
SOA and EDA: A Comparative Study
Similarities, Differences and Conceptual Guidelines on their Usage

Zaharah Allah Bukhsh, Marten van Sinderen and P. M. Singh
University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands

Keywords: Service Oriented Architecture, SOA, Event Driven Architecture, EDA, Event Driven SOA, SOA 2.0, Learning
Management System, LMS.

Abstract: Changing business requirements and new technologies trigger the business stakeholders to shift their approach
from many small isolated systems to a single connected system. Integration of isolated systems is partially
supported by service oriented architecture (SOA) and event driven architecture (EDA), each of which provides
a set of system design guidelines. Since the purpose of both architectures is similar, the stakeholders have
to make a choice on which architecture to use. The objective of this paper is to investigate the differences
between SOA and EDA and provide conceptual guidelines on which architecture to consider for a given set
of requirements. Apart from literature, we have considered various online resources (blogs, forums) that
argue about differences and similarities between SOA and EDA. To clarify the design principles of both
architectures, we present a case study of a learning management system (LMS).

1 INTRODUCTION

Emergence of web services has brought the service
oriented architecture (SOA) into limelight (Natis,
2003). Features of loose coupling, flexibility, time to
market, distributed nature and reusability of legacy
applications gave the SOA a competitive advantage
over the object oriented paradigms (He, 2003). The
primary focus of SOA is to enable exploitation of
services by accessing to remote components’
interfaces through request and response methods
(e.g. RPC). The concept of SOA is similar to the
traditional client-server architecture of systems. But
with changing the way of doing business, an IT
system is not only required to be reactive but also
proactive. Shortly after SOA, another architecture,
known as event driven architecture (EDA), emerged
which is able to sense and respond to real-time
events. EDA is able to detect situations based on
monitoring events and react to these situations (i.e.
be proactive). From the business perspective, SOA
mimics the business function (e.g. stock
management) and EDA accommodates the real time
business events (e.g. stock is low).

There have been discussions about the
similarities and differences between SOA and EDA
(Cramon, 2013; Dubray, 2014; van Hoof, 2006b).
Moreover, there is an abundance of literature which
emphasizes the relationship between SOA and EDA

such as the combining of SOA and EDA features,
and the interaction of such features (Maréchaux,
2006; Malekzadeh and Pessi, 2010; Zagarese et al.,
2013). With the on-going discussions, Oracle
proposed the combination of SOA and EDA under
the title of SOA 2.0 (Krill, 2006).The terminology
and idea of SOA 2.0 was highly
criticized(McKendrick, 2006; Little, 2006), but, at
the same time it suggest the event-driven approach to
business in order to capture the real-time business
events.

With many architecture patterns and varying
business requirements, business architects and IT
professionals need to make a decision on which
architecture to consider for the design of a specific
system. So, the motivation of this work is to facilitate
the business stakeholders in their architectural
choices while keeping the requirements of the system
in mind. The contribution of this work lies in its role
to clarify the major differences between SOA and
EDA. It will also provide the the conceptual
guidelines to business stakeholders for the choice of
a particular architecture. We have chosen a case
study of a learning management system (LMS), for
the discussion of design principles of SOA and EDA.
The reason for considering the LMS case study is
twofold: on one hand, it is easy to consider the
LMS’s design problems even from an academic
setting and, on the other hand, a relatively large

213Allah Bukhsh Z., van Sinderen M. and Singh P..
SOA and EDA: A Comparative Study - Similarities, Differences and Conceptual Guidelines on their Usage.
DOI: 10.5220/0005539802130220
In Proceedings of the 12th International Conference on e-Business (ICE-B-2015), pages 213-220
ISBN: 978-989-758-113-7
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)



audience (students and researchers) has a basic
understanding of e-learning environments.

This paper is structured as follows: section 2
presents the basic background knowledge of SOA
and EDA along with sample scenarios. Major
differences between SOA and EDA are discussed in
section 3. Section 4 outlines the design problems of a
learning management system and their solution using
the SOA and EDA architectural approach. Section 5
provides the set of guidelines for stakeholders in
making architectural choices. Finally, section 6
present our conclusion.

