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Abstract: In this paper, we present an approach for scalable QoE estimation/prediction of a composition of given 
services. The approach relies on using logic circuits/networks for the QoE prediction. Given two logic 
circuits that predict the QoE values of two service components, we propose a method for synthesizing the 
resulting logic circuit that predicts the QoE of the overall service composition. As the complexity of this 
resulting circuit significantly depends on the complexity of an implementation of a MIN function, we 
present an experimental evaluation of the complexity of the corresponding circuit. 

1 INTRODUCTION 

The number of services designed for various 
purposes increases rapidly, and almost all of them 
are developed for improving or simplifying human 
life. As an example of the service one can consider a 
multimedia service, that delivers some video/audio 
traffic to an end-user, or a web service that allows to 
book a hotel or to buy some products online, etc. As 
all these services are developed “for people”, the 
Quality of Experience metrics (QoE) remains the 
most common metrics to evaluate their quality.  

The QoE is used to measure the end-user 
satisfaction with a given service and thus, the 
problem of its evaluation remains one of the most 
challenging problems in the artificial intelligence 
area. The reason is that in order to evaluate the QoE, 
it is necessary to ‘guess’ how much an end-user 
would like or dislike a given service. This problem 
is often solved with the use of various self-adaptive 
models that can accept service parameter values as 
inputs and return the QoE value as an output. If a 
model behaves in a wrong way for some newly 
emerged input/output pairs, the model can be trained 
by itself or by an external ‘teacher’ that could be a 
service provider. Most popular self-adaptive models 
are decision trees (see, for example, Mitchell, 1997; 
Pokhrel, J., Mallouli, W., and Montes de Oca, E., 
2013), neural networks (Ahmed et al., 2012; Al-
Masri and Mahmoud Qusay, 2009), fuzzy logic 
formulae (Lin et al., 2005; Torres et al., 2011), and 
logic circuits (Kushik et al., 2014). All these models 
have their own advantages, as well as the known 

drawbacks. Most common criteria that a researcher 
or a service provider should take into account are the 
QoE prediction ability of the model and the 
scalability of the “teaching” process. It has been 
previously shown that the approach proposed by 
Kushik et al. in 2014 allows to adequately predict 
the end-user satisfaction with a given service, and, at 
the same time, to perform the model adaptation in a 
scalable way (Kushik et al., 2014). This approach is 
based on logic networks, in particular, 
combinational circuits, for the QoE prediction. The 
initial logic network is derived based on statistical 
data that are gathered from experts, developers 
and/or end-users who agreed to provide a feedback 
about the service quality. The circuit accepts the 
service parameter values encoded as Boolean 
vectors and outputs the Boolean vector that 
corresponds to the encoded QoE value. The circuit is 
a self-learning machine, i.e., when new statistical 
data appear the circuit is checked for having the 
corresponding behaviour and if the behaviour does 
not correspond to newly emerged data the circuit is 
resynthesized. Such resynthesis can be efficiently 
performed using various tools (see, for example, 
Berkeley Logic Synthesis and Verification Group, 
ABC). 

Once the QoE of a given circuit is carefully 
estimated, one can use this service not only as a 
single self-sufficient entity, but also as a part of a 
‘big’ service composition. In this case, the problem 
arises of predicting the QoE of this composition. It is 
well known, that even if the service components 
have the high QoE value for a given statistical 
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pattern, the QoE of the composition is not 
necessarily high for this pattern. Therefore, the 
composition QoE value has to be effectively 
predicted. Given two service components, and two 
logic circuits for predicting component QoE values, 
we propose a technique how to synthesize the 
resulting logic circuit that predicts the QoE of the 
service composition. The technique relies on 
scalable operations over logic networks, such as 
introducing additional inputs and connecting nodes 
in the circuit to combine particular circuit parts. We 
introduce a special circuit implementation of the 
minimum function that outputs a minimal integer of 
two integers. This circuit is further used as a part of 
the resulting logic network that predicts the QoE 
value of the service composition. The algorithm 
provided in the paper takes into account the fact that 
the user satisfaction can be only decreased in the 
service composition. The reason is that if a user is 
not satisfied with a given service component, his/her 
satisfaction cannot be increased with the use of the 
other components, i.e., our approach assumes the 
worst-case scenario. We notice, that this scenario 
supports the scalability of the approach, since we are 
not interested in the composition details, i.e., 
compositional patterns, differently from predicting 
some objective service parameter values (see for 
example, Zheng et al., 2013). Furthermore, we 
discuss how the proposed QoE estimation technique 
can be adapted to the case when the composition 
QoE is calculated not as the minimum function but 
as more complex mathematical formula. 

