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Abstract: Work on intelligent systems application for learning, teaching and assessment (LTA) uses different 
strategies and parameters to recommend learning and measure learning outcome. In this paper, we show 
how agents can identify gaps in human learning, then the use of a set of parameters which includes 
desired_concept, passed and failed predicate attributes of students in the construction of an array of 
classified production rules which in-turn make prediction for multipath learning after pre-assessment in a 
multiagent system. The context in which this system is developed is structured query language (SQL) 
domain with concepts being represented in a hierarchical structure where a lower concept is a prerequisite to 
its higher concept. 

1 INTRODUCTION 

Different set of parameters or approaches have been 
used by researchers e.g. Chakraborty, Roy & Basu 
(2010), Mills & Dalgarno (2007) and Matsuda et al. 
(n.d.) to model intelligent systems for human 
learning. However, to the best of our knowledge no 
system has been modelled to: 1) diagnose the gap(s) 
in students learning using the set of modelling 
parameters (desired_concept, passed and failed 
predicates) used in this work, 2) use of predicate or 
description logic (DL) semantic literals that are 
understandable between agents for developing 
intelligent tutoring system (ITS), and 3) modelling 
production rules for learning material prediction.  

1.1 Objectives of Research 

 To use some set of parameters that comprises 
of desired_Concept, Passed, and Failed 
attributes in diagnosing knowledge gaps in 
students; 

 To use symbolic representation and speech acts 
performatives (i.e. communicative acts) in 
supporting the development of an intelligent 
multiagent based Pre-assessment System; and  

 To use production-rule multiple classification 
and learning technique by agents in the 
development of ITS on the platform of Jason 

API. 

1.2 Research Problem 

How can intelligent agent system identify gaps and 
guide students so that they are fully prepared for the 
next stage in their learning? 

1.3 Related Work 

Agents, machine learning and fuzzy logic 
approaches have been used in the development of 
computer based learning systems. For example, 
SimStudent (Matsuda et al., n.d.) was developed 
using agent and machine learning for modelling the 
system. Chakraborty, Roy & Basu (2010) engaged 
the use of two-parameter attributes, namely: 
comprehensive ability and problem solving 
skill―<C, P>―to develop a student model using a 
combination of multiagent system (MAS) and 
machine learning. In Mills & Dalgarno (2007), a 
combination of machine learning technique and 
MAS were also used to provide hints to students on 
a current learning goal and to make performance 
prediction. In the foregoing analysis of agents and 
machine learning approaches to LTA technology, 
SimStudent (Matsuda et al., n.d.) was used only for 
tutoring, Chakraborty, Roy & Basu (2010) was used 
for formative measurement, and Mills & Dalgarno 
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(2007) for making performance prediction. 
However, none of these have mentioned the same set 
of parameters, or the use of DL programming tool 
nor multiple classification ripple down rule: 
MCRDR (Kang et al., 1995) inference method 
approach in the development of intelligent learning 
and tutoring system as applied in this research. 

2 STATE OF THE ART: THE 
PRE-ASSESSMENT SYSTEM 

2.1 Agents & Multiagent System 

An agent is a computer system that is situated in 
some environment, and capable of autonomous 
action in this environment in order to meet its design 
objectives (Wooldridge, 2009). A group of 
distributed agents with a collective goal constitutes a 
multiagent system. The pre-assessment system is a 
multiagent based system (Fig. 1) implemented in 
Jason AgentSpeak (Bordini et al., 2007). This 
system has five agents which are described as 
follows: 

2.1.1 Agent agInterface 

Observes the dynamic user inputs on the artifact. 

2.1.2 Agent agModelling 

This is referred to as the classifier. It learns and 
classifies the attributes received from the agent 
agSupport. 

2.1.3 Agent Student Model  

This is the agent that constructs and keep track of all 
the student activity that is communicated from the 
agent agSupport. The Student Model agent uses 
Jason TextPersistentBB class. The TextPersistentBB 
is a persistent text file that captures all the activity or 
learning history of a student which are his: desired 
concept, pre-assessment questions, and correct 
and/or incorrect answers to questions. 