2 BACKGROUND

In this section, we present background of SOA and
EDA. The brief introduction of SOA and EDA is
provided in section 2.1 and 2.2 respectively. Section
2.3 presents sample scenarios on the use of SOA and
EDA.

2.1 Service Oriented Architecture

SOA is a way of designing software system where
independent software components provide services
to end-users or other software components
(Papazoglou, 2003). A service can be defined as a
unit of functionality that is self-contained,
discoverable and can be dynamically invoked(Bianco
et al., 2007). SOA has three basic participants:
service consumer, services provider and service
registry. The interaction among these participants
involve publish, find and bind operations(Champion
et al., 2002). Service provider defines the service
description and publishes it to a service registry.
Using the find operation, service requester discovers
the service description on service registry. Finally,
the service requester invoke the service from service
provider using the bind operation.

2.2 Event Driven Architecture

EDA is an architecture design where services of
independent software components communicate
through event notifications(Woolf, 2006).
Maréchaux (2006) defines EDA as “a methodology
for designing and implementing applications and
systems in which events transmit between decoupled
software components and services”. EDA uses
publish-subscribe architecture to enable the
communication among services and to end-users. It
has three main components: event emitter, event
broker and event subscriber. An event emitter detects

events and posts an announcement to the event
broker. The event broker collects all the triggered
events and forwards them to interested subscribers.
Finally, event subscribers receive event notifications
and respond accordingly. Event subscribers are able
to further trigger the event to other services.

2.3 Sample Scenarios

To elaborate SOA and EDA, we are considering a
simple example of an ‘authentication process’. This
process verifies the login credentials of users in order
to ensure that right person get access to computer
system.

In figure 1, we show the ‘authentication process’
scenario from the SOA respective, where a client,
which is a service consumer, requests a login service
to get access to the system through the service
interface. In response, the login service, which is a
service provider, can invoke other services through
service interfaces in order to send a random code to
an e-mail/mobile for further verification. The service
consumer is bounded to wait for and act on the
response/reply from the service provider before
access is possible. Thus, even though, the service
consumer and service provider do not have
interdependencies yet both are bounded during a
communication.

Figure 2 presents the ‘authentication process’
from the EDA perspective. We have modified the
login scenario in order to demonstrate the
event-based communication among services. The
client request the login service by the providing login
credentials(1). In case of incorrect credentials, the
login service will trigger the event to security
service(2) through the enterprise service bus (ESB).
In addition to providing the connection among
services, ESB is also able to function as an event
broker. Event broker analyse the triggered event and
forward it to security service(3). In this scenario,
login service is event emitter while the security
service is event subscriber.

Figure 1: Service Oriented Architecture of ‘Authentication
Process’.

ICE-B�2015�-�International�Conference�on�e-Business

214



Figure 2: Event driven Architecture of ‘Authentication
Process’.

On the other hand, the security service (i.e. event
subscriber) might take further security action by
temporary blocking the account. In this scenario, the
event emitter (login service) is not bounded to listen
to the event subscriber’s action/response(security
service). Moreover, the role of event emitter and
event subscriber are not mutually exclusive. A
service(e.g. login service) can be event subscriber as
well as event emitter at the same time. From high
level of abstraction, it can be said that the pattern to
invoke the services in SOA and EDA are different as
in SOA user command and other services can invoke
the service while in EDA the service can be invoked
with real-time event.

3 COMPARATIVE STUDY OF
SOA AND EDA

In literature, we found two divergent points of views
about SOA and EDA. According to one, SOA and
EDA complements each other, while according to
other, SOA and EDA are inverse of each other. In
section 3.1 and 3.2, we have highlighted some of the
basic commonalities and differences between SOA
and EDA.

