
Adaptive Multiagent System for Learning Gap Identification
Through Semantic Communication and Classified Rules Learning

Kennedy E. Ehimwenma, Martin Beer and Paul Crowther
Communication & Computing Research Centre, Sheffield Hallam University, Sheffield, U.K.

Keywords: Multiagent, Classification, Semantics, Learning, Pre-assessment, Knowledge Representation, Prerequisite,
Jason Agentspeak.

Abstract: Work on intelligent systems application for learning, teaching and assessment (LTA) uses different
strategies and parameters to recommend learning and measure learning outcome. In this paper, we show
how agents can identify gaps in human learning, then the use of a set of parameters which includes
desired_concept, passed and failed predicate attributes of students in the construction of an array of
classified production rules which in-turn make prediction for multipath learning after pre-assessment in a
multiagent system. The context in which this system is developed is structured query language (SQL)
domain with concepts being represented in a hierarchical structure where a lower concept is a prerequisite to
its higher concept.

1 INTRODUCTION

Different set of parameters or approaches have been
used by researchers e.g. Chakraborty, Roy & Basu
(2010), Mills & Dalgarno (2007) and Matsuda et al.
(n.d.) to model intelligent systems for human
learning. However, to the best of our knowledge no
system has been modelled to: 1) diagnose the gap(s)
in students learning using the set of modelling
parameters (desired_concept, passed and failed
predicates) used in this work, 2) use of predicate or
description logic (DL) semantic literals that are
understandable between agents for developing
intelligent tutoring system (ITS), and 3) modelling
production rules for learning material prediction.

1.1 Objectives of Research

 To use some set of parameters that comprises
of desired_Concept, Passed, and Failed
attributes in diagnosing knowledge gaps in
students;

 To use symbolic representation and speech acts
performatives (i.e. communicative acts) in
supporting the development of an intelligent
multiagent based Pre-assessment System; and

 To use production-rule multiple classification
and learning technique by agents in the
development of ITS on the platform of Jason

API.

1.2 Research Problem

How can intelligent agent system identify gaps and
guide students so that they are fully prepared for the
next stage in their learning?

1.3 Related Work

Agents, machine learning and fuzzy logic
approaches have been used in the development of
computer based learning systems. For example,
SimStudent (Matsuda et al., n.d.) was developed
using agent and machine learning for modelling the
system. Chakraborty, Roy & Basu (2010) engaged
the use of two-parameter attributes, namely:
comprehensive ability and problem solving
skill―<C, P>―to develop a student model using a
combination of multiagent system (MAS) and
machine learning. In Mills & Dalgarno (2007), a
combination of machine learning technique and
MAS were also used to provide hints to students on
a current learning goal and to make performance
prediction. In the foregoing analysis of agents and
machine learning approaches to LTA technology,
SimStudent (Matsuda et al., n.d.) was used only for
tutoring, Chakraborty, Roy & Basu (2010) was used
for formative measurement, and Mills & Dalgarno

33

Ehimwenma K., Beer M. and Crowther P..
Adaptive Multiagent System for Learning Gap Identification Through Semantic Communication and Classified Rules Learning.
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)

(2007) for making performance prediction.
However, none of these have mentioned the same set
of parameters, or the use of DL programming tool
nor multiple classification ripple down rule:
MCRDR (Kang et al., 1995) inference method
approach in the development of intelligent learning
and tutoring system as applied in this research.

2 STATE OF THE ART: THE
PRE-ASSESSMENT SYSTEM

2.1 Agents & Multiagent System

An agent is a computer system that is situated in
some environment, and capable of autonomous
action in this environment in order to meet its design
objectives (Wooldridge, 2009). A group of
distributed agents with a collective goal constitutes a
multiagent system. The pre-assessment system is a
multiagent based system (Fig. 1) implemented in
Jason AgentSpeak (Bordini et al., 2007). This
system has five agents which are described as
follows:

2.1.1 Agent agInterface

Observes the dynamic user inputs on the artifact.

2.1.2 Agent agModelling

This is referred to as the classifier. It learns and
classifies the attributes received from the agent
agSupport.

2.1.3 Agent Student Model

This is the agent that constructs and keep track of all
the student activity that is communicated from the
agent agSupport. The Student Model agent uses
Jason TextPersistentBB class. The TextPersistentBB
is a persistent text file that captures all the activity or
learning history of a student which are his: desired
concept, pre-assessment questions, and correct
and/or incorrect answers to questions.