Therefore, the main contribution of this paper is 
an approach for estimating the QoE of the service 
composition, when the QoE of each service 
component is calculated by a corresponding logic 
circuit. We also provide the preliminary 
experimental evaluation for a proposed approach 
addressing the complexity of parts of the resulting 
circuit. These experimental results clearly show the 
approach scalability.  

The rest of the paper is organized as follows. 
Section 2 contains the preliminaries. A running 
example for a service composition and its QoE 
prediction is given in Section 3. A scalable approach 
for estimating the QoE of the service composition as 
well as the experimental evaluation of the 
complexity of the overall circuit are given in Section 
4. A discussion on possible extensions of the 
proposed approach is presented in Section 5. Section 
6 concludes the paper. 

 
 
 

2 PRELIMINARIES 

In our normal human life, we are surrounded by 
services. Those can be web services that represent 
specific software designed to support interoperable 
machine-to-machine interaction over a network 
(Booth et al., 2004) or multimedia services that are 
used to deliver a multimedia traffic to an end-user 
(Pokhrel, J., Wehbi, B., Morais, A., Cavalli, A., and 
Allilaire, E., 2013). One can consider other types of 
services, not directly related to Computer Sciences 
area, such as cleaning service, delivery service, 
booking service, etc. Anyway, all these services are 
developed to improve or to simplify the human life 
quality and thus, not a single service is left without 
evaluating the quality of this service. There exist 
various metrics to evaluate the service quality where 
the most known seems to be the Quality of Service 
(QoS) metrics. The QoS can be defined as a vector 
with components which are values of given 
attributes (parameters) that can be objectively 
measured (Kondratyeva et al. 2013). We mention 
that there have been performed a lot of research and 
some interesting contributions have been made 
regarding the estimation of the QoS for a composite 
service (El Hadad et al., 2010; Zheng et al., 2013).  

However, the most interesting metrics to 
estimate the service quality is the Quality of 
Experience (QoE) that represents a user satisfaction 
(see, for example, Winckler et al., 2013). In spite of 
the fact that the QoE is more difficult to evaluate, 
this metrics is more close to the adequate description 
of the service quality, since the main purpose of 
each service is to satisfy an end-user. In other words, 
the algorithm for the QoE evaluation has to be 
adapted to a human’s brain in order to ‘predict’ what 
a user likes/dislikes. That is the reason why different 
self-adaptive models and algorithms are now used 
for this purpose. The advantage of a self-adaptive 
model is that it can be learnt or trained by a ‘teacher’ 
or by itself according to the feedback from people 
who use the service. As usual, an initial 
model/machine is derived based on some statistical 
data that contain a number of user/expert opinions 
about the service. Afterwards, the model can 
‘predict’ the user satisfaction of the service for the 
given values of service parameters. The more 
statistical data are gathered the better is the 
‘prediction’. Moreover, as the model is self-
adaptive, when new statistical data appear for which 
the model does not behave in an appropriate way, 
the model is adjusted to these new data and this 
process is the model training. 