3.1 SOA and EDA: View from
Literature

According to van Hoof (2008), EDA differs from
SOA in its focus. SOA has services at the centre of
its model while EDA has real-time events. SOA and
EDA also differ in their communication style, where
SOA approach is more focused on synchronous
communication while EDA is focused on
asynchronous communication. He summarise this
difference as “both styles focus on the same
architecture but from different viewpoints”(van
Hoof, 2007a). According to him, request-and-reply

pattern and publish-and-subscribe pattern, are inverse
of each other(van Hoof, 2006b). However, he also
agrees that the fusion of EDA and SOA will enhance
loose coupling and bring agility to business.
Debnath, vice president of Oracle server
technologies, names the EDA as the known cousin of
SOA (Rich, 2006). Contrary to van Hoof, Debnath
acknowledges that SOA and EDA overlap at certain
points but are very different at some. According to
him, both architectures require an underlying
infrastructure, a bus to carry requests in applications
network, and some business processing rules. He
notes that SOA and EDA are different only from the
perspective of how a company wants to solve a
problem. He refers to an analogy of the human body,
where eyes and ears are similar to EDA as sensing
the events and sending it to brain, while hands and
feet are similar to SOA as providing movement on
request of sense neurons.

Cramon (2013) considers the EDA as the solution
to problems caused by SOA. According to him, SOA
doesn’t solve the integration problem, it lacks agility
and the layered SOA is hard coupled. He proposes
EDA as the solution to enhanced agility of business
and solves the integration problems. According to
him, events can drive the business processes. Dubray
(2014) disagrees with Cramon on this point,
according to him the asynchronous communication
pattern doesn’t work in the business world. The
explanation by Candy bridges the gap between two
different points of views about SOA and EDA
(Chandy, 2009). According to him, SOA and EDA
are inverse of each other for those who approach
them based on their communication pattern. While,
SOA and EDA are complimentary for those who
approach it from the structural point of view where
both architecture enhance modularity and support
tight-to-loose and loose to very loose coupling
respectively.

3.2 SOA and EDA: Similar or Different

SOA and EDA has many features in common. Table
1. outlines the detailed differences between SOA,
EDA and SOA 2.0/event driven SOA. The
categorization of table 1 is formulated based on the
most discussed differences between the SOA, EDA
and their combination i.e. SOA 2.0 from collected
literature. It is worth noting that there doesn’t exist
much difference between EDA and SOA 2.0.

In addition to a difference in communication style,
discussed in section 4.1, SOA and EDA are different

SOA�and�EDA:�A�Comparative�Study�-�Similarities,�Differences�and�Conceptual�Guidelines�on�their�Usage

215



Table 1: Difference between SOA, EDA and event-driven SOA/SOA 2.0.

Category SOA EDA SOA 2.0/ Event-driven SOA
Basic approach Reactive approach: takes

action on command (service
pulling) (Malekzadeh and
Pessi, 2010; Kong, 2013)

Proactive approach: detect
events (which is change in
state) and take action (events
pushing) (Malekzadeh and
Pessi, 2010; Kong, 2013)

SOA provide the design
approach and infrastructure
while EDA provide
communication approach
in SOA2.0. (Levina and
Stantchev, 2009; Zicari, 2011;
Rich, 2006)

Difference in SOA, EDA and SOA 2.0 features
Business support Services driven approach

orchestrate the business
functions and business
processes (Sriraman and
Radhakrishnan, 2005)

Event driven approach
orchestrate the business events
along with business processes
(Sriraman and Radhakrishnan,
2005)

Based on specific scenarios,
business events and business
processes are dealt with SOA
and/or EDA (Levina and
Stantchev, 2009; Rich, 2006)

Level of coupling Loosely coupled in technical
domain but not in functional
domain (Malekzadeh and
Pessi, 2010; van Hoof, 2006a,
2007b; Juric, 2010)

Provide functional level
decoupling (Malekzadeh and
Pessi, 2010; Maréchaux, 2006;
van Hoof, 2007b; Juric, 2010)

Provide loose coupling to
decoupling due to events
driven approach (Maréchaux,
2006; Levina and Stantchev,
2009; Hanson, 2005)

Data dependency Data inconsistency is avoided
through data isolation
concept but it introduces
data dependencies (van Hoof,
2007b; Dahan, 2009).

