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Abstract: This paper presents details on the implementation of evolving Takagi-Sugeno-Kang (TSK) fuzzy models of 
a nonlinear process represented by the pendulum dynamics in the framework of the representative 
pendulum-crane systems. The pendulum angle is the output variable of the TSK fuzzy models that are 
obtained by online identification. The rule bases and the parameters of the TSK fuzzy models are 
continuously evolved by an online identification algorithm (OIA) that adds new rules with more 
summarization power and modifies the existing rules and parameters. The OIA is associated with an input 
selection algorithm that guides the modelling in terms of ranking the inputs according to their importance 
factors. Three TSK fuzzy models evolved by the OIA are exemplified. The performance of the new 
evolving TSK fuzzy models is illustrated by experimental results conducted on pendulum-crane laboratory 
equipment. 

1 INTRODUCTION 

As shown in (Angelov, 2002; Sayed Mouchaweh et 
al., 2002; Lughofer, 2011, 2013; Precup et al., 
2015), the evolving Takagi-Sugeno-Kang (TSK) 
fuzzy models are characterized by the continuous 
online learning for rule base learning. In this regard, 
an online identification algorithm (OIA) generally 
continuously evolves the rule bases and the 
parameters of the TSK fuzzy models, and the models 
are built online by adding new or removing old local 
models (i.e., the adding mechanism). A useful 
classification of OIAs dedicated to evolving TSK 
fuzzy models is given in (Dovžan et al., 2014), 
where the OIAs are organized in three categories. 
First, the adaptive algorithms must start with the 
initial structure of the TSK fuzzy model (given by 
other algorithms or by the experience of the 
specialist), the number of space partitions/clusters 
does not change over time, and only the parameters 
of the membership functions (m.f.s) and the local 
models are adapted. Second, the incremental 
algorithms, represented by RAN (Platt, 1991), 
SONFIN (Juang and Lin, 1998), SCFNN (Lin et al., 
2001), NeuroFAST (Tzafestas and Zikidis, 2001), 

DENFIS (Kasabov and Song, 2002), eTS (Angelov 
and Filev, 2004), FLEXFIS (Lughofer and Klement, 
2005) or PANFIS (Pratama et al., 2014), implement 
only adding mechanisms. Third, the evolving 
algorithms, besides the adding mechanism, 
implement removing and some of them also merging 
and splitting mechanisms. 

Building upon the recent results on evolving 
TSK fuzzy models given in (Precup et al., 2012c, 
2014), this paper gives details on the implementation 
of evolving TSK fuzzy models of a representative 
nonlinear process represented by the pendulum 
dynamics in the framework of pendulum-crane 
systems. As shown in (Precup et al., 2014), the 
pendulum-crane systems are important as 
translational electromechanical systems. The crane 
control systems can carry out either the cart position 
control or the position control of the cart and the 
downward or upward angle control of the pendulum 
as well. The process models for crane systems can 
give the cart position (Precup et al., 2014) or the 
pendulum angle (Precup et al., 2012c). 

Some recent examples of TSK fuzzy models for 
the pendulum dynamics, i.e., the pendulum angle is 
the output variable, are presented in the literature 
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with focus on fuzzy control. The parameters of TSK 
fuzzy models are tuned in (Al-Hadithi et al., 2012) 
by the parameters’ weighting method that exhibits 
low computational effort. Fuzzy state observers are 
combined with TSK fuzzy models in 
(Kolemishevska-Gugulovska et al., 2012). Type-2 
TSK fuzzy models that alleviate the noise of training 
data and that account for mismatched m.f.s are 
proposed in (Li and Sun, 2012; Li et al., 2014). TSK 
fuzzy models with perturbations and state 
multiplicative noises are suggested in (Chang and 
Huang, 2014). The quasi-Linear Parameter Variation 
formulation of TSK models is discussed in 
(Allouche et al., 2014). The dynamic decoupling 
concept is introduced in (Chiu, 2014) by the virtual 
input dynamics, which decouples the system 
uncertainty and the control signal in each rule. The 
modelling errors between nonlinear dynamic 
systems and TSK fuzzy models are analyzed in (Tsai 
and Chen, 2014). The so-called universal TSK fuzzy 
models for discrete-time non-affine nonlinear 
systems are proposed in (Gao et al., 2015). 