2.1.4 Agent agSupport

This is the teacher in terms of machine learning. It
pre-assesses the student based on his desired state
concept received from the agent agInterface. The
agent also communicate the outcome of pre-
assessment to the agent agModelling and agModel,

respectively, and connects the MAS to the MySQL
database engine for result-set queries.

2.1.5 Agent agMaterial

This is the ontology agent that has all ontological
relations initialised in its BB including the URL data
value of any SQL concept. This agent outputs the
appropriate URL learning material after it is
communicated by the classifier―agent agModelling.

Student

Interface Agent

(Classifier)

Model ling Agent

(Pre‐assessment)
Support

 Agent

(Ontology)

Material Agent

Student Model

Agent

MySQL

DB

Figure 1: Multiagent System Architecture and Interaction.

2.2 Knowledge Representation

The domain content of the Pre-assessment System is
SQL. This has been represented as an ontology of
class and subclass concepts. To logically establish
the relationships that exist between the concepts of
the ontology, the SQL ontology was modelled,
verified and validated with Protégé 4.3 as a
structured hierarchy of learning content, and then
initialised as internal knowledge model in the agent
agMaterial beliefbase (BB). The agents in the MAS
share, understand and communicate knowledge
about these concepts as messages effectively. From
the ontology, the MAS can:
 test (using a test goal) whether a desired topic

entered by a student exists within the
ontology after it is perceived by the agent
agInterface with a reply confirmation
expected for this request;

 trigger event to return recommended URL links
(data values of leaf-nodes) to students after
the agent agModelling classification of that
student for appropriate learning from its array
of predicated production rules and plans.

The following is a snippet of the knowledge
representation (KR) of the SQL ontology with every
relation semantically annotated as [o(sql)].
Class-to-class relations uses the hasPrerequisite
predicate while the class-to-subclass relations uses
the has_KB relation and has two leaf-nodes. The

CSEDU�2015�-�Doctoral�Consortium

34

subclass to data value relation uses the hasContent
predicate.

hasPrerequisite(union, join)[o(sql)].
has_KB(join, outer_join)[o(sql)].

 has_KB(join,inner_join)[o(sql)].
hasPrerequisite(join, update)[o(sql)].
 has_KB(update,update_select)[o(sql)].

has_KB(update,update_where)[o(sql)].
hasPrerequisite(upadate, delete)[o(sql)].
 has_KB(delete, delete_select)[o(sql)].
 has_KB(delete, delete_where)[o(sql)].
hasPrerequisite(delete, insert)[o(sql)].
 has_KB(insert, insert_select)[o(sql)].
 has_KB(insert, insert_value)[o(sql)].
hasPrerequisite(insert, select)[o(sql)].
 has_KB(select, select_where)[o(sql)].

has_KB(select, select_all)[o(sql)].
hasPrerequisite(select, select)[o(sql)].

2.3 Student Model

To identify gaps in students’ learning, the model
agent (shown as agent student in Fig. 2) is modelled
to keep four parameter-information persistently
about a given student in its BB. In a tuple, we
represent this information as: M = <D, P, F, V>
where

M: is the model
D: is a set of desired concepts i.e. desired state
P: is a set of passed pre-assessment i.e. current state gains
F: is a set of failed pre-assessment i.e. current state gaps
V: is the set of SQL query statements.

Parameters <D, P, F> which are also simultaneously
communicated by the agent agSupport to the agent
agModelling are gathered, learned as pre-conditions
within which the appropriate plan is selected to
classify a student and make prediction for his

Figure 2: A snapshot of the model agent “student”
Persistent BB that the human tutor can access and assess
to identify skills gain or gap 24/7 including date and time
stamp of each activity.

learning material. The rule in a Jason plan format for

this classification is given as:

+recommend_material : set_of_profile_parameters
<- recommended_material.

After the agent agSupport pre-assesses a student, it
communicates the student attributes to the agent
agModelling. On receipt of these attributes, the
agModelling classifies and predict some learning
path for the student depending on a desired concept,
passed or failed set of parameters received.

3 METHODOLOGY

3.1 Systems Development

The systems development approach to the pre-
assessment system design is the Agent-Oriented
Analysis and Design (AOAD)―agent software
engineering cycle that involves: systems
specification, analysis, design and implementation.
The AOAD is agent development methodology that
is based on goals, plans and belief. In this work, we
have closely followed the Prometheus methodology
for developing intelligent agent systems (Padgham
and Winikoff, 2004). As a set of guidelines, the
Prometheus methodology involves three major agent
software development steps, given below:

3.1.1 System Specification

This is the phase that presents a scenario of the
problem, identification of goals and basic
functionalities of the system along with inputs
(percepts) and outputs (actions).

