
MEDA: A Machine Emulation Detection Algorithm

Valerio Selis and Alan Marshall
Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, L69 3GJ, Liverpool, U.K.

Keywords: IoT, M2M, Trust, Embedded Systems, Virtual Machines.

Abstract: Security in the Internet of Things (IoT) is now considered a priority, and trust in machine-to-machine (M2M)
communications is expected to play a key role. This paper presents a mechanism to detect an emerging
threat in M2M systems whereby an attacker may create multiple fake embedded machines using virtualized
or emulated systems, in order to compromise either a targeted IoT device, or the M2M network. A new trust
method is presented that is based on a characterisation of the behaviours of real embedded machines, and
operates independently of their architectures and operating systems, in order to detect virtual and emulated
systems. A range of tests designed to characterise embedded and virtual devices are presented, and the results
underline the efficiency of the proposed solution for detecting these systems easily and quickly.

1 INTRODUCTION

The Internet of Things is a concept in which very
large numbers of physical objects can be connected
to the Internet. The IoT infrastructure requires an
integration of several technologies and the objects
(things) will be mostly connected wirelessly to the
main infrastructure. In particular, the objects will be
mostly based on embedded devices, such as sensors,
smart-phones, etc. (Atzori et al., 2010). An essential
role will be given to Machine-to-Machine (M2M) net-
works, this refers to communications among objects.
In the future, M2M communications will mostly op-
erate without human intervention.

When available, the main characteristics of these
objects may be subdivided as follows:

• MCU/CPU: from embedded to high performance
processor, such as ARM, MIPS, PowerPC, AVR,
x86, x86-64, etc.: from few MHz to GHz, single
core to multi core;

• OS: open source and proprietary, such as Linux
based, Windows based, iOS based, Symbian, etc.;

• Memory - data storage: from few KB to TB;

• Memory - RAM: from few KB to GB;

• Network interfaces: from one to multiple inter-
faces at the same time, such as Wired, RFID, Zig-
Bee, Bluetooth, Wi-Fi, Cellular, GPS, etc.;

• Power: from very low or zero power to high
power consumption; battery and/or wired;

• Type: mobile or static.

It is possible to envision that in the future, net-
works of smart objects or “things” will manage and
control parts of our lives in an autonomous way.
They will operate in various application areas, such
as healthcare, smart robots, cyber-transportation sys-
tems, manufacturing systems, smart home technolo-
gies, smart grids and building security (Chen et al.,
2012; Lee et al., 2013). For this reason, securing the
IoT must be a priority, before continuing to deploy it
in the real world and on a larger scale.

An important factor in securing the IoT and M2M
communications is trust. Nowadays there are vari-
ous papers in the literature addressing how to man-
age trust among objects in IoT (Bao and Chen, 2012;
Saied et al., 2013; Nitti et al., 2014). However, these
do not consider how to trust the systems inside the
objects. As shown in Figure 1, an attacker may create
multiple fake embedded machines using virtualized or
emulated systems in order to compromise the network
or part of it. In this case, a real embedded device (A)
will assume that it is communicating with other real
embedded devices (B, C, D and E) and will trust them
accordingly. This will lead to a security issue in the
network and in particular for the data transmitted by
“A” throughout the attacker(s).

The aim of this paper is to show the first stage of
a possible detection mechanism to help trust agents in
embedded devices to trust other systems and recog-
nize a virtualized or emulated environment. The rest
of this paper is organised as follows: In section 2 the

228 Selis V. and Marshall A..
MEDA: A Machine Emulation Detection Algorithm.
DOI: 10.5220/0005535202280235
In Proceedings of the 12th International Conference on Security and Cryptography (SECRYPT-2015), pages 228-235
ISBN: 978-989-758-117-5
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)



Figure 1: Representation of multiple fake embedded ma-
chines attack.

related work on detection of virtual and emulated sys-
tems is presented. In section 3 we describe the algo-
rithm used to collect the behaviour information from
real machines. The detection methods adopted and
the results obtained from the characterisation tests are
discussed in section 4. Finally in section 5, we present
our conclusions and directions for future research on
detecting virtual and emulated systems.

