verified
as follows:

� On receiving s = hdm;Ym;Xmi, compute qm =
H1(m) and rmP = dmP � qm(sP) = dmP �
qm(Ppub).

� Check if ê(P; Xm)
?
= ê(Ym; (u0 +

k
å

i=1
qm[i]ui))

ê(rmP; Q).
If the above check holds, return the signature as
“Valid” else return “Invalid”.

Correctness: If the signature is generated correctly,
then it will pass the verification test. In fact,

LHS= ê(P;Xm) = ê(P; rmQ+ r̄m(u0 +
k
å

i=1
qm[i]ui))

= ê(P; rmQ) ê(P; r̄m(u0 +
k
å

i=1
qm[i]ui))

= ê(rmP; Q) ê(r̄mP; (u0 +
k
å

i=1
qm[i]ui))

= ê(rmP; Q) ê(Ym; (u0 +
k
å

i=1
qm[i]ui))

= RHS

Remark. For generating the private keys of the users
of an ID-based system, a PKI based signature scheme
will be used by the PKG of the ID-based system. We
want our PKI based signature scheme to have the fol-
lowing properties:
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� In the signature scheme, the message hash should
not take any other parameters as input. Hence
Schnorr (Schnorr, 1989) type signature schemes
cannot be used for the purpose. In order to of-
fer existential unforgeability, Schnorr type signa-
ture schemes will always use hash functions of
the type H (message;randomness; :::). In fact, if
the hash function uses only the message as the
parameter, the signature scheme becomes forge-
able. Hence the hash function uses additional ran-
domness as an input parameter. However such
schemes if used by a PKG, leads to inefficient ID-
based encryption schemes.

� Our second goal is to avoid Full Domain Hash
function and hence we make use of a computa-
tion similar to Waters’ hash function. Hence the
BLS (Boneh et al., 2004) type signatures which
use FDH cannot be used for our purpose.

Since none of the existing key constructs are suit-
able for our purpose, we have come up with a novel
key construct. Although, unlike Schnorr signature
scheme, our scheme uses only message as the input to
the hash, still our scheme is secure because we have
bound the randomness rm and hash H1 in other com-
ponents of the signature through a computation simi-
lar to Waters’ hash.

Theorem 1: If there exists an EUF-CMA adversary
for our BasicSign scheme with a non-negligible prob-
ability, then we show that there exists a challenger
C who can solve the Computational Diffie-Hellman
problem (CDHP) on G1 with almost the same proba-
bility.

4 CONSTRUCTION OF A CPA
SECURE ENCRYPTION
SCHEME

In this section we propose a novel ID-based encryp-
tion scheme without using bilinear pairing during
encryption and prove the security in random oracle
model, assuming the hardness of Computational Bi-
linear Diffie-Hellman Problem (CBDHP). The PKG
of this scheme uses BasicSign signature scheme ex-
plained in the previous section to generate private key
of the user. The details of the new scheme and the
formal proof is given below.

4.1 The Scheme (G-Scheme)

Setup: Let k be the security parameter and G1,
G2 be cyclic prime order groups of order p, where

G1 is an additive group and G2 is a multiplicative
group. Let P;Q 2R G1 be the elements of G1, and
ê : G1�G1 ! G2 be a bilinear map. PKG chooses
s 2R Zp and computes the public key Ppub = sP. PKG
also sets a = ê(P;Q) , a1 = ê(P;Q)s. Additionally,
PKG chooses random values u0;u1:::::::uk 2 G1 and
picks two cryptographic hash functions H1(:), and
H2(:) defined by,

H1: f0;1gn!f0;1gk, and H2: G2!f0;1gn

Here k is a number typically of size 128
bits, to ensure collision resistance against
birthday attacks. And n is the size of iden-
tity. The system parameters params are

G1;G2;P;Q; p; ê;H1;H2;Ppub;a;a1;u0;u1:::::uk

�
.

The master private key is hsi.
Key Extract. Given the master private key s, and the
user identity IDA 2f0;1gn, the algorithm does the fol-
lowing:

1. Computes qA = H1(IDA) 2 f0;1gk. Here, qA rep-
resents a k-bit number. Let qA[i] represent the ith

bit of qA.

2. Chooses random rA; r̄A 2 Zp.

3. Sets dA = sqA + rA 2 Zp.

4. Sets YA = r̄AP 2G1.

5. Sets XA = rAQ+ r̄A(uo +
k
å

i=1
qA[i]ui) 2G1.

6. Outputs the private key of the user as DA =
hdA;YA;XAi.

Note. The Key Extract algorithm is a probabilistic
polynomial time (PPT) algorithm. However, this al-
gorithm can be made deterministic by generating the
random coins rA; r̄A through a pseudo random func-
tion with the identity and the master private key as
the seeds (Pornin, 2012).
Encryption. On input of a message m2M and iden-
tity IDA 2 f0;1gn, the encrypt algorithm works as fol-
lows:

� Chooses r 2R Zp.

