The Optimal Control Problems of Nonlinear Systems

M. N. Kalimoldayev, M. T. Jenaliyev, A. A. Abdildayeva and L. S. Kopbosyn

Institute of Informational and Computational Tehnologies, MES RK, Pushkin Str. 125, Almaty, Kazakhstan

Keywords: Electric Power System, Nonlinear System, Phase System, Control Synthesis, Bellman-Krotov Function.

Abstract: This article discusses the optimal control problem of nonlinear systems, which are described by ordinary differential equations, their right parts are periodic in the angular coordinate. The particularity of the considered in the given work nonlinear control problems is that they take into account the fact that on unfairly long interval of time, preservation of a deviation of any subsystem of controlled system from nominal operating conditions conducts to danger of destruction and unbalance of other subsystems and even of all the system as a whole. Consideration was given to a numerical example of the optimal motion control of two-machine power system.

1 INTRODUCTION

The mathematical model of the modern electric power complex, consisting of turbine generators and complex multiply-connected energy blocks, is a system of nonlinear ordinary differential equations. The optimization problem, and the creation of algorithms for constructing of controls by the principle of feedback for such systems is actual and still attracts the attention of many researchers.

In this work while solving the problem of control synthesis for the considered electric power system, the constructions of the method of Bellman-Krotov function in the form of necessary and sufficient optimality conditions were used (V. F. Krotov, 1996)–(V. I. Gurman, 1997).

2 STATEMENT OF THE PROBLEM

It is required to minimize the functional

\[ J(u) = 0.5 \sum_{i=1}^{l} \int_{0}^{T} (k_i x_i^2 + r_i u_i^2) \exp(\gamma_i t) dt + \Lambda(x(T), y(T)) \]

under the conditions:

\[ \frac{dx_i}{dt} = y_i, \quad \frac{dy_i}{dt} = -\lambda y_i - f_i(x) + b_i u_i, \]

\[ x_i(t_0) = x_{i0}, \quad y_i(t_0) = y_{i0}, \quad i = \overline{1, l}, \quad t \in (t_0, T) \]

where \( u_i \in \mathbb{R} \) is scalar control; \( f_i(x) \) is a continuously differentiable scalar function satisfying the integrability condition:

\[ \frac{\partial f_i(x)}{\partial x_k} = \frac{\partial f_k(x)}{\partial x_i}, \quad \forall i \neq k; \]

moments of time \( t_0, T \) are assumed to be given; \( r_i, \gamma_i, \lambda_i \) are positive constants, \( k_i(t) \) are positive functions and the terminal value of \( x(T), y(T) \) are unknown beforehand.

It should be noted that if inequalities took place: \( \gamma_i < 0, \quad i = 1, 2, \ldots, l \), then these coefficients would reflect the fact of discounting (playing the important role in economical problems). In our case, these coefficients are positive, that, naturally, imposes in control problem(1)–(3) additional requirements on the condition function \( x_i(t_0), y_i(t_0), \quad i = 1, 2, \ldots, l \), and control \( u_i(t), \quad i = 1, 2, \ldots, l \), so that they in view of weight coefficients \( k_i(t), \quad r_i, \quad i = 1, 2, \ldots, l \), decreased faster than the exponent \( \exp(\gamma_i t) \), \( i = 1, 2, \ldots, l \), and also provided definiteness of integral (1). It becomes essentially important obviously when time \( T \) is great enough.

As it is known, in many, including complex, technical devices, "danger" of deviations of controlled system from a normal natural operating regime in time does not decrease, and can only grow. The offered quality functional (1) allows, first, to struggle with the specified "danger" promptly and efficiently. Second, after return of the system to the normal operating regime of work it provides disappearance of control influences as soon as possible.

The problem of synthesis for the Cauchy problem (1)–(3) is very important for the problems of electric
power systems work optimization.

2.1 The Main Lemma

Following to the Bellman-Krotov formalism (V. F. Krotov, 1996)—(V. I. Gurman, 1997), we will show the correctness of the following lemma.