2 VIRTUALIZATION AND
EMULATION DETECTION

Virtualized and emulated detection mechanisms have
been mostly studied for x86/x64 architectures. The
few works done so far are focused on the detection
of Android-based emulated environments (Vidas and
Christin, 2014; Jing et al., 2014). These detection
mechanisms can be categorized as follows:

• CPU and memory tests: memory states and CPU
registers and instructions are used to detect if a
virtual machine (VM) is running

• Remote tests: a remote machine is used to collect
information from network packets in order to un-
derstand the capabilities of another machine

• Timing tests: consist of using particular CPU in-
structions to perform a time analysis detection

• Fingerprinting tests: information about the system
is collected, such as driver names, CPU ID, sys-
tem registers, etc.

Rutkowska (Rutkowska, 2004) introduced a sim-
ple mechanism, called “The Red Pill”, to detect if a
system was running on a virtual machine, simply by
using the SIDT (Store Interrupt Descriptor Table) in-
struction to access to the IDT register. The author
noted that the value of this register was different in
real machine and virtual machine, because in an x86
CPU there is only one IDT register for every OS run-
ning in the system. However, this approach does not
work in newer machines as they use multi-core pro-
cessors and there is one IDT register for each of them.

In (Martignoni et al., 2009), the authors created an au-
tomated method to generate random red-pills. They
used a CPU guided system to detect emulators such
as QEMU and BOCHS for x86 architectures. This
method consists of checking that the same instruc-
tion (red-pill) with the same CPU state will return the
same state in the memory. If the result of the exe-
cution of a red-pill in the emulated CPU is different
from the result in the real CPU, it will lead in a detec-
tion status. In (Shi et al., 2014) an enhanced red-pill
method called cardinal pill is proposed. It consists
of using all definitions present in the IA-32 manual
to create pills and then check discrepancies between
real CPU and emulated CPU. However, these mech-
anisms can fail to detect hypervisors that use the real
CPU to execute the instructions, as, in these cases,
the results would be the same. The authors in (Chen
et al., 2008) stated that it is possible to use the method
created by (Kohno et al., 2005) to detect virtualized
hosts. The method proposed was able to detect the
clock rate of a remote machine using the TCP times-
tamp option defined in RFC 1323 (Jacobson et al.,
1992). However, this method cannot be used nowa-
days, as (Polcák et al., 2014) demonstrated, in Linux-
like OS the timestamp present in the TCP packets is
influenced by the application NTP, which provides
an up to date timestamp to the system using time
servers. Moreover, the method proposed in (Kohno
et al., 2005) is not valid for remote machines that
use a Windows based OS, because it does not use the
TCP timestamp option by default, and the clock skew
can be faked by the remote host observed (Polcák and
Franková, 2014).

Another method used to detect a virtualized or
emulated environment is time analysis. (Raffetseder
et al., 2007) and (Jia-Bin et al., 2012) showed that by
timing the access to control registers, such as CR0,
CR2 and CR3, and the execution of a NOP instruc-
tion, it is possible to detect if the machine is real or
not.

A fingerprinting mechanism uses specific hard-
ware and software values to understand if there is a
virtualized or emulated environment. (Chen et al.,
2008; Raffetseder et al., 2007) suggested using the
MAC address of a machine to obtain the vendor name.
However, this can be faked very easily, for exam-
ple by using an application like MAC-Changer (Or-
tega, 2013). More information can be obtained from
drivers used for specific hardware devices, such as
video card, network card, etc. Furthermore, registry
keys or running applications give the opportunity to
find a virtualized or emulated environment as under-
lined by (Chen et al., 2008) and (Jia-Bin et al., 2012).
In some cases it is possible to check if the application

MEDA:�A�Machine�Emulation�Detection�Algorithm

229



is running in a virtual environment by accessing the
virtual machine API as shown by (Quist and Smith,
2006).

There have only been a few studies related to the
detection of embedded emulated environments, and
these are focused at Android based devices. (Jing
et al., 2014) proposed a heuristic detection mecha-
nism by combining the Android API, Android system
properties and the system hardware information with
a detection time of 20 minutes. Moreover, (Vidas and
Christin, 2014) used the same information collected
in (Jing et al., 2014) with new information about the
CPU and graphical performances to detect the An-
droid’s Dalvik VM.