� Computes c1= rP and b = a
rqA
1 .

� Computes c2 = r(uo +
k
å

i=1
qA[i]ui).

� Computes c3 = H2 (b)�m.

� Outputs the ciphertext C = hc1;c2;c3i.
Decryption. Let C = hc1;c2;c3i be a valid encryption
of m under the identity IDA. Then C can be decrypted
using the private key DA as follows:

1. Compute b
0
= ê(c1;dAQ�XA) ê(YA; c2).
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2. Compute m = H2

�
b
0
�
� c3.

Correctness: It can be shown that b
0
= b as follows:

b = a
rqA
1

b
0
= ê(c1;dAQ�XA) ê(YA; c2)

= ê(c1;dAQ) ê(c1;�XA) ê(r̄AP; r(u0 +
k
å

i=1
qA[i]ui))

= ê(rP; (sqA + rA)Q) ê(rP; rAQ+ r̄A(u0 +
k
å

i=1
qA[i]ui))

�1

ê(r̄AP; r(u0 +
k
å

i=1
qA[i]ui))

= ê(rP; sqAQ)ê(rP; rAQ) ê(rP; rAQ)�1

ê(rP; r̄A(u0 +
k
å

i=1
qA[i]ui))

�1

ê(r̄AP; r(u0 +
k
å

i=1
qA[i]ui))

= ê(P; Q)srqA

= a
rqA
1 = b

Theorem 2. If there exists an IND-CPA adversary for
our scheme G with a non-negligible probability then
it is possible to construct another algorithm which
can solve the Computational Bilinear Diffie-Hellman
problem (CBDHP) with almost the same probability.

5 IND-CCA SECURE SCHEME

We apply the Fujisaki Okamoto Transformation (Fu-
jisaki and Okamoto, 2013) to convert the IND-CPA
secure G scheme of the previous section into an adap-
tive chosen ciphertext secure ID-based scheme in the
random oracle model. We obtain the following IBE
scheme which we call the G

0
scheme.

5.1 The Scheme
�

G
0� scheme

�
Setup : The Setup is similar to G scheme. In
addition, we pick a hash function H3(:) defined as,
H3 : f0;1gn�f0;1gr ! Zp. And, redefine the hash
function H2(:), as H2 : G2 ! f0;1gn+r. Remember
that r is a number typically of size 128 bits.
Key Extract. As in G scheme.
Encryption. On input of a message m 2 f0;1gn and
identity IDA, the encrypt algorithm works as follows:

� Chooses w 2 f0;1gr and computes
r = H3(mjjw) 2 Zp.

� Computes c1= rP 2G1 and b = a
rqA
1 .

� Computes c2 = r(uo +
k
å

i=1
qA[i]ui) 2G1.

� Computes c3 = H2 (b)� (mjjw).

� Output the ciphertext C = hc1;c2;c3i.
Decryption. Let C = hc1;c2;c3i be a valid encryption
of m under the identity IDA. Then C can be decrypted
by the user as follows:

� Computes b
0
= ê(c1;dAQ�XA) ê(YA; c2).

� Computes (m
0 jjw0) = H2

�
b
0
�
� c3.

� Compute r
0
= H3(m

0 jjw0).

� Test that c1 = r
0
P and c2 = r

0
(u0 +

k
å

i=1
qA[i]ui).

If the above two tests hold, output m
0
as the decryption

of C.
Correctness: It can be easily shown that m

0
= m since

b
0
= b. The proof of correctness follows from that of

G scheme.

Remark. Let G be an IND-CPA secure ID-based
encryption scheme. Then after applying Fujisaki
Okamoto transformation (Fujisaki and Okamoto,
2013) to G, we get an IND-CCA secure ID-based en-
cryption scheme G

0
under the same assumption that

CBDH is hard to solve in (G1;G2). This statement
follows from the proof of standard transformation due
to Fujisaki Okamoto for converting an IND-CPA se-
cure scheme to IND-CCA secure scheme.

6 CONCLUSION

In this paper, we have designed a novel identity based
encryption scheme in random oracle model which re-
duces to the well known CBDH problem. Our scheme
differs from all existing schemes because it does not
use full domain hash and it does not employ pairing
computation during encryption process, thus making
it more efficient. In order to achieve these proper-
ties, we have proposed a novel PKI based signature
scheme, which is used to extract the private key of
the identity based encryption scheme. We have first
proved the security of our scheme in CPA security
notion, and then using Fujisaki Okamoto transforma-
tion we have proposed the CCA secure version of our
scheme. Ours is the only scheme which does not
use bilinear pairing during encryption without com-
promising on security. Our scheme is proven secure
under the well known CBDH problem.
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