Various self-adaptive models can be used for the 
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QoE prediction of the service. One of short surveys 
of these models can be found in (Kondratyeva et al. 
2013). In particular, Kondratyeva et al. discuss three 
most popular self-adaptive models that are used to 
predict the QoE value for web services. We briefly 
sketch this survey to provide an overview of the use 
of self-adaptive models for the QoE prediction. 
Almost all self-adaptive models rely on pre/post 
conditions that can be expressed in terms of IF-
THEN operator. The first group of machine learning 
algorithms is based on a Decision Tree (Mitchell, 
1997; Pokhrel, J., Mallouli, W., and Montes de Oca, 
E., 2013) that can be described for a web service as a 
tree which nodes correspond to service parameters 
(attributes) while edges are marked with different 
parameter values (scores). Each tree level 
corresponds to a single service parameter which can 
be evaluated by scores that label outgoing edges. 
The leaves of the tree correspond to different values 
of the user satisfaction. The decision tree can be 
derived based on IF-THEN conditions where a path 
labelling each branch of the tree to a node with a 
given QoE value corresponds to the conjunction of 
conditions under IF operator. The decision tree can 
be learnt based on deriving IF-THEN conditions by 
adding additional paths. As usual, such pre/post 
conditions are derived based on experimental results 
or following some expert opinions. The decision tree 
provides an algorithm for evaluating the user 
satisfaction if and only if it is completely specified. 
Those paths in the tree that are not specified by the 
conditions have to be somehow augmented in order 
to predict the user satisfaction in this undefined 
situation. Thus, the purpose of specifying undefined 
paths is to “guess” what a user would like or dislike 
under appropriate conditions. The complexity of the 
completely specified tree is exponential w.r.t. the 
number of quality parameters. Other self-adaptive 
models, such as neural networks and fuzzy logic 
formulae are known to be more compact. Neural 
networks are widely used for solving various 
problems in the artificial intelligent area. Such 
networks are used in the “machine learning sense” 
and all the neurons of the network are assumed to be 
artificial and can be modified by a “teacher” in a 
given way. Neurons are connected to each other and 
these connections also can be trained. Usually neural 
networks without feedbacks are considered and in 
this case, the network can be divided into levels. 
Usually, for each neuron there exists a formula that 
calculates its output according to weighted inputs 
that is used when coming to the next level via 
weighted edges. A neural network can accept values 
of input (QoS/QoE) parameters and depending on 

the neuron definition and on the weight of 
distributed connections the network produces the 
output (the QoE value) (Al-Masri and Mahmoud 
Qusay, 2009) by changing states from level to level. 
At the initial step, the network connections are set 
based on the initial statistical data, i.e., on the set of 
given input/output pairs. A network learning process 
consists of modifying weighted connections (or a set 
of nodes) of the network based on new knowledge 
(more statistical data, for example). In other words, 
when new statistical data appear the network can be 
learnt how to modify its connections and possibly, 
nodes in order to have the correct behaviour. A good 
alternative to artificial neural networks is a fuzzy 
logic that was introduced by Lotfi A. Zadeh (Zadeh, 
1965) in 1965 and can be also considered for 
modelling a human behaviour. Similar to a decision 
tree, a fuzzy model can be built based on a set of IF-
THEN conditions that can be combined taking into 
account how disjunction and conjunction are defined 
for fuzzy sets. The fuzzy logic model can be learnt 
by changing membership degree of each parameter 
to the service, i.e., the weight of linguistic values for 
quality parameters in the resulting fuzzy formula, as 
well as by changing the relative importance of each 
quality parameter. 

In 2014, Kushik et al. have proposed another 
self-adaptive model that can be used to predict the 
QoE value with a given service. Moreover, the 
proposed approach has been compared with the one, 
based on using fuzzy logic formulae, and the former 
has shown the higher scalability (Kushik et al., 
2014). This approach is based on analyzing and 
training of logic networks/circuits that can be 
effectively performed using the tools developed for 
logic synthesis and verification. In this paper, we 
extend the approach proposed by Kushik et al. to the 
case when a service under investigation is a 
composition of ‘smaller’ services, such that the 
corresponding logic circuits for the service 
components are known in advance. Furthermore, we 
address the methods for deriving such logic circuits 
for various service types and propose a technique for 
the efficient QoE estimation for a composite service 
using the same logic synthesis ‘apparatus’. That is 
the reason why we further briefly sketch the 
necessary definitions related to the logic synthesis. 
We mention that these definitions are mostly taken 
from (Kushik et al., 2014). 

Definition 1. A logic network (circuit) consists 
of logic gates. Each logic gate has input (-s) and a 
single output. Outputs of some gates are connected 
to inputs of the others. The inputs of some gates that 
are not connected to any other gate output are 
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claimed to be primary inputs while the outputs of 
some gates are claimed as primary outputs. In this 
paper, we consider combinational circuits, i.e., 
feedback-free circuits which have no latches. 