Data redundancy is employed
to avoid dependencies and
event provide the data
synchronization function
(van Hoof, 2007b; Dahan,
2009)

Violets the atomicity and
consistency property of data
(similar to EDA)(Dahan, 2009)

Business/IT alignment Services become responsible
for certain part of business
domain.(Dahan, 2009)

Business events doesn’t
mimics real-time tasks of
certain business domains and
IT. (Dahan, 2009)

(similar to EDA)

Reusability Loosely coupled services
provide the reusability (van
Hoof, 2006a)

Reusability is enhanced due
to decoupled ends and fine-
grinded services (Clark and
Barn, 2012)

(similar to EDA)

Fault
tolerance/availability

In case back-end system is
down, processing of whole
system is halted and user has
to wait for response.(Dahan,
2009)

If the back-end system is down,
user’s request will still be
accepted and responded due
to data redundancy. (Dahan,
2009)

(similar to EDA)

Difference in Communication approach between SOA, EDA and SOA 2.0
Communication style Synchronous service

invocation/remote procedural
calls (request and
response)(Woolf, 2006;
van Hoof, 2007b; Juric, 2010;
Luckham, 2007)

Asynchronous service
invocation (Publish and
subscribe) (Woolf, 2006; van
Hoof, 2007b; Juric, 2010;
Luckham, 2007)

Synchronous, Asynchro-nous
communication between users
and service is performed by
events (Levina and Stantchev,
2009; van Hoof, 2007b;
Luckham, 2007)

Interaction approach Service need to be available
when service consumer request
it (Woolf, 2006; van Hoof,
2007b)

Event’s subscriber doesn’t need
to be available when event is
triggered (Woolf, 2006; van
Hoof, 2007b)

Service doesn’t need to
be available (Similar to
EDA)(Hanson, 2005)

Invocation approach One service consumer can
initiate one service at a time
(Maréchaux, 2006; Yuan and
Lu, 2009)

Event can trigger
many subscribers at a
time.(Maréchaux, 2006;
Yuan and Lu, 2009)

An event can trigger many
services at a time (Maréchaux,
2006; Hanson, 2005) (similar
to EDA)

Interaction pattern
(from requester)

Service consumer request
specific service and wait for
response (Woolf, 2006; van
Hoof, 2007b; Luckham, 2007)

Event emitter triggers the
event and doesn’t wait for
response. Emitter doesn’t
have knowledge on who are its
subscribers(Woolf, 2006; van
Hoof, 2007b; Luckham, 2007)

(Similar to EDA)

Interaction pattern
(from provider)

Service provider response back
with services/notification(van
Hoof, 2007b; Luckham, 2007)

Event subscriber takes action
but event emitter is not
necessarily aware of it(van
Hoof, 2007b; Luckham, 2007)

(Similar to EDA)

ICE-B�2015�-�International�Conference�on�e-Business

216



in management of data. SOA do not allow the data
replication at the functional level while multiple
copies of data can be maintained at technical level
(van Hoof, 2006a). On the other hand, EDA proposes
to maintain certain level of data replication and data
inconsistency, at functional level, which makes the
adoption of this architecture a controversial
debate(Dahan, 2009). With the expense of data
inconsistency, data replication reduce the
dependencies among services, and ultimately bring
loose coupling in services network. Moreover, by
managing the multiple copies of data, the system
availability time and fault tolerance can also be
improved. However, in case of system failure, the
data cleaning is a challenging task as data can be
inconsistent at times.

Besides differences, there are many similarities
between SOA and EDA. The integral parts of both
architectures are services. Both architectures aim to
provide agility to business. The basic SOA design
principles (service level agreement, service
discoverability, service atomicity, service abstraction,
service composability and service statelessness) are
also similar for EDA. The connection between SOA
and EDA can be better understood as the EDA being
the upper layer of SOA, where the later invokes the
services through events instead of commands.

4 CASE STUDY

This section provides the discussion of SOA and
EDA design principles for a learning management
system (LMS). In section 4.1, the introduction to
LMS and its design problems are given. The
discussion of the solution to the design problems of
LMS from SOA and EDA perspective is presented in
section 4.2 and 4.3 respectively. Finally, section 4.4
provides our insights on which architecture to choose
over the other.

