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Abstract: We compare extreme learning machines with cascade correlation on a standard benchmark dataset for 
comparing cascade networks along with another commonly used dataset. We introduce a number of hybrid 
cascade extreme learning machine topologies ranging from simple shallow cascade ELM networks to full 
cascade ELM networks. We found that the simplest cascade topology provided surprising benefit with a 
cascade correlation style cascade for small extreme learning machine layers. Our full cascade ELM 
architecture achieved high performance with even a single neuron per ELM cascade, suggesting that our 
approach may have general utility, though further work needs to be done using more datasets. We suggest 
extensions of our cascade ELM approach, with the use of network analysis, addition of noise, and 
unfreezing of weights. 

1 INTRODUCTION 

Extreme learning machines (ELMs) are a fast way to 
construct the output weights for single layer feed 
forward neural networks, where the input layer of 
weights is frozen. The output weights can be trained 
using the delta rule, but it is quicker to use the 
Moore-Penrose pseudo-inverse to estimate the 
weights (Huang, et al., 2004). A thorough survey 
can be found in Huang (et al, 2011). Beyond the 
initial successes with the MNIST dataset, ELM 
networks have been successfully used in various 
application areas such as face recognition (Marques 
and Graña, 2012), and to handle uncertain data (Sun, 
et al, 2014). 

Cascade correlation neural networks are a way to 
grow narrow deep networks efficiently (Fahlman 
and Lebiere, 1990). A layered cascade network has 
been proposed and some initial good properties 
shown (Shen and Zhu, 2012) and provides part of 
the motivation for our work. Cascade correlation 
freezes weights after each neuron is added, so only 
new weights are trained, which has some obvious 
similarities to ELM, if we could do this in a layered 
fashion rather than neuron-by-neuron. 

There is little prior art in the combination of 
ELM and cascade correlation related structures. We 
note there is some work on Echo State networks by 
Yao (et al, 2013) which has some similarity. Echo 

state networks were introduced by Jaeger (2001), 
and use a similar algorithm to train recurrent and not 
feedforward networks. See Bin (et al, 2011) for a 
comparison of Echo State and ELM. We also note 
that Wefky (et al, 2013) define cascade networks in 
general as we define our shallow cascade network 
topology, and Tissera and McDonnell (2015) use a 
layered auto-associative structure which could be 
described as a cascade network, though they do not 
express this in their paper. 

2 BACKGROUND 

The most common neural network model is a multi-
layer feedforward neural network trained using the 
back-propagation algorithm (backprop) (Rumelhart, 
Hinton and Williams, 1986). It is generally accepted 
that three layers of processing neurons are sufficient 
to learn arbitrary mappings from the input to the 
output given sufficient neurons in the intermediate 
(‘hidden’) layers. It is possible to eliminate one of 
the layers by accepting multiple outputs representing 
the same output class, so two layers of processing 
neurons are sufficient. Thus we have the output layer 
and a single hidden layer. The key to supervised 
learning in feed-forward networks is the error signal 
derived from the difference between actual and 
desired output weights, which is used to modify the 
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hidden-to-output weights to improve network 
performance at each step. This error signal is then 
estimated for each preceding layer, but the error 
signal attenuates. 

2.1 Extreme Learning Machine 

 

Figure 1: Simple ELM network. 

Huang et al’s (2004) principal contribution was to 
suggest that a set of random weights in the hidden 
layer could be used as a way to provide non-linear 
mapping between the input neurons and the output 
neurons. By having a large enough number of 
neurons in the hidden layer the algorithm can map a 
small number of input neurons to an arbitrarily large 
number of output neurons in a non-linear way. 
Training is performed only on the output neurons 
and performance similar to multi-layer feed-forward 
networks using back propagation achieved with 
much reduced training time.  

It is possible to train an ELM network as shown 
in Figure 1 by using back-propagation, but since the 
input-to-hidden weights are fixed, it is more efficient 
to estimate the output weights using the Moore-
Penrose pseudo-inverse (Huang et al., 2004). The 
weight matrix calculated is the best least square 
error fit for the output layer and in addition provide 
the smallest norm of weights, which is important for 
optimal generalisation performance (Bartlett, 1998). 