2.1.4 Agent agSupport 

This is the teacher in terms of machine learning. It 
pre-assesses the student based on his desired state 
concept received from the agent agInterface. The 
agent also communicate the outcome of pre-
assessment to the agent agModelling and agModel, 

respectively, and connects the MAS to the MySQL 
database engine for result-set queries. 

2.1.5 Agent agMaterial  

This is the ontology agent that has all ontological 
relations initialised in its BB including the URL data 
value of any SQL concept. This agent outputs the 
appropriate URL learning material after it is 
communicated by the classifier―agent agModelling. 
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Figure 1: Multiagent System Architecture and Interaction. 

2.2 Knowledge Representation 

The domain content of the Pre-assessment System is 
SQL. This has been represented as an ontology of 
class and subclass concepts. To logically establish 
the relationships that exist between the concepts of 
the ontology, the SQL ontology was modelled, 
verified and validated with Protégé 4.3 as a 
structured hierarchy of learning content, and then 
initialised as internal knowledge model in the agent 
agMaterial beliefbase (BB).  The agents in the MAS 
share, understand and communicate knowledge 
about these concepts as messages effectively. From 
the ontology, the MAS can: 
 test (using a test goal) whether a desired topic 

entered by a student exists within the 
ontology after it is perceived by the agent 
agInterface with a reply confirmation 
expected for this request;  

 trigger event to return recommended URL links 
(data values of leaf-nodes) to students after 
the agent agModelling classification of that 
student for appropriate learning from its array 
of predicated production rules and plans.  

The following is a snippet of the knowledge 
representation (KR) of the SQL ontology with every 
relation semantically annotated as [o(sql)].  
Class-to-class relations uses the hasPrerequisite 
predicate while the class-to-subclass relations uses 
the has_KB relation and has two leaf-nodes. The 

CSEDU�2015�-�Doctoral�Consortium

34



subclass to data value relation uses the hasContent 
predicate.  

hasPrerequisite(union, join)[o(sql)]. 
has_KB(join, outer_join)[o(sql)]. 

   has_KB(join,inner_join)[o(sql)]. 
hasPrerequisite(join, update)[o(sql)]. 
   has_KB(update,update_select)[o(sql)]. 

has_KB(update,update_where)[o(sql)]. 
hasPrerequisite(upadate, delete)[o(sql)]. 
   has_KB(delete, delete_select)[o(sql)]. 
   has_KB(delete, delete_where)[o(sql)]. 
hasPrerequisite(delete, insert)[o(sql)]. 
   has_KB(insert, insert_select)[o(sql)]. 
   has_KB(insert, insert_value)[o(sql)]. 
hasPrerequisite(insert, select)[o(sql)]. 
   has_KB(select, select_where)[o(sql)]. 

has_KB(select, select_all)[o(sql)]. 
hasPrerequisite(select, select)[o(sql)]. 

2.3 Student Model 

To identify gaps in students’ learning, the model 
agent (shown as agent student in Fig. 2) is modelled 
to keep four parameter-information persistently 
about a given student in its BB. In a tuple, we 
represent this information as: M = <D, P, F, V> 
where  

M: is the model 
D: is a set of desired concepts i.e. desired state 
P: is a set of passed pre-assessment i.e. current state gains  
F: is a set of failed pre-assessment i.e. current state gaps  
V: is the set of SQL query statements. 

Parameters <D, P, F> which are also simultaneously 
communicated by the agent agSupport  to the agent 
agModelling are gathered, learned as pre-conditions 
within which the appropriate plan is selected to 
classify a student and make prediction for his  

 

 

Figure 2: A snapshot of the model agent “student” 
Persistent BB that the human tutor can access and assess 
to identify skills gain or gap 24/7 including date and time 
stamp of each activity. 

learning material. The rule in a Jason plan format for 

this classification is given as: 

+recommend_material : set_of_profile_parameters 
<- recommended_material. 

After the agent agSupport pre-assesses a student, it 
communicates the student attributes to the agent 
agModelling.  On receipt of these attributes, the 
agModelling classifies and predict some learning 
path for the student depending on a desired concept, 
passed or failed set of parameters received. 