4.1 Learning Management System

LMS is a web-based application that provides the
platform for interaction between students and
instructors. These days, almost every educational
institute uses a LMS to facilitate the communication
among students and instructor. Most popular LMSs
are Edmodo, Moodle and Blackboard (Dunn, 2012).
However, sometimes the features provided by LMS
are not adequate which leads to underutilization of
LMS or not using it at all.

Major limitations of many LMSs include
unavailability of required features, limited

customization, and interoperability issues (Fathema
and Sutton, 2013; Bickford, 2013). The changing
requirements from instructors and students cause a
mismatch of provided features of LMS and required
features of the LMS. Similarly, few LMSs provide
very limited customization ability to end-users e.g.
browsers’ provided file viewer, inability to add
deadlines to calendar. To overcome such limitations,
an educational institute has to use number of
different systems for various purposes, e.g. along
with the LMS, a calendar management tool, result
report generation tools and other systems could be
required. However, it must be possible for these
system to be interoperable with LMS. We can define
interoperability as the ability of system to talk to
other systems. Most of the vendor’s LMSs provide
zero interoperability and integration for other
systems at the learner’s side(Forment et al., 2009).

Based on these design problems, the e-learning
consortium proposed certain standards(Masie, 2002)
for the development of LMSs. These standards are
interoperability, re-usability, manageability and
accessibility. According to these standards, a LMS
should be able to connect with relevant other
systems, its components should be reusable, the
content and activities of a learner should be tracked,
and the system should be accessible from anywhere,
anytime and from any device.

4.2 SOA Guidelines to Overcome LMS
Design Problems

In this section, we discuss on how SOA supports the
standards proposed by e-learning consortium (Masie,
2002). Instead of single black box which is providing
all the functionalities to clients, SOA proposes a
layered approach which divides the whole
infrastructure into layers. Based on the SOA
reference architecture (Arsanjani et al., 2007),
figure 3 shows a partial LMS architecture. A simple
request-reply architecture between the presentation
layer and the services layer is presented.

Using SOA, other systems, independent of
platforms and languages, can connect to the LMS by
following the description of the service interfaces.
Figure 3 highlights the concept of provided
interfaces from services and required interfaces from
the presentation layer to enable communication. Any
service interface that complies to the standard (e.g.
WSDL) is discoverable by services and other
systems. A change in implementation of service
doesn’t affect the service interfaces, which makes
communication among clients, LMS and other
systems transparent. The problem of interoperability

SOA�and�EDA:�A�Comparative�Study�-�Similarities,�Differences�and�Conceptual�Guidelines�on�their�Usage

217



Figure 3: LMS model based on SOA reference architecture.

is reduced through the services and standard service
interfaces of SOA. The independent nature of
services enhances the reusability of the system. Each
service is responsible to provide certain
functionalities of the LMS to the users, e.g. a
‘Grades’ service is responsible to upload, save,
maintain and show the grades of registered users.
Services are supported by the underlying lower level
layer. Since, our discussion is limited to design
issues of services we have omitted lower level layers
from figure 3. Independent services and standard
service interfaces reduce the complexities of
interoperability, integration and collaboration posed
by traditional systems. However, interoperability
aspect of SOA-based systems is sometimes
challenged, due to coupled request-reply
architecture(Taylor et al., 2009).

The functionality of the LMS is visible only
through the services. The activities of students and
instructors on LMS are easy to track with services
invocation calls, which makes the system more
transparent and manageable. Since the services
infrastructure is not tightly coupled, accessibility of
services are much enhanced as compared to
procedures based object oriented scenarios where
procedures are dependent on each other.

4.3 EDA Guidelines to Overcome LMS
Design Problems

In this section, we discuss how EDA support the
standards proposed by the e-learning
consortium(Masie, 2002). In figure 4, we have
presented a partial LMS architecture based on EDA
reference architecture (Moxey et al., 2010).