As far as we are aware, there have been no gen-
eral studies on the detection of virtual or emulated
environments for embedded systems. In this work
we propose a novel detection method that consists of
checking the behaviours of embedded devices, vir-
tual and emulated embedded systems. In this work
we consider embedded CPU and MCU such as x86,
MIPS and ARM, without considering specific infor-
mation from the OS. CPU/MCU and memory tests,
and timing tests are not used in this work because dif-
ferent embedded architectures use different registers
and instruction sets. Moreover, remote tests, as previ-
ously described, are not applicable, considering that
embedded systems based on Linux can use NTP to
update their date and time. Additionally, we postulate
that the fingerprinting detection method can be easily
faked, in particular in fully emulated environments;
nevertheless, as we describe, during some tests this
may be a valid detection method. Finally, we believe
that adopting our method it will be difficult for a vir-
tual or emulated system to fake the behaviour results,
because this uses the network stack in order to per-
form the characterization. In this case, the virtual or
emulated system needs to check when a socket is cre-
ated and handle it every time, because it can’t know
a priori that it was called by our method. This would
lead to an increasing in the overall delay time and de-
crease in system performance. Additionally, there is
a necessity to modify part of the kernel, which is not
always possible.

3 CHARACTERISATION
ALGORITHM

In order to perform the characterisation an algorithm
was developed to collect information from real, vir-
tualised and emulated environments. This consists
pinging the localhost (127.0.0.1) in the system under
consideration 1000 times, and for every ping collect-

ing the ping response time (ms), the system timestamp
(s) and the CPU/MCU usage (%), as shown in Figure
2.

Figure 2: Characterisation algorithm flowchart.

The timestamp information was collected using
the “date”. The CPU/MCU usage was collected
from “/proc/stat” or “iostat”, depending on the OS
used. We tested virtualized and emulated systems
including: Android Emulator (Android Developers,
2014), Genymotion (Genymobile, 2014), GXemul
(Gavare, 2014), OVPsim (Open Virtual Platform,
2014), QEMU (Bellard, 2005), VirtualBox (Oracle
Corporation, 2014) and VMware Player (VMware
Inc, 2015). All these were used with default configu-
rations, along with a real machine used as reference
(termed RM), which had the following characteris-
tics:

• OS: Linux Mint 17 (qiana) with kernel 3.13.0-24-
generic

• CPU: Intel(R) Core(TM) i3-4130 CPU @
3.40GHz (4 cores)

• RAM: 7897 MiB

Next, we used as comparison, real embedded de-
vices including: ALIX 6F2 (PC Engines GmbH,
2007), Google Nexus 5 and 7 (Google and LG Elec-
tronics, 2013; Google and Asus, 2012), Carambola
(8devices, 2012), Arduino Yún (Arduino, 2013) and
Raspberry Pi (Raspberry Pi Foundation, 2012). For
each device, eight tests comprising the characterisa-
tion algorithm were performed by tuning the ping
command with different options and stressing the
CPU/MCU (whereby the CPU usage levels is main-
tained at 100%) as shown in Table 1.

In order to stress the CPU/MCU the “dd” com-
mand was used, with input data from urandom,
if=/dev/urandom, and writing this data to the null de-

SECRYPT�2015�-�International�Conference�on�Security�and�Cryptography

230



Table 1: List of characterisation tests performed.

Test# Ping option (ping) CPU/MCU
stress

1 -c 1000 No
2 -c 1000 Yes
3 -c 1000 -i 0.2 No
4 -c 1000 -i 0.2 Yes
5 -c 1000 -s 20000 No
6 -c 1000 -s 20000 Yes
7 -c 1000 -s 20000 -i 0.2 No
8 -c 1000 -s 20000 -i 0.2 Yes

-c: stop after sendingn ping packets
-i: wait n seconds between sending each packet
-s: specifies the number of data bytes to be sent

vice, of=/dev/null. In some characterisations, multi-
ple instances of this program were executed to over-
load the CPU/MCU in multi-core devices. In these
cases the information collected was analysed using
different characterisation metrics for ping response
times, timestamps and CPU/MCU usage levels as
shown in Tables 2 and 3.