2.2 Cascade Correlation 

The Cascade Correlation algorithm (Cascor) 
(Fahlman and Lebiere, 1990) is a very powerful 
method for training artificial neural networks. 
Cascor is a constructive algorithm which begins 
training with a single input layer connected directly 
to the output layer. Neurons are added one at time to 
the network and are connected to all previous hidden 
and input neurons, producing a cascade network. 
When a new neuron is to be added to the network, 
all previous network weights are 'frozen'. The input 

weights of the neuron which is about to be added are 
then trained to maximise the correlation between 
that neuron's output and the remaining network 
error. The new neuron is then inserted into the 
network, and all weights connected to the output 
neurons are then trained to minimise the error 
function.  

Thus there are two training phases: the training 
of the hidden neuron weights, and the training of 
output weights. A previous extension to the cascor 
algorithm was by the use of the RPROP (Riedmiller, 
1994) algorithm to train the whole network 
(Treadgold and Gedeon, 1997) with ‘frozen’ weights 
represented by initially low learning rates. That 
model (Casper), was shown to produce more 
compact networks, which also generalise better than 
Cascor. 

2.3 Caveats 

We have said it is generally accepted that 3 layers of 
processing neurons is sufficient, but we must point 
out that this is not always true.  

For example, we know that in the field of 
petroleum engineering, in order to reproduce the 
fine-scale variability known to exist in core porosity/ 
permeability data, separate neural nets are used for 
porosity prediction, followed by another for 
permeability prediction. This produces better results 
than a single combined network (Wong, Taggart and 
Gedeon, 1995), and for hierarchical data (Gedeon 
and Kóczy, 1998).  

3 CASCADE CORRELATION 
AND EXTREME LEARNING 
MACHINE 

ELMs can be trained very quickly to solve 
classification problems. In general the larger the 
hidden layer the higher the learning capacity of the 
network. However the size of the hidden layer is 
critical to performance. Too small and the network 
will not have sufficient capacity to learn but too 
large, learning times will suffer and over fitting 
occurs.  

Finding the ideal size for the layer is 
problematic. If the number of neurons is greater or 
equal to the number of training patterns then the 
network will be able to achieve 100% learning. 
However this is not a useful conclusion as in most 
cases we would expect the network to achieve 
satisfactory learning with far less neurons than this. 
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The random nature of the hidden layer further 
exacerbates this problem of finding the ideal layer 
size because depending on the random weights 
added we may require more or less weights.  

It would be convenient if we could start with a 
relatively small number of weights, test the network 
and if performance is substandard gradually add 
more weights. In this section we explore some 
simple modifications of the ELM architecture which 
makes this approach possible.  

3.1 Data Sets 

The two spiral dataset consists of two interlocked 
spirals in 2 dimensions (Kools, 2013), the network 
must learn to distinguish the two spirals. This dataset 
is known to be difficult for traditional backprop to 
solve (Fahlman and Lebiere, 1990), and has the 
advantage of being easy to visualise, hence we can 
readily see the performance of a network, Figure 3. 

With 20 hidden neurons, backprop produces a 
good result, while ELM does not. With 200 hidden 
neurons, ELM produces a slightly better result. With 
our computer, the BP 20 result took 6.4 secs, while 
the ELM 200 result took 0.06 secs, we found overall 
that ELM was 15-100 times faster. As we can see in 
Fig. 3, 30 or more hidden neurons are sufficient. 

 

Figure 2: Comparison of train/test accuracy as ELM 
hidden layer size increases. 

 

 

Figure 3: Comparison of training results for double spiral 
data set. 

We also use the Pima Indians Diabetes Database 
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from the UCI machine learning repository (Blake 
and Merz, 1998). Good results on this dataset from 
the literature using a number of AI techniques are in 
the mid to high 70% range. Our ELM and cascade 
ELM results fall in this range in general so we will 
not compare our results to the literature in more 
detail, as our focus is on the effects of introducing 
cascades to ELM networks. We found similar results 
with some other UCI datasets which we do not 
report here. 

3.2 Shallow Cascade 

The simplest modification is to connect the inputs 
directly to the outputs as additional connections. 
Cascade correlation starts with these connections, 
hence adding these connections into the ELM 
architecture as our first step is appropriate, see 
Figure 4. These weights are then ‘trained’ using the 
Moore-Penrose pseudo-inverse as before. The 
performance of both types of network start roughly 
the same but the cascade network shows a distinct 
advantage from 5 to about 25 hidden neurons. 
Above that number the difference is less noticeable.  

As the number of neurons in the random layer 
increases so the relative effect of the cascade 
becomes less noticeable so we would expect the two 
topologies to provide similar performance at the 
higher number of neurons but the advantage that the 
cascade produces is surprisingly large. The shallow 
cascade ELM took on average ~8% longer to train. 