**Lemma.** In order to provide the optimal control of 
\[ u^0 = \frac{\partial}{\partial t} \exp \{ -yT \} y, \quad i \in T, \] 
and the corresponding solution of the system (2) \( \{ x(t), y(t) \} \), it is necessary and sufficient that

\[ K(x(T), y(T)) = \Lambda(x(T), y(T)), \]
\[ k_i(t) = 2\lambda_i \exp \{ -yT \} + \frac{b_i^2}{r_i} \exp \{ -2yT \} > 0, \quad i \in T, \]

where

\[ K(x, y) = 0.5 \sum_{i=1}^{I} \left( \frac{\partial}{\partial x_i} \frac{\partial}{\partial x_j} \right) \exp \{ yT \}, \]

is the Bellman-Krotov function and besides,

\[ J(u^0) = \min_u J(u) = K(x(t_0), y(t_0)). \]

2.2 Proof

For continuously differentiable function \( K(x, y) \) functional (1) has the view:

\[ J(u) = J(x(t), y(t), u(t)) = \int_{t_0}^{T} R[x(t), y(t), u(t)] dt + \]
\[ + m_1(x(T), y(T)) + m_0(x(t_0), y(t_0)), \]

where

\[ R[x,y,u] = \sum_{i=1}^{I} K_{x_i} + \sum_{j=1}^{I} K_{y_j} - \lambda x y_i - f_i(x) + b_i u_i \]
\[ + \frac{1}{2} (k_i y_i^2 + r_i u_i^2) \exp \{ yT \}, \]

\[ m_1(x,y) = -K(x,y) + \Lambda(x,y), \]
\[ m_0(x,y) = \Lambda(x,y), \]

Assuming that

\[ K_{x_i} = K_{y_i} f_i(x), \quad K_{x_i} = y_i, \]
\[ K_{x_i} = f_i(x), \quad i \in T. \] (9)

Taking into account (9), from (8) we obtain:

\[ u_i(y_i) = -b_i \exp \{ -yT \} y_i, \]
\[ k_i(t) = 2\lambda_i \exp \{ -yT \} + \frac{b_i^2}{r_i} \exp \{ -2yT \} > 0, \]

By virtue of integrability conditions of (3) and the assumptions (9) we get the representation of the Bellman-Krotov function (4).

From (8) it also follows that the value of the terminal term of the functional (1) is defined by:

\[ \Lambda(x(T), y(T)) = K(x(T), y(T)). \]

By virtue of the representations (6) \( \rightarrow \) (7) along the optimal control (10) the value of the functional \( J(u) \) will be equal:

\[ J(u^0) = \min_u J(u) = K(x(t_0), y(t_0)). \]

To complete the proof of lemma, it remains only to note that the existence of Bellman-Krotov function in the form (4) provides not only the sufficiency of the optimality conditions (8), but also their necessity.

3 THE OPTIMUM CONTROL PROBLEM OF PHASE SYSTEM

Let us consider the problem of functional minimization:

\[ J(v) = J(v_1, \ldots, v_I) = 0.5 \sum_{i=1}^{I} \int_{t_0}^{T} \left( w_i S_i^2 + w_v v_i^2 \right) \]
\[ \ast \exp \{ yT \} dt + \Lambda(\delta(T), S(T)), \]

under the conditions:

\[ \frac{d\delta_i}{dt} = S_i, \]
\[ H_i \frac{dS_i}{dt} = -D_i S_i - f_i(\delta_i) - N_i(\delta_i) + v_i, \] (12)

where \( w_i, w_v \) are weight coefficients, correspondingly positive functions and constants; \( f_i(\delta_i) \) are \( 2\pi \)-periodical continuously differentiated functions; \( N_i(\delta_i) \) \( 2\pi \)-periodical continuous differentiated function relative to \( \delta_1, \ldots, \delta_I \).
for summands $N_i(\delta)$ – the conditions of integrability are carried out (3); $T$ is duration of transient which is considered as specified.

The system of the equations (12) are supplemented with initial conditions

$$
\delta_i(0) = \delta_{0i}, \quad S_i(0) = S_{0i}, \quad i = 1, \ldots, l.
$$

(13)

Terminal values $\delta(T), S(T)$ are beforehand unknown, so they also should be determined.

The following theorem is valid.