Each gate implements a Boolean function. Most 
common 2-input gates are 
AND/OR/XOR/NAND/NOR/XNOR that implement 
conjunction/disjunction/xor and their inversions. 
There are also 1-input gates such as NOT/BUFF that 
implement the inversion and the equality function, 
correspondingly. 

 
Figure 1: A circuit S. 

As an example, consider a combinational circuit in 
Fig. 1 with a set X = {x0, x1, x2, x3} of inputs, a set Z 
= {z0, z1} of outputs and 11 AND and NOT gates 
(AIG nodes); the latter are taken in bold. 

Definition 2. By definition, a logic circuit 
implements or represents a system of Boolean 
functions. A circuit accepts a Boolean vector as an 
input and produces a Boolean vector as an output 
according to the corresponding system of Boolean 
functions. Each logic circuit can be described by a 
Look-up-Table (LUT). A LUT contains a set of 
input/output pairs of a given circuit: if for the input i 

the circuit produces an output o, then the pair i/o is 
included into the LUT. 

A LUT can be used as the specification when 
deriving a logic network that implements the system 
of Boolean functions, and there exist a number of 
methods how to synthesize a logic network that 
implements a given system of functions. In this 
paper, we use the ABC tool (Berkeley Logic 
Synthesis and Verification Group, ABC) to design a 
circuit for a given LUT. For this purpose, such LUT 
is described in a special form; in this paper, we use 
the PLA format. 

As in this paper we focus on using logic 
networks to evaluate/predict the QoE of a given 
service, we further briefly sketch the algorithms 
proposed in (Kushik et al., 2014) for deriving and 
training these circuits. In order to derive the initial 
circuit С, one uses statistical data gathered from 
service experts, from the automatic evaluation of 
service parameters and/or from end-users, who have 
experience of using the service. These statistical data 
are encoded as Boolean vectors of appropriate 
length, and this set of input/output vectors is written 
in the PLA format. The circuit C that evaluates the 
QoE value is then designed from a system of 
partially specified Boolean functions. The 
corresponding procedure is given as Algorithm 1. 

  
 

Algorithm 1 for deriving an initial logic 
circuit to evaluate the QoE value 

Inputs: Service parameters p1, p2, …, pk with 
nonnegative (unsigned) integer values bounded 
by 

1pM , 
2pM , …, 

kpM ; maximal value of the 

QoE QoEM ; 

Statistical data, i.e., feedbacks from users U1, 
…, Ur represented as a list of patterns p1_value, 
p2_value, …, pk_value, UserSatisfaction_value. 

Output: a logic circuit C  
1. Determine the number of primary inputs 

and primary outputs of C: 
The number of primary inputs equals 




k

i
pi

M
1

2 [log]  while the number of primary 

outputs equals ]log2 QoEM [. 

2. Derive a LUT  
2.1 For each user Ui, i  {1, …, r}, convert 

his/her statistic scores p1_value, p2_value, …, 
pk_value, UserSatisfaction_value into Boolean 
vectors and add the corresponding lines to the 
LUT. 

3. Synthesize the circuit C from a system of 
partial Boolean functions and Return C. 
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The circuit C has to be self-adaptive, i.e., when a 
new end-user agrees to leave his/her feedback about 
the service quality the circuit behavior has to be 
modeled under a corresponding input i and if the 
result produced by the circuit differs significantly 
from the expected then the circuit has to be 
resynthesized. To evaluate the difference between 
the circuit output and the user satisfaction value 
Kushik et al. introduced some value  that represents 
a confidence interval, i.e., the QoE(W) produced by 
the circuit C has to belong to the interval 
[UserSatisfaction_value – , UserSatisfaction_value 
+ ]. If this fact does not hold, i.e., |QoE(W) – 
UserSatisfaction_value| >  then the circuit C is 
resynthesized. The corresponding procedure taken 
from (Kushik et al., 2014), is presented as Algorithm 
2. 