4 RESULTS OF
CHARACTERISATION TESTS

The results obtained show the same behaviours for the
real embedded devices in tests 1 to 4, however it was
decided to exclude tests 5 to 8 as they do not give
reliable results to identify virtual or embedded sys-
tems. The issues in identifying virtual or embedded
systems in tests 5 to 8 were related to the ping packet
size, whereby large-sized ping packets consume high
computational resources which can cause problems in
embedded devices with low processing power. Table
2 shows the range of behaviours concerning ping re-
sponse times and timestamps for RM used during the
tests. Information about the CPU/MCU levels are not
shown for tests 2 and 4, because the CPU/MCU was
under stress and its usage levels were always at 100%.
Table 3 shows characterisation results for all real em-
bedded devices (termed EM). In the rest of this paper
we use the notations listed in Table 4 for the tests as
well as the following notations: ping response time
“P.”; timestamp “T.”; CPU/MCU level “C.”; standard
deviation “SD”; simulation “Sim.”.

The detection method is based on the behaviours
of RM and embedded machines as characterised in
Tables 2 and 3. These ranges were used as thresh-
old values to detect virtual or emulated systems. Let
TMinX(CMi) and TMaxX(CMi) be the minimum and
maximum value in the range for the characterisation

metric CMi of X (RM or EM). Let T(CMi) be the
CMi value obtained from the target system. By con-
sidering RM, the virtual or embedded system is con-
sidered detected if T(CMi) < TMinRM(CMi). More-
over, it is considered better than RM if T(CMi) ≪
TMinRM(CMi), this means that in some cases it is
faster than the RM and/or the measurements obtained
have a low error, i.e. P.SD close to 0, P.Total re-
duced by half or C.Mean less than 1% during tests
1 and 3. The machine emulation detection algorithm
is based on the detection of illegitimate embedded
devices. It uses the characterisation metrics based
on EM and it is described in Figure 3. Considering
EM, an illegitimate embedded device is considered
detected if T(CMi) < TMinEM(CMi) or T(CMi) >

TMaxEM(CMi).

Figure 3: Machine emulation detection algorithm.

Figures 4 and 5 show the results of the behaviour
characterisations. These were obtained by combining
the information gathered from the tests of the virtual
and emulated systems using the RM as reference.

Figures 6 and 7 show the same results as Figures
4 and 5, but using the behaviours of embedded ma-
chines as reference. It can clearly be seen that when
adopting the EM behaviours, the detection of virtual
or emulated systems is significantly higher than when
adopting the RM behaviours. It may also be observed
that by considering all tests for the EM, the AE is
more detectable than the GX2. From these results it
is possible to observe that our solution detects every
virtual and emulated system. Furthermore, it is possi-
ble to detect them by using only behaviours obtained
from P.Total, P.Mean±SD and T.Total.

These results show that at least six virtual and em-
ulated systems can be detected only considering RM
behaviours and in particular by using P.Mean±SD.
We observed that the Genymotion, OVPsim, Virtual-
Box and VMware behave close to, and in some cases
better than RM. Moreover, Genymotion, VirtualBox
and VMware are detectable using the fingerprinting
test as shown in Table 5. This test was applied us-
ing detection values such as vbox, virtualbox, virtual-
ized, oracle, innotek, intel, genuineintel, genymotion,
vmware and their variants.

The final machine emulation detection algorithm
is focused only on the detection of illegitimate em-

MEDA:�A�Machine�Emulation�Detection�Algorithm

231



Table 2: Range of behaviours of the RM obtained from the characterisation tests.

Characterisation Ping (ms) Timestamp (s) Timestamp (s) CPU/MCU usage (%)
Metrics Tests 1 to 4 Tests 1 and 2 Tests 3 and 4 Tests 1 and 3

Min 0.011-0.021 0 0 1-6
Max 0.049-0.231 1 1 46-84

Max-Min 0.034-0.211 - - -
Total 34.347-64.067 199 999 -
Mean 0.034-0.064 0.199 0.999 13.627-14.306

Variance 0-0.001 0.159 0.001 40.070-64.292
Standard Deviation 0.004-0.033 0.399 0.032 6.330-8.018

Mean-Standard Deviation 0.026-0.033 - - -
Mean+Standard Deviation 0.038-0.097 - - -

Table 3: Range of behaviours of real embedded devices obtained from the characterisation tests.