EDA takes the SOA layered approach one step
further by introducing the publish-subscribe
architecture, which brings end-to-end decoupling
among services. The integral part of the system is the
service layer. However, EDA enables the decoupling

Figure 4: LMS model based on EDA reference architecture.

on the services ends(Yuan and Lu, 2009). The
decoupling of services improves the reusability of
the system. In EDA, the services are meant to be
fine-grained. We illustrate this (in figure 4) by
showing the ‘Grades Upload’ and ‘Grades Show’ as
separate services compared to the ‘Grades’ service
represented in figure 3. The Grades Upload services
can trigger the Grade Show service by publishing an
event of ‘grades available’. Fine-grained services
enhance the reusability of system but on the other
hand it also increases the network load because a
client may need to trigger an event number of times
in order to get the complete data. The decoupled
services and asynchronous communication pattern of
EDA improves the interoperability of LMS.
Moreover, fine-grained services enable the LMS to
deal with the changing requirements of end-users.
The event-driven processing characteristic of EDA
allows the system to be easily manageable as all the
triggered events by users/services can be tracked and
responded through the event processor and event
processing queue. Due to the decoupled services, an
EDA implementation can improve the availability
and accessibility of the system. For instance, even if
the back-end repository of the LMS is down due to
network load, the Grades Upload service can still
upload the grades and provide the response message
(Arsanjani et al., 2007).

4.4 Which Architecture to Choose?

Both architectures, SOA and EDA, are able to solve
the design problems of LMS. However, the solutions
provided by both architecture has some limitations.
Standard service interface of SOA bring the
interoperability aspect to LMS but has a tight
communication architecture. On the other hand,
EDA enhance the accessibility and reusebility by
decoupling but it is unable to respond to client’s
awaiting request efficiently.

The combinational approach of SOA and EDA,
can be called SOA 2.0, will enable a LMS to sense

ICE-B�2015�-�International�Conference�on�e-Business

218



the real-time events as well as deal with client’s
awaiting requests. SOA can provide the service
infrastructure with standard service interface while
the EDA is able to build a smart and self-aware LMS.
The resulting LMS will have enhanced system
interoperability and accessibility for clients while at
the same time can sense the real-time events. (e.g.
LMS can sense the system failure and can
automatically initiates the actions to resolve them).

5 DISCUSSION

The basic purpose of SOA and EDA is to bring the
agility to business systems in order to deal with
changing day-to-day scenarios. The infrastructure of
both architectures is based on services with
difference in service invocation method. The main
differentiation point is request-reply architecture of
SOA and the events based publish-subscribe
architecture of EDA. Based on literature study, we
can conclude that SOA and EDA have different
capabilities. In the following, we will provide some
conceptual guidelines, derived from literature study,
on which architecture approach to adapt considering
the system’s requirements.

SOA is a architectural solution if a (a) system is
of transactional nature, (b) high data integrity need to
be maintained, (c) client’s awaiting requests need to
be handled in timely manner, and (d) strong cohesion
is required in services implementation. By strong
cohesion of services, we mean a service should be
able to provide the functionality of certain business
domain. Example of SOA based system is banking
system where business operations are set of atomic
transactions (e.g. deposit, withdraw) which are
required to maintain data integrity all the time.

With different capabilities than SOA, EDA is
suitable for those (a) systems which is of analytical
nature, (b) automated execution of task is required
based on conditions, (c) client requests can be
entertained later in time, and (d) decoupling is
required in services implementation. Decoupling
enhance the system’s ability to sense and respond to
events. Example of EDA based system is inventory
manager where a business event must be sensed and
responded in case of stock is low, order accepted is
greater than available stock, etc.

Except their difference in service invocation
method, SOA and EDA complement each
other(Maréchaux, 2006; Dahan, 2009; Rich, 2006).
The varying design principles of both architectures
are able to provide a system that is enriched in
functionality. SOA provide the EDA with distributed

setting of services which makes the sensing and
responding of events possible. On the other hand,
EDA replace the hard-coupled remote procedural
calls with flexible sense-and-publish architecture.
This combinational approach of SOA and EDA is
collectively referred as event-driven SOA or SOA
2.0. Event-driven SOA is able to sense the analytical
events and can also deal with transactional requests.