 
Algorithm 2 for learning / training the logic 
circuit that evaluates / ‘predicts’ the QoE 
value for a service 
Inputs: QoE parameters p1, p2, …, pk with 
nonnegative values bounded by 

1pM , 
2pM , …, 

kpM ; maximal value of the QoE QoEM ; 

The circuit C that evaluates the QoE value for a 
service W; 
A new user feedback p1_value, p2_value, …, 
pk_value, UserSatisfaction_value; 
Maximal difference  for corresponding 
confidence interval. 
Output: a modified logic circuit C  
1. Integers p1_value, p2_value, …, pk_value, 
UserSatisfaction_value are converted into 
Boolean vectors v_p1, v_p2, …, v_pk, v_us. 
2. The output QoE(W) of the circuit C is 
computed for the input v_p1, v_p2, …, v_pk.  
3. If | QoE(W) - UserSatisfaction_value | >  then  

3.1 If the line v_p1, v_p2, …, v_pk is 
specified as input in the LUT, then change the 
corresponding output into v_us, 

Otherwise 
Add the new line v_p1, v_p2, …, v_pk, v_us 

to the LUT. 
3.2 Synthesize the new circuit C; assign C = 

C and Return C.      
 

In this paper, we propose an approach how a circuit 
that predicts the QoE of a composite service can be 
derived under the assumption that the QoE of the 
service components are given. These circuits can be 
derived using Algorithm 1 and effectively trained by 
applying Algorithm 2. The approach proposed in the 
paper is illustrated by a running example. 

3 A RUNNING EXAMPLE 

In this paper, we consider a given web service as a 
running example. In particular, we rely on the 
example of vacation planner service that is taken 
from (Kondratyeva et al., 2013). This service offers 
a user an opportunity to purchase flight tickets and 
to book an accommodation at the destination point. 
A user submits traveling dates and the planner 
proposes a number of available options for flight 
tickets and hotel rooms. If the user and the planner 
agree on the flight ticket and the hotel room then the 
vacation is successfully booked. Otherwise, the 
vacation is not reserved. The list of crucial service 
parameters that significantly affect the QoE is as 
follows: the execution time, service availability and 
service popularity. In other words, the QoE of the 
vacation planner significantly depends on the 
component values of the vector t, a, p, where t 
denotes the execution time, a – the availability and p 
– the popularity. 

As the vacation planner is designed as a 
composition of a flight booking and a hotel booking 
services, the QoE of this composite service can be 
calculated based on the QoE of the flight booking 
and the QoE of the hotel booking services. Given the 
flight booking service, in the running example, we 
consider that the execution time t and its popularity 
p are the crucial parameters for most users. Let 
Table 1 contain the statistical data gathered from the 
users and/or experts A, B, C, and D.  

Table 1: Statistical data gathered for the flight booking 
service. 

User identifier t p QoE 
A 3 0.3 3 
B 1 0.9 5 
C 3 0.2 1 
D 2 0.5 4 

 

Similar to the flight booking service, in this paper, 
we consider the availability a to be a crucial 
parameter for the second component of the vacation 
planner. In other words, once a user has agreed on 
all the flights details, he/she is redirected to a hotel 
booking service that has to be necessarily available 
at the moment. If this service is not available the 
user’s QoE goes immediately down. The 
corresponding statistical data left by experts and/or 
some users E and F of the hotel booking service are 
shown in Table 2. 

Given the statistical data for the service 
components, we consider that the QoE of the 
composite   service   is always the minimal value for 
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Table 2: Statistical data gathered for the hotel booking 
service. 

User identifier a QoE 
E 0.9 5 
F 0.6 4 

 

all possible values of the vector t, a, p. The latter 
means, that in order to predict the QoE of the 
vacation planner, one should consider the worst 
users’ opinions. The reason is that if a user is not 
satisfied with a given service component, he/her 
satisfaction cannot be increased with the use of other 
components. In the running example, in order to 
consider the statistical data for the vacation planner 
one should concatenate the data given in Tables 1 
and 2, correspondingly. The resulting statistical data 
are given in Table 3.  