 

Figure 4: Shallow ELM Cascade. 

3.3 Single Cascade 

For our next experiment a sequence of shallow 
cascade ELM machines were cascaded together. 
When discussing such topologies it helps to consider 
each ELM as a self-contained unit. In each ELM the 

 

Figure 5: ELM versus Shallow Cascade ELM. 
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normal input to the random layer is the input to the 
network. This is combined with the cascaded output 
from the previous layer. In this topology only the 
output from the previous layer is cascaded. Figure 6 
illustrates the general arrangement of data flow in a 
four layer cascade. 

 

Figure 6: Schematic of single cascade ELM. 

The main feature of this algorithm is the feeding 
of the previous cascade into the trained layer of the 
next cascade rather than into the random layer. This 
is important because if the cascade is fed into the 
random layer any correlation learnt in the previous 
cascade will be lost again. On the other hand the 
input data needs to go through the random layer 
before it can be used for training. 

Figure 7 shows the results for numbers of 
neurons in each cascade, for 1, 5, and 10 hidden 
neurons each. As expected the Test results are 
always a bit less than the Training results. 

Our results show that the ability of the network 
to learn improves slightly as cascades are added but 
generally only for the first few cascades. The 
number of neurons in each cascade has a more 
significant effect on its learning capacity. 

There is a straightforward possible explanation, 
when the topology of the network is considered in 
more detail. Clearly the amount of information 
which can be stored in each cascade is limited by the 
number of neurons in the output layer. If only the 
previous layer contributes to the next cascade then 
as cascades are added the network rapidly reaches its 
full learning capacity. When there are many 
cascades then earlier cascades will have little or no 
effect on the result.  

 

 

 

 

Figure 7: Single Cascade results for 2 spirals dataset. 

3.4 Full Cascade 

An extension to our single cascade is to provide the 
outputs of all previous cascades to the trained layers 
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of subsequent cascades. We call this a full cascade 
extreme learning machine, see Figure 8. 

 

Figure 8: Schematic of full cascade ELM. 

In Figure 9 we show the results for different 
numbers of hidden neurons in each cascade neurons. 
In each of the first three results shown, for 1, 5, 10 
neurons per cascade, the testing curve is initially 
higher than the training curve before crossing over. 
The final graph showing the results for 20 neurons 
has the training results always above the testing 
results. 

These results are substantially improved over the 
simple cascade results shown earlier in in Section 
3.3, Figure 7. 

Our results show that even with only 1 neuron in 
each cascade the network is capable of reaching 
95% accuracy with test data. As expected, the more 
neurons in each cascade the less cascades are 
required to reach a high degree of accuracy. 

3.5 Trade-offs: Accuracy, Neurons per 
Cascades and Number of Cascades 

Full cascade ELM training times are longer than 
simple ELM but not excessively so. To train a 
network with 5 neurons per cascade and 30 cascades 
took 0.078 seconds on the experimental machine this 
compares to .02 seconds for a simple ELM machine 
with 40 neurons in the hidden layer. This is a ratio of 
3.9 for time, and 3.75 for number of neurons, so the 
cascade structure added roughly 4% runtime. Our 
results were similar for the diabetes dataset. 

Figure 10 demonstrates the relationship of 
neurons/cascade, number of cascades and accuracy 
in a single surface plot. The shape of the surface 
along the two axis shows: 

(x) a pure ELM as the number of neurons in the 
hidden layer increases, and 

(y) a pure cascade machine with one neuron in 
each hidden layer. 

 

 

 

 

Figure 9: Full Cascade results for 2 spirals dataset. 
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Figure 10: Full Cascade trade-offs: accuracy, cascade size and number. 

4 CONCLUSIONS AND FUTURE 
WORK 

We have introduced 3 simple cascades into extreme 
learning machines. Our shallow cascade was 
surprisingly effective when the number of neurons in 
ELM layers were small. Our simple cascade 
architecture worked but provided little benefit. Our 
full cascade ELM architecture was able to achieve 
high performance even with a single neuron per 
ELM cascade, is indicative of some generality of our 
approach. 

Our future work will include significantly more 
datasets to extend our results beyond being 
indicative, the analysis of network structure to 
improve performance (Gedeon, 1997), un-freezing 
some weights and training briefly using RPROP 
(Treadgold and Gedeon, 1997), and the use of noise 
to improve network performance (Brown et al., 
2004).  
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