3.1.2 Architectural Design

This is the phase where the number and type of
agents are decided. It also consist of the system
overall (static) structure using system overview
diagram, and the description of the dynamic
behaviour of the system using interaction diagram
and interaction protocols.

3.1.3 Detailed Design

This phase is focused on the description of
responsibility and development of the internal
structure of each agent, and how they will achieve
their task within the system.

3.2 Goal Specification

As natural construct, goals are central to the

Adaptive�Multiagent�System�for�Learning�Gap�Identification�Through�Semantic�Communication�and�Classified�Rules
Learning

35

functioning of intelligent agent that are going to
realise a functioning system (Padgham and
Winikoff, 2004). The use of goals or subgoals
breakdown a scenario into units of achievable design
steps which map details into later design and
implementation. The following outlines the entire
goal of the MAS that split up into responsibilities for
the various agents:

 Receive Concept
 Fetch subConcept (pre-requisite) quiz
 Test student
 Receive answer from student
 Analyse and pre-assess answer
 Feedback to student
 Update model agent KB
 Classify the student
 Fetch Concept or subConcept materials
 Tutor the student

3.3 Multiple Classification Learning

As the classifier, the agent agModelling learns every
attribute of the parameters it receives from the agent
agSupport during the course of pre-assessment.
Below is an exemplary code in Jason AgentSpeak
from the agent agModelling plan library for a pre-
assessment on the INSERT prerequisite if a
DELETE is received as the desired concept:
/* Prediction rules for DELETE concept */
@d1
+!recommendMaterial[source(agSupport)] :
desired_Concept("DELETE")[source(agSupport)]

& passed("The student has passed the
INSERT with SELECT question.")
& passed("The student has passed the
INSERT with VALUE question.")

<- .send(agMaterial, achieve,
 hasPrerequisite(delete, insert)).

@d2
+!recommendMaterial[source(agSupport)] :
desired_Concept("DELETE")[source(agSupport)]

& passed("The student has passed the
INSERT with SELECT question.")
& failed("The student has NOT passed
the INSERT with VALUE question.")

<- .send(agMaterial, achieve, has_KB(insert,
 insert_value)).

@d3
+!recommendMaterial[source(agSupport)] :
desired_Concept("DELETE")[source(agSupport)]

& failed("The student has NOT passed
the INSERT with SELECT question.")
& passed("The student has passed the
INSERT with VALUE question.")

<-.send(agMaterial, achieve, has_KB(insert,
 insert_select)).

@d4

+!recommendMaterial[source(agSupport)] :
desired_Concept("DELETE")[source(agSupport)]

& failed("The student has NOT passed
the INSERT with SELECT question.")
& failed("The student has NOT passed
the INSERT with VALUE question.")

<-.send(agMaterial, achieve,
 hasPrerequisite(insert, select)).

The multiple classification code classifies a student
for learning material into one of four categories for
any given concept e.g. the DELETE. In the codes
the attributes of the students which forms the
production-rules (otherwise known as the context in
Jason agentSpeak) or pre-conditions must be true
and satisfied before classification can be completed.
Recall that the set of parameters that is devised to
construct this multiagent based Pre-assessment
System is given in the turple M = <D, P, F, V>.
Logically, based on the Passed and Failed two-state
predicate attributes of a student, if a set of attributes
are all <P> (e.g. label @d1) then we say the student
has positive ability, but if all <F> (e.g. label @d4)
we say the student has negative ability. But if the set
of attribute is a mix of <P> and <F> (e.g. label @d2
and @d3) then we say it is partial ability.

3.4 Agent Learning Hypothesis

In this production rules classification learning, let C
be the number of prerequisite concept(s) to a desired
concept D, T a binary-state value for student pre-
assessment outcome and N the equal number of leaf-
nodes across each parent node, then the total number
of classified production rules R for a given ontology
tree is determined by:

R = CTN + 1
where

C ϵ {0, 1, 2, ..., k-1, k}
T = 2, for a pass or fail state
 N ϵ {1, 2, 3, ..., k-1, k}

For any SQL rules set that would need to be added
to the array of production rules, the agent
agModelling would increment the number of
classified rules for a given concept with:

Rꞌ = R + TN;

where C = 0, 1, 2,…, k in

R = CTN + 1

and conversely decrements by removing rules for a
concept that is no longer needed with:

Rꞌ = R - TN;

where C ≠ 0 in

R = CTN + 1.