**Theorem 1.** For optimization of controls

$$
\psi_i^0(S_i, t) = -[w_i]^{-1}(\exp{\{-\gamma t\}}, S_i, \quad i = 1, \ldots, l, \quad \text{and their corresponding solution}\ \{\delta^0(t), S^0(t)\}\ \text{of system (12)–(13), it is necessary and sufficient, that}
$$

$$
A(\delta(T), S(T)) = K(\delta(T), S(T)),
$$

$$
\psi_i(t) = 2D_i \exp{\{-\gamma t\}} + [w_i]^{-1}(\exp{\{-2\gamma t\}}, 0, i = 1, \ldots, l,
$$

where

$$
K(\delta, S) = 0.5 \sum_{i=1}^{l} \left[ H_i S_i^2 + \int_{0}^{\delta_i} f_i(\delta_i) d\delta_i \right] + \sum_{i=1}^{1} \int_{0}^{\delta_i} N_i(\delta_1, \ldots, \delta_{i-1}, \delta_{i+1}, \ldots, \delta_l) d\xi_i,
$$

(14)

Bellman-Krotov function and besides,

$$
J(\delta^0) = \min_{\psi} J(\psi) = K(\delta^0, S^0).
$$

The proof of the theorem 1 is received, applying the procedure of construction of Bellman-Krotov function suggested in 2 (see proof of lemma).

### 4 THE OPTIMAL CONTROL PROBLEM OF POWER OF STEAM TURBINES

One of the models describing the transients in the electrical system is the following system of differential equations (I. I. Bletkhman, 1997)–(A. A. Gorev, 2004):

$$
\frac{d\delta_i}{dt} = S_i, \quad H_i \frac{dS_i}{dt} = -D_i S_i - E_i^2 Y_{ii} \sin \alpha_i - P_i \sin(\delta_i - \alpha_i) - \sum_{j=1, j \neq i}^{l} P_{ij} \sin(\delta_{ij} - \alpha_{ij}) + u_i, \quad i \in \overline{1, l}, \quad t \in (0, T),
$$

(15)

$$
\delta_{ij} = \delta_i - \delta_j, \quad P_i = E_i U_{i,n+1}, \quad P_{ij} = E_j Y_{ij},
$$

where $\delta_i$ is an angle of rotor turn of $i$-th generator with respect to some synchronous rotational axis (the axis of rotation of bus-bars of constant voltage, which rotates at the speed of 50 $r./sec.\); $S_i$ is sliding of $i$-th generator; $H_i$ is an inertial constant of the $i$-th machine; $u_i$ is mechanical power, which are led to the generator; $E_i -$ EMF of the $i$-th machine; $Y_{ij}$ - mutual conductivity of $i$-th and $j$-th branches of the system; $U = const$ is bus-bar voltage of constant voltage; $Y_{i,n+1}$ -defines the bond (conductivity) of $i$-th generator with bus-bar of constant voltage; $D_i = const \geq 0$ is mechanical damping; $\alpha_{ij}$, $\alpha_i$ are constant values which take into account the influence of active resistance in the stator chains of generators.

The complexity of the analysis of the model (15) is taking into account of $\alpha_{ij}$, $\alpha_i = \alpha_{ji}$. Since in this case $\delta_{ij} = -\delta_{ji}$, then the model (15) is not conservative; one fails to build the Lyapunov’s function in the form of the first integral for it. The system is called positional model.

Let the state variables and control variables in the steady after-emergency regime be equal to:

$$
\overline{S_i} = 0, \quad \overline{\delta_i} = \delta_i^f, \quad \overline{u_i} = u_i^f, \quad i = \overline{1, l}.
$$

(16)

To obtain the system of the disturbed movement we should proceed to the equations of deviations assuming:

$$
\Delta S_i = \Delta S_i, \quad \delta_i = \delta_i^f + \Delta \delta_i, \quad u_i = u_i^f + \Delta u_i, \quad i = \overline{1, l}.
$$

(17)