3 METHODOLOGY 

3.1 Systems Development 

The systems development approach to the pre-
assessment system design is the Agent-Oriented 
Analysis and Design (AOAD)―agent software 
engineering cycle that involves: systems 
specification, analysis, design and implementation. 
The AOAD is agent development methodology that 
is based on goals, plans and belief. In this work, we 
have closely followed the Prometheus methodology 
for developing intelligent agent systems (Padgham 
and Winikoff, 2004). As a set of guidelines, the 
Prometheus methodology involves three major agent 
software development steps, given below: 

3.1.1 System Specification 

This is the phase that presents a scenario of the 
problem, identification of goals and basic 
functionalities of the system along with inputs 
(percepts) and outputs (actions). 

3.1.2 Architectural Design 

This is the phase where the number and type of 
agents are decided. It also consist of the system 
overall (static) structure using system overview 
diagram, and the description of the dynamic 
behaviour of the system using interaction diagram 
and interaction protocols. 

3.1.3 Detailed Design 

This phase is focused on the description of 
responsibility and development of the internal 
structure of each agent, and how they will achieve 
their task within the system. 

3.2 Goal Specification 

As natural construct, goals are central to the 
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functioning of intelligent agent that are going to 
realise a functioning system (Padgham and 
Winikoff, 2004). The use of goals or subgoals 
breakdown a scenario into units of achievable design 
steps which map details into later design and 
implementation. The following outlines the entire 
goal of the MAS that split up into responsibilities for 
the various agents: 

 Receive Concept      
 Fetch subConcept (pre-requisite) quiz 
 Test student  
 Receive answer from student 
 Analyse and pre-assess answer 
 Feedback to student  
 Update model agent KB 
 Classify the student  
 Fetch Concept or subConcept materials  
 Tutor the student 

3.3 Multiple Classification Learning 

As the classifier, the agent agModelling learns every 
attribute of the parameters it receives from the agent 
agSupport during the course of pre-assessment.  
Below is an exemplary code in Jason AgentSpeak 
from the agent agModelling plan library for a pre-
assessment on the INSERT prerequisite if a 
DELETE is received as the desired concept:   
/* Prediction rules for DELETE concept */ 
@d1  
+!recommendMaterial[source(agSupport)] :  
desired_Concept("DELETE")[source(agSupport)] 

& passed("The student has passed the 
INSERT with SELECT question.") 
& passed("The student has passed the 
INSERT with VALUE question.") 

<- .send(agMaterial, achieve, 
 hasPrerequisite(delete, insert)). 
       
@d2  
+!recommendMaterial[source(agSupport)] :  
desired_Concept("DELETE")[source(agSupport)] 

& passed("The student has passed the 
INSERT with SELECT question.") 
& failed("The student has NOT passed 
the INSERT with VALUE question.") 

<- .send(agMaterial, achieve, has_KB(insert, 
 insert_value)).  
  
@d3  
+!recommendMaterial[source(agSupport)] :  
desired_Concept("DELETE")[source(agSupport)] 

& failed("The student has NOT passed 
the INSERT with SELECT question.") 
& passed("The student has passed the 
INSERT with VALUE question.") 

<-.send(agMaterial, achieve, has_KB(insert, 
 insert_select)). 
  
@d4  

+!recommendMaterial[source(agSupport)] :  
desired_Concept("DELETE")[source(agSupport)] 

& failed("The student has NOT passed 
the INSERT with SELECT question.") 
& failed("The student has NOT passed 
the INSERT with VALUE question.") 

<-.send(agMaterial, achieve, 
 hasPrerequisite(insert, select)). 