Characterisation Ping (ms) Timestamp (s) Timestamp (s) CPU/MCU usage (%)
Metrics Tests 1 to 4 Tests 1 and 2 Tests 3 and 4 Tests 1 and 3

Min 0.067-0.193 0 0 0-75
Max 0.140-2.060 1-2 1-3 19-100

Max-Min 0.061-1.993 - - -
Total 99.064-288.117 199-201 999-1001 -
Mean 0.099-0.288 0.199-0.201 0.999-1.001 5.223-79.042

Variance 0-0.034 0.159-0.162 0.001-0.059 4.928-459.201
Standard Deviation 0.002-0.183 0.399-0.402 0.032-0.243 2.220-21.429

Mean-Standard Deviation 0.060-0.215 - - -
Mean+Standard Deviation 0.110-0.452 - - -

Table 4: List of notations of virtual and embedded systems for the tests.

System Notation Architecture OS System Notation Architecture OS
Android AE ARMv7 Android QEMU Q1 MIPS OpenWrt
Emulator 4.4.2 12.09

Genymotion GN x86 Android QEMU Q2 MIPSel OpenWrt
4.4.4 12.09

GXemul GX1 MIPS NetBSD QEMU Q3 ARMv6l Raspberry
5.0.2 Pi Debian

GXemul GX2 MIPS NetBSD VirtualBox VB x86 OpenWrt
6.1.5 10.03

OVPsim OVP MIPS Debian VMware VM x86 OpenWrt
14.07

bedded devices as this is the aim of this work.
Comparing the information obtained from all the

tests it is possible to observe that the results from tests
1 and 2 give a better detection than tests 3 and 4. In
fact, by using the detection method developed for tests
1 and 2 it is possible to detect virtual and emulated
systems in around 3 minutes. This is very important to
minimise the power consumption in battery powered
embedded devices and also be able to trust a system
easily and quickly.

5 CONCLUSION

IoT is rapidly growing and M2M communications,
provided by embedded devices, will have an impor-
tant role in it. The primary goal must be to secure this
communication by giving the ability to machines to
trust each other. However, in order to trust each other
these need also to communicate with trust agents with
the capability to detect illegitimate embedded devices
in the network. For this reason, we believe that the
proposed algorithm is the first step to identify fake

SECRYPT�2015�-�International�Conference�on�Security�and�Cryptography

232



Figure 4: Behaviours detection using the reference ma-
chine for tests 1 and 2.

Figure 5: Behaviours detection using the reference ma-
chine for tests 3 and 4.

Figure 6: Behaviours detection using the real embedded
machines for tests 1 and 2.

Figure 7: Behaviours detection using the real embedded
machines for tests 3 and 4.

systems in order to create an effective trust among
machines in IoT. A possible attacker would have to
modify the TCP stack in the kernel in order to al-
ways return ping values in a specific range and with
specific behaviours. Moreover, the attacker needs to
know these values a priori, and a modification of the
TCP stack may lead to other system issues. Also, any
change in the kernel may lead to different timestamp
values and this will be detected by the algorithm.

This work has demonstrated that the application
of this method allows reliable detection of fake em-
bedded machines that can compromise the network.
This was done without using mechanisms applied to
detect virtual and emulated systems in x86/x64 archi-
tectures, but by using a novel behaviour characterisa-
tion, which is independent of the architecture and the
OS. In fact, other detection methods rely on the type

of CPU architectures and/or the OS, thereby reducing
their applicability in the IoT. The proposed method is
not only effective, but it is also efficient and easily ap-
plicable to future IoT embedded devices.

Virtualized or emulated environments are nor-
mally used by anti-virus companies or researchers to
study the behaviours or activity of malware in a sys-
tem. The proposed method can be used by embedded
malware, such as Chuck Norris botnet (Celeda et al.,
2010) and Chameleon Wi-Fi virus (Milliken et al.,
2013), in order to detect fake environments and in this
case decide to change their behaviour. However, we
think that detecting these fake systems will give great
advantages for protecting the network.

Future research will involve improvements of this
method and tests of a larger range of real embedded
devices that are going to be part of IoT. Moreover, we

MEDA:�A�Machine�Emulation�Detection�Algorithm

233



Table 5: Fingerprinting information about Genymotion, VirtualBox and VMware.