Further, for the convenience we denote again the variables $\Delta u_i$, $\Delta \delta_i$, $\Delta S_i$ by $u_i$, $\delta_i$, $S_i$ and from (15),(16) we obtain:

$$
\frac{d\delta_i}{dt} = S_i, \quad \frac{dS_i}{dt} = \frac{1}{H_i} [-D_i S_i - f_i(\delta_i) - N_i(\delta_i) + M_i(\delta_i) + u_i], \quad i = \overline{1, l}, \quad t \in (0, T),
$$

(18)

where

$$
f_i(\delta_i) = P_i \left[ \sin(\delta_i + \delta_i^f - \alpha_i) - \sin(\delta_i^f - \alpha_i) \right],
$$

$$
N_i(\delta) = \sum_{j=1, j \neq i}^{l} \sum_{i=1, j \neq i}^{l} \gamma_{ij} (\delta_1, \ldots, \delta_l) =
$$

$$
= \sum_{j=1, j \neq i}^{l} \sum_{i=1, j \neq i}^{l} \gamma_{ij} \left[ \sin(\delta_{ij} + \delta_{ij}^f) - \sin\delta_{ij}^f \right],
$$

$$
M_i(\delta) = \sum_{j=1, j \neq i}^{l} \sum_{i=1, j \neq i}^{l} \gamma_{ij} (\delta_1, \ldots, \delta_l) =
$$
The control will be searched in the form of:

\[ u_i = v_i - M_i(\delta), \quad i = \overline{1, l}, \]  

(19)

where the function \( v_i \) should be determined.

It is required to minimize the functional

\[ J(v) = J(v_1, \ldots, v_l) = 0.5 \sum_{i=1}^{l} \int_{0}^{T} \left( w_i S_i^2 + w_v v_i^2 \right) + \exp \{ \gamma t \} dt + \Lambda(\delta(T), S(T)), \]

under the conditions (18)–(19), where \( w_i, w_v \) are weight coefficients, correspondingly positive functions and constants; \( f_i(\delta_i) \) is \( 2\pi \)-periodic continuously differentiable function; \( N_i(\delta) \) \( 2\pi \)-periodic continuously differentiable function with respect to \( \delta_i \); for \( N_i(\delta) \) the integrability condition of the type (3) is realized; \( T \) is duration of the transition process which is considered to be given. In addition, the initial conditions are given:

\[ \delta_i(0) = \delta_{i0}, \quad S_i(0) = S_{i0}, \quad i = \overline{1, l}, \]

(21)

and the values \( \delta_i(T), S_i(T) \) are unknown.

On the basis of the lemma from 2 we obtain

**Theorem 2.** In order to optimal control

\[ v_i^0(S_i, t) = -[w_v v_i]^{-1} \exp \{ -\gamma t \} S_i, \quad i = \overline{1, l}, \]

and the corresponding solution \( \{ \delta^0(t), S^0(i) \} \) of system (18), (20) it is necessary and sufficient that

\[ \Lambda(\delta(T), S(T)) = K(\delta(T), S(T)), \]

\[ w_v(t) = 2Di \exp \{ -\gamma t \} + [w_v]^{-1} \exp \{ -2\gamma t \} > 0, \quad i = \overline{1, l}, \]

\[ K(\delta, S) = 0.5 \sum_{i=1}^{l} \int_{0}^{T} F_i(\delta_i) d\delta_i + \frac{1}{2} \sum_{i=1}^{l} \int_{0}^{T} N_i(\delta_1, \ldots, \delta_{i-1}, \xi_i, \delta_{i+1}, \ldots, \delta_l) d\xi_i, \]

Bellman-Krotov function, and besides,

\[ J(v^0) = \min_{v} J(v) = K(\delta^0, S^0). \]

(22)

It should be noted that in the proof of the theorem 2, assumptions (9) from the lemma take the form:

\[ K_{\delta_i} S_i = \frac{K_S}{H_i} [f_i(\delta_i) + N_i(\delta)], \]

(23)

\[ K_{\delta_i} S_i = H_i S_i, \quad K_{\delta_i} = f_i(\delta_i) + N_i(\delta), \quad i = \overline{1, l}. \]