Three evolving TSK fuzzy models are proposed 
in this paper, namely models with one, two and three 
inputs. These models are derived by an OIA that 
belongs to the incremental algorithms according to 
the classification given in (Dovžan et al., 2014). The 
OIA adds new rules with more summarization power 
and modifies the existing rules and parameters, and 
it is associated with an input selection algorithm that 
guides the modelling in terms of ranking the inputs 
according to their importance factors. 

This paper offers twofold new contributions with 
respect to the previously discussed state-of-the-art, 
expressed as the functionalities of the OIA. First, the 
OIA is inspired from (Angelov and Filev, 2004), and 
it offers rule bases and parameters that continuously 
evolve by adding new rules with more 
summarization power, the existing rules and 
parameters are modified in terms of using the 
potentials of new data points. Second, an input 
selection algorithm is inserted in the OIA. 

These contributions are advantageous compared 
to the state-of-the-art because, as shown in (Precup 
et al., 2014) but for crane control systems, the OIA 
ensures a relatively simple and transparent 
implementation. In addition, the OIA derives TSK 
fuzzy models with improved performance proved for 
a complex nonlinear process represented by the 
pendulum dynamics. This paper applies and adapts 
the results obtained in (Precup et al., 2014) for the 
cart position models to the pendulum angle models. 

The new functionalities of the OIA and the TSK 
fuzzy models proposed in this paper are compared 

with the TSK fuzzy models obtained by three OIAs: 
the adaptive algorithm ANFIS (Jang, 1993) and the 
incremental algorithms DENFIS and FLEXFIS. The 
comparison shows that the proposed evolving TSK 
fuzzy models ensure the performance enhancement 
on the validation data. 

This paper is structured as follows: an overview 
on the OIA is presented in the next section. The case 
study concerning the derivation and validation of the 
new TSK fuzzy models for the pendulum dynamics 
in the framework of pendulum-crane systems are 
treated in Section 3. The comparison of model 
performance is included. The conclusions are 
highlighted in Section 4. 

2 ONLINE IDENTIFICATION 
ALGORITHM 

The steps of the OIA are obtained by the relatively 
simple reformulation of the results given in 
(Angelov and Filev, 2004; Precup et al., 2014) 
focusing on the cost-effective implementation of the 
recursive procedure. The OIA consists of the 
following steps that can be organized in terms of the 
flowchart, omitted here for the sake of simplicity: 

Step 1. The rule base structure is initialized, i.e., 
the parameters in the rule antecedents are initialized. 
This is carried out such that to have a single rule, 

1Rn , where 
Rn  is the number of rules. The 

subtractive clustering (Takagi and Sugeno, 1985) is 
applied to compute the parameters of the TSK fuzzy 
models using the first data point 

1p , where the 

expression of the data point p at the discrete time 
step k is 
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kkkk ppp p  (1)

T indicates the matrix transposition, the data point in 
the input-output data space 1nR  is 

,]...[

]...[][
1121

21

 


nTnn

T
n

TT

pppp

yzzzy

R

zp  (2)

the rule base of the affine-type TSK fuzzy models is 
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where ,...1  , njz j   are the input variables, n is the 

number of input variables, ,...1 ,...1 , njniLT Rji   

are the input linguistic terms, 
iy  is the output of the 

local model in the rule consequent of rule 
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,...1 , Rnii   and ,...0 ,...1 , nlnia Rli   are the 

parameters in the rule consequents. 
Using the algebraic product t-norm to model the 

AND operator and the weighted average 
defuzzification method in the TSK fuzzy model 
structure, the output y of the TSK fuzzy model is 
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where the firing degree of the rule i is 
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the normalized firing degree of the rule i is 
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and the vector ,...1 , Ri ni π  in (4) is the parameter 

vector of the rule i (Precup et al., 2014) 
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The parameters are initialized in terms of (Angelov 
and Filev, 2004) 
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where )1()1(  nnnn
k

RRRC  is the covariance matrix, I 

is the th)1( nnR
 order identity matrix, 

,0 ,const   is a large number, 
kθ̂  is an 

estimation of the parameter vector in the rule 
consequents at the discrete time step k, and 

,0  , ss rr  is the spread of all Gaussian input m.f.s 
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and ,...1 ,...1 ,*
 njniz Rji   are the centres of these 

m.f.s. *
1p  in (8) is the first cluster centre, *

1z  is the 

centre of the rule 1 and also a projection of *
1p  on 

the axis z defined in (2), and )( *
11 pP  in (8) is the 

potential of *
1p . 