Artefacts from files or applications
Type of

information Genymotion VirtualBox VMware

/proc/cpuinfo RM CPU
characteristics

Yes Yes Yes

/proc/version Linux version Yes No No
/proc/misc Virtual users Yes No No
/proc/ioports Virtual devices Yes No No
/proc/kcore Physical

memory and
system message

Yes Yes Yesdmesg

/sys/devices/pciXXXX:XX/XXXX:XX:XX.X/

Hard disk, USB
and CD-ROM

devices
Yes Yes Yes

XXXX:XX:XX.X/usb1/1-2/product
/sys/devices/pciXXXX:XX/XXXX:XX:XX.X/
XXXX:XX:XX.X/usb1/1-2/configuration
/sys/devices/pciXXXX:XX/XXXX:XX:XX.X/
XXXX:XX:XX.X/usb1/1-2/1-2:1.0/interface
/proc/scsi/scsi
/sys/sys/devices/virtual/dmi/id/sysvendor System vendor Yes No No
/sys/sys/devices/virtual/dmi/id/boardname Board version Yes No No
/sys/sys/devices/virtual/dmi/id/boardvendor Board vendor Yes No No
/sys/sys/devices/virtual/dmi/id/biosvendor BIOS vendor Yes No No
/sys/firmware/acpi/tables/DSDT

ACPI table
information

Yes Yes Yes/sys/firmware/acpi/tables/FACP
/sys/firmware/acpi/tables/SSDT
/fstab.vbox86 Virtual machine

boot files
Yes No No

/init.vbox86.rc
lsmod

Virtual modules Yes No No
/system/lib/vboxsf.ko
/system/lib/vboxguest.ko
/system/lib/vboxvideo.ko
/system/bin/androVM-prop

Virtual machine
software

Yes No No/system/bin/androVM-vbox-sf
/system/bin/androVMsetprop
ps Virtual machine

running
applications

Yes No No/proc/XXX/mem

/system/build.prop Android
information

Yes No No

/system/etc/init.androVM.sh Boot scripts Yes No No

also plan to enhance the algorithms in order to more
efficiently recognize virtual and emulated systems.

REFERENCES

8devices (2012). Carambola. [Online] Available from:
http://www.8devices.com/carambola. [Accessed: 24
February 2015].

Android Developers (2014).SDK Tools - Android Em-
ulator. [Online] Available from: http://developer.
android.com/tools/help/emulator.html. [Accessed: 24
February 2015].

Arduino (2013). Arduino Board Yún. [Online] Available
from: http://arduino.cc/en/Main/ArduinoBoardYun.
[Accessed: 24 February 2015].

Atzori, L., Iera, A., and Morabito, G. (2010). The internet
of things: A survey.Computer Networks, 54(15):2787
– 2805.

Bao, F. and Chen, I.-R. (2012). Dynamic trust management
for Internet of Things applications. InProceedings of
the 2012 international workshop on Self-aware inter-
net of things, pages 1–6. ACM.

Bellard, F. (2005). Qemu, a fast and portable dynamic
translator. InUSENIX Annual Technical Conference,
FREENIX Track, pages 41–46.

SECRYPT�2015�-�International�Conference�on�Security�and�Cryptography

234



Celeda, P., Krejci, R., Vykopal, J., and Drasar, M. (2010).
Embedded malware-an analysis of the Chuck Norris
botnet. InComputer Network Defense (EC2ND), 2010
European Conference on, pages 3–10. IEEE.

Chen, M., Wan, J., and Li, F. (2012). Machine-to-machine
communications.KSII Transactions on Internet and
Information Systems (TIIS), 6(2):480–497.

Chen, X., Andersen, J., Mao, Z. M., Bailey, M., and
Nazario, J. (2008). Towards an understanding of anti-
virtualization and anti-debugging behavior in modern
malware. InDependable Systems and Networks With
FTCS and DCC, 2008. DSN 2008. IEEE International
Conference on, pages 177–186. IEEE.

Gavare, A. (2014). GXemul. [Online] Avail-
able from: http://gxemul.sourceforge.net/gxemul-
stable/doc/index.html. [Accessed: 24 February 2015].

Genymobile (2014).Genymotion. [Online] Available from:
http://www.genymotion.com/. [Accessed: 24 Febru-
ary 2015].

Google and Asus (2012). Nexus 7 (2012) Tech
Specs (32GB + Mobile Data). [Online] Avail-
able from: https://support.google.com/nexus/answer/
2841846?hl=en. [Accessed: 24 February 2015].

Google and LG Electronics (2013). Nexus 5 Tech
Specs. [Online] Available from: https://support.
google.com/nexus/answer/3467463?hl=en. [Ac-
cessed: 24 February 2015].

Jacobson, V., Braden, R., and Borman, D. (1992). TCP
extensions for high performance.RFC 1323.