The multiple classification code classifies a student 
for learning material into one of four categories for 
any given concept e.g. the DELETE. In the codes 
the attributes of the students which forms the 
production-rules (otherwise known as the context in 
Jason agentSpeak) or pre-conditions must be true 
and satisfied before classification can be completed.  
Recall that the set of parameters that is devised to 
construct this multiagent based Pre-assessment 
System is given in the turple M = <D, P, F, V>. 
Logically, based on the Passed and Failed two-state 
predicate attributes of a student, if a set of attributes 
are all <P> (e.g. label @d1) then we say the student 
has positive ability, but if all <F> (e.g. label @d4) 
we say the student has negative ability. But if the set 
of attribute is a mix of <P> and <F> (e.g. label @d2 
and @d3) then we say it is partial ability.  

3.4 Agent Learning Hypothesis 

In this production rules classification learning, let C 
be the number of prerequisite concept(s) to a desired 
concept D, T a binary-state value for student pre-
assessment outcome and N the equal number of leaf-
nodes across each parent node, then the total number 
of classified production rules R for a given ontology 
tree is determined by: 

R = CTN + 1 
where  

C ϵ {0, 1, 2, ..., k-1, k} 
T = 2, for a pass or fail state 
       N ϵ {1, 2, 3, ..., k-1, k} 

For any SQL rules set that would need to be added 
to the array of production rules, the agent 
agModelling would increment the number of 
classified rules for a given concept with: 

Rꞌ = R + TN; 

where C = 0, 1, 2,…, k in  

R = CTN + 1 

and conversely decrements by removing rules for a 
concept that is no longer needed with:  

Rꞌ = R - TN; 

where C ≠ 0 in  

R = CTN + 1. 

From each learning algorithm, the number of rules to 
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be added or removed is determined by the number of 
leaf-nodes TN in the ontology. The code snippet in 
Section 3.3 gives a picture of how the classified 
rules makes prediction for learning. Since TN = 22 

then the number of classified rules equals 4 for each 
class concept. In the example for the DELETE 
concept received, the agModelling classifies the 
student and make prediction for appropriate learning 
URL through semantic literal communication to the 
agent agMaterial using the tell or achieve 
performative.  

4 EXPECTED OUTCOME 

The main purpose of this system is to ascertain 
whether a student is prepared to learn a concept he 
so desired to study, and to identify gaps in the 
student knowledge. Figure 3 and 4 shows the Pre-
assessment System user interface and a minimized 
output console. As students would enter concepts on 
the input interface, the MAS outputs a couple of 
questions of the immediate lower (or prerequisite) 
concept. Depending on the answers received by the 
MAS, the student is shown the URL link(s) of the 
concept to learn after his/her classification.  

 
Figure 3: Starting the Pre-assessment System. The system 
outputs a list from which a SQL concept can be chosen to 
be studied. 

 

Figure 4: The user is diagnosed to have a knowledge gap 
in INSERT SELECT and INSERT VALUE statement. So 
not quite ready for DELETE. Output of INSERT URL 
links. 

5 STAGE OF THE RESEARCH  

The next stage of this work is the evaluation of the 
multiagent based Pre-assessment System for: fitness 
of purposed, evidence of use, and collation of 
feedback data from potential participants and 
analysis of the data. The collection of feedback data 
shall be through a structured qualitative 
questionnaire method, followed by the tutor’s task to 
view the student Model agent BB to unveil 
successful construction of SQL queries by students 
and/or the technical difficulties they are facing 
which we have called the gaps between what they 
have learnt and what they want to learn in order to 
address the research question. Finally write my 
Thesis which is potentially titled: Helper Agents for 
Learning in Structured Ontology Interoperability 
Based System.  

6 CONCLUSIONS & 
CONTRIBUTION 

This paper has demonstrated how a multiagent tool 
can be used to design an intelligent learning system, 
and how the agents can cooperatively diagnose 
gap(s) between a student’s desired knowledge and 
his previous knowledge using a devised set of 
parameters. As well as the foregoing, its contribution 
is the use predicate or description logic semantic 
literals that are understandable between agents for 
modelling classified production rules and predicting 
learning materials. The Expected Outcome is that the 
system should be able to pre-assess students, 
identify students’ strengths (i.e. gains) for projection 
to the next module, identify weaknesses (i.e. gaps) in 
order to fill the gaps and prepare them for the next 
module; and recommend learning materials.   
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