The input selection algorithm suggested in 
(Precup et al., 2014) is next applied in order to select 

the important input variables from all possible input 
variables. This algorithm consists of the following 
steps that are organized as sub-steps of this step 1 of 
the OIA: 

Sub-step 1.1. The algorithm is initialized by 
setting the values of the 10 ,  , that represents 

the importance threshold, and 10 ,  , that 

stands for the significance threshold. 
Sub-step 1.2. The input variable njz j ...1  ,  , is 

applied to the initial TSK fuzzy model, the outputs 

kjy ,
 of the initial TSK fuzzy model at the discrete 

time moment k, Dk ...1 , are read, where D is the 
number of input-output data points. The change 
range 

jzR  for the input variable njz j ...1 ,  , is 

calculated 
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and the importance factor 
jzI  of the input variable 

njz j ...1 ,  , is calculated as well 
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The most important input variable is characterized 
by 1

jzI . As shown in (Precup et al., 2014), large 

values of 
jzR  and 

jzI  indicate a big influence of the 

input variable njz j ...1 ,  , and small values of 
jzR  

and 
jzI  indicate a relatively unimportant input 

variable njz j ...1 ,  . 

Sub-step 1.3. The importance of all input 
variables is ranked according to the values of the 
importance factors njI

jz ...1 ,  . 

Sub-step 1.4. All input variables that fulfil the 
condition 


jzI (12)

are removed. The condition (12) points out that the 
input variable njz j ...1 ,  , is unimportant, so it is 

justified to remove it. This sub-step gives the set of 
remaining 

rn  input variables, which are selected out 

of the initial n input variables, nnr  . 

Sub-step 1.5. The closely related input variables 
are recognized to carry out the independent input 
variable testing by the calculation of the correlation 
functions ),( ji zzCorr , 1),(0  ji zzCorr , between 

the selected input variables 
iz  and 

jz , 
rnji ...1,   
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where 
iz  and 

jz  are the means of vectors 
iz  and 

jz , 

rnji ...1,  , respectively, and 
iz  and 

jz  are the 

variances of 
iz  and 

jz , 
rnji ...1,  , respectively. 

respectively. If the following condition is fulfilled: 

,),( ji zzCorr  (14)

then the input variable 
iz  is closely related with the 

input variable 
jz . The condition (14) is used in 

keeping the independent input variables among the 

rn  selected input variables. The condition (14) also 

helps in removing one of the two input variables 
iz  

or 
jz . Therefore, this sub-step leads to the set of 

remaining 
in  independent input variables out of the 

rn  selected input variables, 
ri nn  . 

Step 2. At the next time step, k is set to 1 kk , 
and the next data sample 

kp  is read. 

Step 3. The potential of each new data sample is 
computed in terms of (Precup et al., 2014) 
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Step 4. The potentials of the centres of existing 
rules (clusters) are recursively updated by (Angelov 
and Filev, 2005) 
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where )( *
lkP p  is the potential at the discrete time 

step k of the cluster centre, which is a prototype of 
the rule l. 

Step 5. The possible modification or upgrade of 
the rule base structure is carried out using, as 
described in (Angelov and Filev, 2004; Precup et al., 
2014), the potential of the new data compared to the 
potential of existing rules’ centres. The rule base 
structure is modified if certain conditions are 
fulfilled. 

Step 6. The parameters in the rule consequents 
are updated using the Recursive Least Squares 
(RLS) algorithm (Takagi and Sugeno, 1985; Chiu, 

1994) 
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where the initial conditions are given in (4), and the 
output of the TSK fuzzy model in (4) is expressed in 
terms of the vector form 
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Step 7. The output of the evolving TSK fuzzy model 
at the next discrete time step 1k  is predicted using 
the particular form of (18) 

.ˆˆ 1 k
T
kky θψ

 (19)

The algorithm continues with the step 2 until all data 
points from the set of input-output data 

}...1|{ Dkk p  (20)

are read. The step 1 is conducted offline, and the 
steps 2 to 7 are conducted online. 