Jia-Bin, W., Yi-Feng, L., and Kai, C. (2012). Virtualiza-
tion detection based on data fusion. InComputer Sci-
ence and Information Processing (CSIP), 2012 Inter-
national Conference on, pages 393–396. IEEE.

Jing, Y., Zhao, Z., Ahn, G.-J., and Hu, H. (2014). Mor-
pheus: automatically generating heuristics to detect
android emulators. InProceedings of the 30th Annual
Computer Security Applications Conference, pages
216–225. ACM.

Kohno, T., Broido, A., and Claffy, K. C. (2005). Remote
physical device fingerprinting.Dependable and Se-
cure Computing, IEEE Transactions on, 2(2):93–108.

Lee, G. M., Crespi, N., Choi, J. K., and Boussard, M.
(2013). Internet of Things. InEvolution of Telecom-
munication Services, pages 257–282. Springer.

Martignoni, L., Paleari, R., Roglia, G. F., and Bruschi, D.
(2009). Testing CPU emulators. InProceedings of
the eighteenth international symposium on Software
testing and analysis, pages 261–272. ACM.

Milliken, J., Selis, V., and Marshall, A. (2013). Detec-
tion and analysis of the Chameleon WiFi access point
virus. EURASIP Journal on Information Security,
2013(1):1–14.

Nitti, M., Girau, R., and Atzori, L. (2014). Trustworthiness
management in the social Internet of Things.Knowl-
edge and Data Engineering, IEEE Transactions on,
26(5):1253–1266.

Open Virtual Platform (2014). OVPsim. [On-
line] Available from: http://www.ovpworld.org/
technologyovpsim.php. [Accessed: 24 February
2015].

Oracle Corporation (2014).VirtualBox. [Online] Avail-
able from: https://www.virtualbox.org/. [Accessed:
24 February 2015].

Ortega, A. L. (2013).MAC Changer. [Online] Available
from: http://www.gnu.org/software/macchanger. [Ac-
cessed: 24 February 2015].

PC Engines GmbH (2007). ALIX 6F2 System Board.
[Online] Available from: http://www.pcengines.ch/
alix6f2.htm. [Accessed: 24 February 2015].

Polcák, L. and Franková, B. (2014). On reliability of
clockskew-based remote computer identification. In
International Conference on Security and Cryptogra-
phy. SciTePress-Science and Technology Publications.

Polcák, L., Jirásek, J., and Matousek, P. (2014). Com-
ment on remote physical device fingerprinting.IEEE
Transactions on Dependable and Secure Computing,
(5):494–496.

Quist, D. and Smith, V. (2006). Further down the VM
spiral-detection of full and partial emulation for IA-
32 virtual machines.Proceedings of the Defcon, 14.

Raffetseder, T., Kruegel, C., and Kirda, E. (2007). Detecting
system emulators. InInformation Security, pages 1–
18. Springer.

Raspberry Pi Foundation (2012).Early versions of the
Raspberry Pi Model B. [Online] Available from:
http://www.raspberrypi.org/documentation/hardware/
raspberrypi/models/README.md#modelb. [Ac-
cessed: 24 February 2015].

Rutkowska, J. (2004). Red pill: Detect VMM using
(almost) one CPU instruction. [Online] Available
from: http://web.archive.org/web/20041130172213/
http://invisiblethings.org/papers/redpill.html. [Ac-
cessed: 24 February 2015].

Saied, Y. B., Olivereau, A., Zeghlache, D., and Laurent, M.
(2013). Trust management system design for the In-
ternet of Things: A context-aware and multi-service
approach.Computers & Security, 39:351–365.

Shi, H., Alwabel, A., and Mirkovic, J. (2014). Cardinal pill
testing of system virtual machines. InProceedings of
the 23rd USENIX conference on Security Symposium
(SEC’14). USENIX Association, Berkeley, CA, USA,
pages 271–285.

Vidas, T. and Christin, N. (2014). Evading android runtime
analysis via sandbox detection. InProceedings of the
9th ACM symposium on Information, computer and
communications security, pages 447–458. ACM.

VMware Inc (2015). VMware Player. [Online] Avail-
able from: https://www.vmware.com/. [Accessed: 24
February 2015].

MEDA:�A�Machine�Emulation�Detection�Algorithm

235