6 CONCLUSIONS

SOA and EDA are architecture designs which assist
in system implementation. Both of these
architectures are different in their communication
pattern yet maintain similarities in basic service
infrastructure. Requirements of today’s business
demand a system that is smart and self-aware in
dealing with real-time situations and, at the same
time, can manage customers’ requests. With these
requirements, events and services are both needed.
SOA has to borrow the event-driven approach from
EDA, and EDA has to base on SOA services and
standard interfaces.

Our research contributes to the discussion on the
similarities and differences between SOA and EDA.
This discussion serves a higher purpose, namely to
be able to decide which (combination of)
architectural patterns is best to fulfil given
requirements. We provided guidelines to help
making such decisions. We have concluded that SOA
and EDA are different in their communication styles
and in some service design principles but these
differences doesn’t make these architecture mutually
exclusive. As a future direction, further comparative
studies based on the practical implementation of
SOA, EDA and their combination can bring more
insights into their capabilities, differences & benefits.

REFERENCES

Arsanjani, A., Zhang, L.-J., Ellis, M., Allam, A., and
Channabasavaiah, K. (2007). Design an SOA solution
using a reference architecture. IBM DeveloperWorks.

Bianco, P., Kotermanski, R., and Merson, P. F. (2007).
Evaluating a service-oriented architecture. Technical
Report.

Bickford, A. (2013). 12 common complaints about learning
management systems (LMS). [Online] Available at:
http://bit.ly/N6C2k3 [Accessed: 10th Nov 2014].

Champion, M., Ferris, C., Newcomer, E., and Orchard, D.
(2002). Web services architecture. W3C working draft,
14.

SOA�and�EDA:�A�Comparative�Study�-�Similarities,�Differences�and�Conceptual�Guidelines�on�their�Usage

219



Chandy, M. (2009). One day SOA and EDA will be used
in all aspects of daily life: Dr. K. Mani Chandy explains.
[Online] Available at: http://bit.ly/1Du2uay [Accessed:
23 Oct 2014].

Clark, T. and Barn, B. S. (2012). A common
basis for modelling service-oriented and event-driven
architecture. In Proceedings of the 5th India Software
Engineering Conference, ISEC’12, pages 23–32.

Cramon, J. (2013). SOA and event driven architecture (SOA
2.0). [Online] Available at: http://slidesha.re/1MrLNEf
[Accessed: 10 Oct 2014].

Dahan, U. (2009). EDA: SOA through the looking glass.
[Online] Available at: http://bit.ly/1vQqwiL [Accessed:
10 Nov 2014].

Dubray, J.-J. (2014). SOA vs EDA. [Online] Available at:
http://slidesha.re/1FjQU7u [Accessed: 15 Oct 2014].

Dunn, J. (2012). The 20 best learning management systems.
[Online] Available at: http://bit.ly/1vzRnd9 [Accessed:
28 Nov 2014].

Fathema, N. and Sutton, K. L. (2013). Factors influencing
faculty members learning management systems adoption
behavior: An analysis using the technology acceptance
model. International Journal of Trends in Economics,
Management and Technology, USA.

Forment, M., Guerrero, M., Gonzlez, M., Pealvo, F., and
Severance, C. (2009). Interoperability for LMS: The
missing piece to become the common place for elearning
innovation. In Visioning and Engineering the Knowledge
Society. A Web Science Perspective, volume 5736, pages
286–295. Springer Berlin Heidelberg.

Hanson, J. (2005). Event-driven services in SOA.
Javaworld.

He, H. (2003). What is service-oriented architecture.
Publicao eletrnica em, 30:50.

Juric, M. B. (2010). WSDL and BPEL extensions for
event driven architecture. Information and Software
Technology, 52(10):1023–1043.

Kong, X. (2013). A financial services case study of SOA
based on CEP. Journal of Theoretical and Applied
Information Technology, 48(1):595–599.

Krill, P. (2006). Make way for SOA 2.0. [Online] Available
at: http://bit.ly/1zIZCEb [Accessed: 5 Nov 2014].