3 FUZZY MODELS AND 
EXPERIMENTAL VALIDATION 

A laboratory setup that contains a pendulum-cart 
system described in (Turnau et al., 2008) has been 
used in the development and validation of the 
evolving TSK fuzzy models. The state equations of 
the process in the pendulum-cart system are 
presented in (21). 

The variables in (21) are: 
1x  – the cart position 

(the distance between the cart and the centre of the 
rail), 

2x  – the angle between the upward vertical and 

the ray pointing at the centre of mass cart, 
3x  – the 

cart velocity, 
4x  – the pendulum angular velocity, u 

– the control signal represented by a constrained 
PWM voltage signal, 0|| max  uu , 

cm  – the 

equivalent mass of the cart, 
Pm  – the mass of the 

pole and load, and 
dl  – the distance from the axis of 

rotation to the centre of mass. The parameters in 
(21) are: 

pJ  – the moment of inertia of the 

pendulum-cart system with respect to the axis of 
rotation, 

1p  – the ratio between the control force and 

the control signal, 2p  – the ratio between the control 

force and 
3x , 

cf  – the dynamic cart coefficient, and 

pf    –    the    rotational   friction    coefficient.   The
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parameter values used in the experimental setup are 
(Turnau et al., 2008; Precup et al., 2014) 

s/rad. m N 1065.6 /m, N 5.0
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The OIA presented in the previous sections has been 
applied in order to obtain the evolving TSK fuzzy 
models of the pendulum dynamics, i.e. 

2xy  . This 

section gives a part of the results. The OIA has been 
coded as an extension of the implementation in 
terms of eFS Lab (Ramos and Dourado, 2004; Aires 
et al., 2009) of the OIAs given in (Angelov and 
Filev, 2004; Precup et al., 2014). 

Setting the sampling period to 0.01 s, the control 
signal u has been generated as two weighted sums of 
pseudo-random binary signals according to Figure 1 
that covers different ranges of magnitudes. As 
shown in (Precup et al., 2012c, 2014), this process 
input has been applied to the laboratory setup to 
generate the input-output data points 

....1  ),,( Dkykk z  Figure 1 leads to a total number 

of 6000 data points separated in training data and 
validation data. The first 2500D  data points (the 
time frame from 0 s to 25 s) in Figure 1 belong to 
the validation data, the rest of 3500D  data points 
(the time frame from 25 s to 60 s) in Figure 1 belong 
to the testing (validation) data, and the process 
output y will be illustrated as follows. 

The input selection algorithm included in the 
step 1 of the OIA has been applied for three values 
of the importance threshold, namely 4.0 , 

3.0  and 2.0 , and one value of the 
significance threshold, 5.0 . This leads to three 
TSK fuzzy models with the following inputs: the 
TSK fuzzy model 1, with the input 

1ku , the TSK 

fuzzy model 2 with the inputs 
1ku  and 

1ky , and the 

TSK fuzzy model 3 with the inputs 
1ku , 

1ky  and 

2ky . The output of these three TSK fuzzy models is 

ky . The inputs of the fuzzy models have been 

obtained from delayed system inputs and/or outputs 
extracted from the training and validation data sets. 
The value of the parameter   in the step 1 of the 
OIA has been set to 10000 . 

 

Figure 1: Control signal versus time: training data and 
testing data. 

The TSK fuzzy model 1 has evolved to 2Rn  rules. 

The parameter values of the TSK fuzzy model 1, 
computed by the OIA for 1n , are presented in 
Table 1. 

The evolutions of the system output (i.e., the 
pendulum angle) y versus time of the TSK fuzzy 
model 1 and of the real-world process (the 
laboratory setup) are presented in Figure 2. Figure 2 
gives the responses of the TSK fuzzy model 1 and of 
the process for the validation data and shows the 
poor behaviour of this model. The system output for 
the validation data is not illustrated as follows. 

Table 1: Parameter values of TSK fuzzy model 1. 

Rule number i *
1iz  

sr  
0ia  

1ia

1 0 0.0424 5.3009 –1.6296 
2 0.1156 0.0424 5.3689 0.3121 
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Table 2: Parameter values of TSK fuzzy model 2. 