5 THE NUMERICAL EXAMPLE.

**OPTIMAL CONTROL OF THE MOVEMENT OF TWO-MACHINE ELECTRIC POWER SYSTEM**

In the system (15) we accept that \( i = 1, 2 \), and assume that the mechanical damping is absent, i.e., coefficients \( D_1, D_2 \) are equal to zero. According to the relations (15)–(21) the optimal control problem takes the form (I. I. Blekhman, 2004):

\[ J(v) = J(v_1, v_2) = 0.5 \sum_{i=1}^{2} \int_{0}^{T} \left( S_i^2 + 0.1v_i^2 \right) + \exp \{ \gamma t \} dt + \Lambda(\delta(T), S(T)), \]

(24)

\[ \frac{d\delta_i}{dt} = S_i, \quad \frac{dS_i}{dt} = \frac{1}{H_i} [f_i(\delta_i) - N_i(\delta) + v_i], \quad i = 1, 2, \]

(25)

where \( f_i(\delta_i) = P_i [\sin(\delta_i + \delta_i^\nu - \alpha_i) - \sin(\delta_i^\nu - \alpha_i)] \), \( i = 1, 2 \),

\[ N_1(\delta) = \Gamma_1 [\sin(\delta_{12} + \delta_{12}^\nu) - \sin(\delta_{12}^\nu)], \]

\[ M_1(\delta) = \Gamma_2 [\cos(\delta_{12} + \delta_{12}^\nu) - \cos(\delta_{12}^\nu)], \]

\[ \delta_{12}^\nu = \delta_1^\nu - \delta_2^\nu, \]

\[ \Gamma_1 = P_{12} \cos \alpha_{12}, \quad \Gamma_2 = P_{12} \sin \alpha_{12}, \]

\[ \delta_{12} = \delta_1 - \delta_2, \quad \delta_{21} = -\delta_{12}. \]

The numerical data of the system (25):

\[ \gamma_1 = \gamma_2 = 0.1; \]

\[ \alpha_1 = -0.052; \quad \alpha_2 = -0.104; \]

\[ H_1 = 2135; \quad H_2 = 1256; \quad P_i = 0.85; \]

\[ P_2 = 0.69; \quad P_{12} = 0.9; \]

\[ \delta_1^\nu = 0.827; \quad \delta_2^\nu = 0.828; \quad \alpha_{12} = -0.078; \]

and the initial data:

\[ \delta_1(0) = 0.18; \quad \delta_2(0) = 0.1; \]

\[ S_1(0) = 0.001; \quad S_2(0) = 0.002. \]

(26)

According to formula (22) Bellman-Krotov function and its partial derivatives will have the form:

\[ K(\delta, S) = 1067.5S_1^2 + 628S_2^2 + 2.004 - \cos(\delta_1 + 0.879) - 0.779 \cos(\delta_2 + 0.932) - 0.83S_2, \]

\[ K_{\delta_1}(\delta, S) = 0.425 [\sin(\delta_1 + 0.879) - \sin(0.879)] + 0.9 \sin(\delta_1 - \delta_2), \]

\[ K_{\delta_2}(\delta, S) = 0.345 [\sin(\delta_2 + 0.932) - \sin(0.932)] + 0.9 \sin(\delta_1 - \delta_2), \]
\[ K_{\delta_1} (\delta, S) = 2135S_1, \quad K_{\delta_2} (\delta, S) = 1256S_2. \]

Controls on the feedback principle (synthesis) are determined by the formulas:
\[ \nu_0^1(\delta, S) = -\exp\{-0.1t\} S_1, \]
\[ \nu_0^2(\delta, S) = -\exp\{-0.1t\} S_2, \quad (27) \]

herewith the assumption was used (23). The results of numerical calculation of the optimal pair of vector-functions state-control \{ \delta^0(t), S^0(t) \}; \nu^0(t) = \nu^0(\delta^0(t), S^0(t)) \} the obtained from (25)–(27), as shown on the Figures 1 and 2.

6 CONCLUSIONS

On the basis of the theoretical results, the computational experiments were conducted, which showed the sufficient efficacy of the proposed procedure for constructing the function of Bellman-Krotov and the synthesising optimal control for the given power system.

ACKNOWLEDGEMENTS

This work is partially supported by Grant No.0925/GF1 of a Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan.

REFERENCES