Levina, O. and Stantchev, V. (2009). Realizing event-driven
SOA. ICIW, 9:37–42.

Little, M. (2006). SOA 2.0 ignorance. [Online] Available
at: http://bit.ly/1EFhDaH [Accessed: 7 Oct 2014].

Luckham, D. (2007). SOA, EDA, BPM and CEP
are all complementary. [Online] Available at:
http://bit.ly/1AKtTbi [Accessed: 7 Nov 2014].

Malekzadeh, B. and Pessi, K. (2010). Event-driven
architecture and SOA in collaboration-a study of how
event-driven architecture (EDA) interacts and functions
within service-oriented architecture (SOA). Master’s
thesis, University of Gothenburg.

Maréchaux, J.-L. (2006). Combining service-oriented
architecture and event-driven architecture using an
enterprise service bus. IBM Developer Works, pages
1269–1275.

Masie, E. (2002). Making sense of learning specifications
& standards: A decision makers guide to their adoption.
The Masie Center, evaluation.

McKendrick, J. (2006). Please, no SOA 2.0. [Online]
Available at: http://zd.net 17IJvAQ [Accessed: 7 Oct
2014].

Moxey, C., Edwards, M., Etzion, O., Ibrahim, M., Iyer,
S., Lalanne, H., Monze, M., Peters, M., Rabinovich, Y.,
and Sharon, G. (2010). A conceptual model for event
processing systems. IBM Redguide publication.

Natis, Y. V. (2003). Service-oriented architecture scenario.
Gartner Research, Stamford.

Papazoglou, M. P. (2003). Service-oriented computing:
concepts, characteristics and directions. In Web
Information Systems Engineering, 2003. WISE 2003.
Proceedings of the Fourth International Conference on,
pages 3–12.

Rich, Seeley, N. W. (2006). Oracle’s debnath on
making an event-driven SOA. [Online] Available at:
http://bit.ly/1Ei4moL [Accessed: 23 Oct 2014].

Sriraman, B. and Radhakrishnan, R. (2005). Event driven
architecture augmenting service oriented architectures.
Report of Unisys and Sun Microsystems.

Taylor, H., Yochem, A., Phillips, L., and Martinez, F.
(2009). Event-driven architecture: how SOA enables the
real-time enterprise. Pearson Education.

van Hoof, J. (2006a). How EDA extends SOA and why it is
important. [Online] Available at: http://bit.ly/1L5UfY8
[Accessed: 15 Nov 2014].

van Hoof, J. (2006b). Why to distinguish between soa
and eda. [Online] Available at: http://bit.ly/1DiFpfU
[Accessed: 27 Oct 2014].

van Hoof, J. (2007a). The magical A of SOA and EDA.
[Online] Available at: http://bit.ly/1L5TWfZ [Accessed:
7 Oct 2014].

van Hoof, J. (2007b). SOA and EDA: Using events to bridge
decoupled service boundaries. The SOA Magazine,(4).

van Hoof, J. (2008). EDA versus CEP (and SOA). [Online]
Available at: http://bit.ly/1EFiOXH [Accessed: 16 Nov
2014].

Woolf, B. (2006). Event-Driven Architecture and
Service-Oriented Architecture. [Online] Available at:
http://ibm.co/1L5UdiQ [Accessed: 15 Nov 2014].

Yuan, S.-T. and Lu, M.-R. (2009). An value-centric event
driven model and architecture: A case study of adaptive
complement of SOA for distributed care service delivery.
Expert Systems with Applications, 36(2):3671–3694.

Zagarese, Q., Furno, A., Canfora, G., and Zimeo, E. (2013).
Towards effective event-driven soa in enterprise systems.
In Systems, Man, and Cybernetics (SMC), 2013 IEEE
International Conference on, pages 1419–1424. IEEE.

Zicari, R. (2011). Advancing SOA with an event-driven
architecture. [Online] Available at: http://bit.ly/17iGxSx
[Accessed: 15 Nov 2014].

ICE-B�2015�-�International�Conference�on�e-Business

220