Rule number i *
1iz  *

2iz  
1sr 2sr 0ia 1ia  

2ia  

1 0 0 0.0424 1.2502 0.6903 1.0025 0.4226 
2 –0.1167 3.1861 0.0424 1.2502 0.0639 –0.5125 0.9956 
3 –0.1167 2.3332 0.0424 1.2502 0.6877 –1.1108 0.6857 
4 0 6.2186 0.0424 1.2502 –0.4733 0.0435 1.0744 
5 –0.1167 6.2186 0.0424 1.2502 –0.6956 –0.0229 1.1099 
6 0 6.1161 0.0424 1.2502 –0.4597 –0.1376 1.0472 
7 0 5.9841 0.0424 1.2502 –0.5298 0.7453 1.0385 

Table 3: Parameter values of TSK fuzzy model 3. 

Rule 
number i 

*
1iz  *

2iz  *
3iz  

1sr  
2sr  

3sr  
0ia  

1ia  
2ia  

3ia  

1 0 0 0 0.0424 1.2502 1.2502 0.1161 0.2383 2.1021 –0.9404 
2 –0.1175 3.1861 0 0.0424 1.2502 1.2502 0.4574 –0.0915 0.8872 0.0096 
3 –0.1175 3.5558 3.4423 0.0424 1.2502 1.2502 –0.2529 –0.0368 1.8198 –0.7841 
4 0.1293 1.9835 1.9643 0.0424 1.2502 1.2502 0.2798 0.1254 2.0211 –1.0080 
5 –0.1175 2.3332 1.9643 0.0424 1.2502 1.2502 0.8986 –0.2488 1.5784 –0.8115 
6 –0.1175 6.2186 6.2282 0.0424 1.2502 1.2502 0.0827 –0.0133 1.4412 –0.4550 
7 0 6.2186 6.2282 0.0424 1.2502 1.2502 –0.6813 0.0502 1.6820 –0.5745 
8 0 6.1161 6.2282 0.0424 1.2502 1.2502 0.2990 0.5435 0.8706 0.0532 
9 0 5.9841 6.1161 0.0424 1.2502 1.2502 –1.2067 0.1298 2.1044 –0.9259 

 

 

Figure 2: Pendulum angle versus time of TSK fuzzy 
model 1 and of real-world process for validation data. 

The TSK fuzzy model 2 has evolved to 7Rn  

rules. The parameter values of the TSK fuzzy model 
2, computed by the OIA for 2n , are presented in 
Table 2. 

The time responses of y of the TSK fuzzy model 
2 and of the real-world process are presented in 
Figure 3. Figure 3 shows a slightly improved 
behaviour compared to Figure 2. 
The TSK fuzzy model 3 has evolved to 9Rn  rules. 

The parameter values of the TSK fuzzy model 3, 
computed by the OIA for 3n , are presented in 
Table 3. 

The time responses of y versus time of the TSK 
fuzzy model 3 and of the real-world process are 
illustrated in Figure 4. Figure 4 shows an improved 
behaviour with respect to Figure 3. 

As pointed out in Section 1, the OIA and the 
TSK fuzzy model performance (as the result of the 
OIA) have been compared with the following three 
OIAs that lead to evolving TSK fuzzy models: 
ANFIS, DENFIS and FLEXFIS. Since Figure 2 
illustrates the poor performance of the TSK fuzzy 
model 1, the comparison has been focused on the 
TSK fuzzy models 2 and 3. Two TSK fuzzy models 
have been obtained for each OIA. The fair 
comparison of all fuzzy models has been conducted 
in terms of using the same inputs, numbers and 
shapes of m.f.s as those of the TSK fuzzy models 2 
and 3, and the numbers of rules 

Rn  have been set 

such that to be very close. 
The comparison of the models is carried out in 

terms of the root mean square error (RMSE) 
between the pendulum angles of the TSK fuzzy 
models and of the real-world process. The 
expression of this global performance index is 

,)()/1(
1

2
,2




D

k
kk xyDRMSE  (23)

where 
ky  is the output (the pendulum angle) of the 

TSK fuzzy models and 
kx ,2

 is the output (the 

pendulum angle) of the laboratory setup at the 
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discrete time moment k. The RMSE has been 
computed and measured for the training data and for 
the testing (validation) data. 

 

Figure 3: Pendulum angle versus time of TSK fuzzy 
model 2 and of real-world process for validation data. 