From each learning algorithm, the number of rules to

CSEDU�2015�-�Doctoral�Consortium

36

be added or removed is determined by the number of
leaf-nodes TN in the ontology. The code snippet in
Section 3.3 gives a picture of how the classified
rules makes prediction for learning. Since TN = 22

then the number of classified rules equals 4 for each
class concept. In the example for the DELETE
concept received, the agModelling classifies the
student and make prediction for appropriate learning
URL through semantic literal communication to the
agent agMaterial using the tell or achieve
performative.

4 EXPECTED OUTCOME

The main purpose of this system is to ascertain
whether a student is prepared to learn a concept he
so desired to study, and to identify gaps in the
student knowledge. Figure 3 and 4 shows the Pre-
assessment System user interface and a minimized
output console. As students would enter concepts on
the input interface, the MAS outputs a couple of
questions of the immediate lower (or prerequisite)
concept. Depending on the answers received by the
MAS, the student is shown the URL link(s) of the
concept to learn after his/her classification.

Figure 3: Starting the Pre-assessment System. The system
outputs a list from which a SQL concept can be chosen to
be studied.

Figure 4: The user is diagnosed to have a knowledge gap
in INSERT SELECT and INSERT VALUE statement. So
not quite ready for DELETE. Output of INSERT URL
links.

5 STAGE OF THE RESEARCH

The next stage of this work is the evaluation of the
multiagent based Pre-assessment System for: fitness
of purposed, evidence of use, and collation of
feedback data from potential participants and
analysis of the data. The collection of feedback data
shall be through a structured qualitative
questionnaire method, followed by the tutor’s task to
view the student Model agent BB to unveil
successful construction of SQL queries by students
and/or the technical difficulties they are facing
which we have called the gaps between what they
have learnt and what they want to learn in order to
address the research question. Finally write my
Thesis which is potentially titled: Helper Agents for
Learning in Structured Ontology Interoperability
Based System.

6 CONCLUSIONS &
CONTRIBUTION

This paper has demonstrated how a multiagent tool
can be used to design an intelligent learning system,
and how the agents can cooperatively diagnose
gap(s) between a student’s desired knowledge and
his previous knowledge using a devised set of
parameters. As well as the foregoing, its contribution
is the use predicate or description logic semantic
literals that are understandable between agents for
modelling classified production rules and predicting
learning materials. The Expected Outcome is that the
system should be able to pre-assess students,
identify students’ strengths (i.e. gains) for projection
to the next module, identify weaknesses (i.e. gaps) in
order to fill the gaps and prepare them for the next
module; and recommend learning materials.

REFERENCES

Bordini, R. H., Hübner, J. F., & Wooldridge, M. (2007).
Programming multi-agent systems in AgentSpeak
using Jason. John Wiley & Sons, West Sussex,
England.

Chakraborty, S., Roy, D., & Basu, A. (2010).
Development of knowledge based intelligent tutoring
system. Advanced Knowledge Based Systems: Model,
Applications & Research, 1, 74-100.

Kang, B., Compton, P., & Preston, P. (1995, February).
Multiple classification ripple down rules: evaluation
and possibilities. In Proceedings 9th Banff knowledge

Adaptive�Multiagent�System�for�Learning�Gap�Identification�Through�Semantic�Communication�and�Classified�Rules
Learning

37

acquisition for knowledge based systems workshop
(pp. 17-1).

Matsuda, N., Cohen, W. W., Sewall, J., Lacerda, G. &
Koedinger, K. R. (n.d.). SimStudent: Building an
Intelligent Tutoring System by Tutoring a Synthetic
Student. Pp.1-19.
http://www.cs.cmu.edu/~wcohen/postscript/simstudent
-authoring-submitted.pdf (Accessed: January 3rd,
2015).

Mills, C., & Dalgarno, B. (2007). A conceptual model for
game-based intelligent tutoring systems. Proceedings
of the 2007 Australasian Society for Computers in
Learning in Tertiary Education, 692-702.

Padgham, L., & Winikoff, M. (2004). Developing
intelligent agent systems: A practical guide John
Wiley & Sons. West Sussex, England.

Wooldridge, M. (2009). An Introduction to MultiAgent
Systems. John Wiley & Sons Ltd, UK.

CSEDU�2015�-�Doctoral�Consortium

38