The results obtained for the eight TSK fuzzy 
models on the testing data are summarized in Table 
4. Table 4 includes the numbers of parameters 

Pn  of 

the final evolved TSK fuzzy models. 
Table 4 and Figures 2, 3 and 4 prove that the best 

performance on the testing data is exhibited by the 
TSK fuzzy model 3 obtained by the OIA presented 
in Section 2. Table 4 illustrates the performance 
improvement achieved by the evolving TSK fuzzy 
models obtained by proposed OIA compared to 
other three OIAs. In addition, the performance 
improvement with respect to another implementation 
of the OIA given in (Precup et al., 2012c) is ensured. 

The results presented in Table 5 and in Figures 3 
and 4 also show that the performance of the 
proposed TSK fuzzy models are consistent with the 
testing data. However, a different scaling used, for 
example, in Figures 3 and 4, could show in a more 
illustrative way the differences. 

As expected, Table 4 confirms that more inputs 
lead to improved model performance. But the 
selection of the input variables is carried out 
systematically in the step 1 of the OIA by that input 
selection algorithm that guides the modelling. 

The models and the performance depend on the 
values of the parameters   and  . Different models 
and results for these models are obtained for other 
values of these two parameters. 

Based on these experimental results, presented 
only for the testing data and not for the validation 
data, the proposed evolving TSK fuzzy models can 
be accepted as very close to the real-world nonlinear 

 

Figure 4: Pendulum angle versus time of TSK fuzzy 
model 3 and of real-world process for validation data. 

Table 4: Results for eight TSK fuzzy models on testing 
data. 

TSK 
fuzzy 
model 

OIA Rn  
Pn  RMSE 

2 Section 2 7 49 0.1672 
2 ANFIS 8 56 0.2537 
2 DENFIS 8 56 0.4094 
2 FLEXFIS 7 49 0.3011 
3 Section 2 9 90 0.1505 
3 ANFIS 12 120 0.1814 
3 DENFIS 10 90 0.3392 
3 FLEXFIS 10 90 0.2506 

process. However, different conclusions can be 
drawn if other nonlinear processes are considered 
(Precup et al., 2004; Deliparaschos et al., 2006; 
Gusikhin et al., 2007; Precup and Preitl, 2007; 
Ferreira and Ruano, 2009; Filip and Leiviskä, 2009; 
Bošnak et al., 2012; Precup et al., 2012b; Guerra et 
al., 2012; Lam and Lauber, 2013) if they are viewed 
such that to belong to control systems. The OIA 
should be reorganized such that to enable the cost-
effective implementation of the control solutions 
(Precup et al., 2011, 2012a, 2012d;  

4 CONCLUSIONS 

This paper has given implementation details on an 
OIA, which continuously evolves the rule bases and 
the parameters of TSK fuzzy models by adding new 
rules with more summarization power and 
modifying the existing rules and parameters. The 
OIA consists of seven steps, and the step 1 includes 
an input selection algorithm that guides the 
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modelling in terms of ranking the inputs according 
to their importance factors. 

The main advantages of the new results given in 
this paper are the simplicity and transparency of the 
OIA, the simplicity of the evolving TSK fuzzy 
models and their consistency with both the testing 
data. These advantages have been proved by real-
time experimental results related to the fuzzy 
modelling of a representative nonlinear process, i.e., 
the pendulum dynamics in the framework of 
pendulum-crane systems. 

The OIA has been implemented by the extension 
of the OIAs given in (Angelov and Filev, 2004; 
Precup et al., 2014) using the core of eFS Lab 
reported in (Ramos and Dourado, 2004; Aires et al., 
2009). The comparison of the experimental results 
shows the performance improvement exhibited by 
two proposed TSK fuzzy models with respect to 
other fuzzy models obtained by similar OIAs. 

Future research will concern the further 
performance improvement of the TSK fuzzy models. 
Several optimization algorithms including nature-
inspired optimization algorithms (Duleba and 
Sasiadek, 2003; Haber et al., 2009; Valdez et al., 
2011; Johanyák and Papp, 2012; Vaščák and Paľa, 
2012; David et al., 2013; El Amraoui and 
Mesghouni, 2014; Osaba et al., 2014; Tang et al., 
2014; Savio et al., 2014; Zhang et al., 2014) will be 
incorporated to replace the RLS algorithm in the 
step 6 of the OIA. The OIA will be applied to other 
representative nonlinear processes as well. Since the 
goal of the development of these TSK fuzzy models 
is the model-based design of fuzzy control systems, 
the models will be included in such control system 
structures. 
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