Table 3: Statistical data for the vacation planner. 

t p a QoE 
3 0.3 0.9 3 
1 0.9 0.9 5 
3 0.2 0.9 1 
2 0.5 0.9 4 
3 0.3 0.6 3 
1 0.9 0.6 4 
3 0.2 0.6 1 
2 0.5 0.6 4 

 

Table 3 contains eight lines; each line represents a 
vector t, a, p, QoE where the QoE is the minimal 
value taken from the vectors t, a, QoE (Table 1) 
and p, QoE (Table 2). 

Consider two logic circuits C1 and C2 designed 
for predicting the QoE of the flight booking and the 
hotel booking services, correspondingly. We further 
discuss how one can build a logic circuit that 
predicts the QoE value of the vacation planner. 

4 SCALABLE APPROACH FOR 
ESTIMATING THE QoE OF A 
COMPOSITE SERVICE 

In this section, an approach for automatic 
evaluation/‘prediction’ of the QoE value for a 
composite service is proposed. Without loss of 
generality, we consider two service components S1 
and S2 that are somehow combined when designing 
the composite service S1 @ S2, where @ is a 
composition operator. If the number k of service 
components is greater than two, this approach can be 
applied iteratively, i.e. first, the QoE of the service 

S1 @ S2 is estimated, then, the QoE of the service (S1 
@ S2) @ S3 is estimated, etc. At the final step, the 
QoE is predicted for the service (S1 @ … @ Sk - 1) @ 
Sk. The question about communicative and 
associative properties of the composition operator is 
out of the scope of this paper. 

Given two composite services S1 and S2, consider 
two logic circuits C1 and C2 that predict their QoE 
values, correspondingly. These circuits can be 
derived as proposed in (Kushik et al., 2014). We 
provide an algorithm for designing a logic circuit C1 
@ C2 that predicts the QoE value of the composition 
S1 @ S2. 

4.1 Deriving a Logic Circuit for 
Predicting the QoE of a Composite 
Service  

In this section, we provide an algorithm (Algorithm 
3) for designing a logic circuit C1 @ C2. At the first 
step, the set of inputs of this circuit is determined. In 
fact, this set contains all the inputs that correspond 
to S1 service parameters and S2 service parameters. 
In other words, the set of inputs for C1 @ C2 is the 
union of the sets of inputs for C1 and C2, If the sets 
of S1 and S2 parameters do not intersect, the set of 
inputs for C1 @ C2 is the set of inputs for C1 plus 
inputs of C2.  

At the second step, the special circuit Cmin for 
implementing a minimum function is designed. This 
circuit will be used to choose between two QoE 
values produced by the circuits C1 and C2. As 
mentioned above, we always rely on the minimal 
value of the two QoE values, considering that the 
user satisfaction can be only decreased for a 
composite service. Each circuit C1 or C2 produces 
the Boolean vector of corresponding length. These 
vectors correspond to integers I1 and I2 that 
represent the QoE values for the service components 
S1 and S2. The MIN function is used to choose the 
minimum value of I1 and I2; if these values coincide 
then the QoE of the composite service equals I1 = I2. 
The corresponding circuit that implements this 
function has the number of inputs that is the sum of 
outputs of circuits C1 and C2. Hereafter, in the paper, 
we consider that the QoE is measured within the 
Mean Opinion Score (MOS) scale (ITU-T, 2006) 
and thus, outputs of each circuit encode integers of 
the set {1, 2, 3, 4, 5}, i.e., the number of outputs of 
each circuit C1 and C2 equals three. 

At the final step of the algorithm, the outputs of 
the circuits C1 and C2 are connected to the inputs of 
the circuit Cmin, and the resulting circuit is returned.  

A scheme that illustrates the procedure for 
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deriving the circuit C1 @ C2 for evaluating the QoE 
of the composed service is shown in Fig. 2. The 
items of the set P correspond to Boolean vectors 
which represent the values of parameters p1, p2, …, 
pk of the service S1 whereas the items of the set Q 
correspond to Boolean vectors which represent the 
values of parameters q1, q2, …, ql of the service S2. 
The set PQ corresponds to the Boolean vectors, 

which represent the same parameters of services S1 
and S2. Therefore, the set P  P \ PQ denotes the 

set of Boolean vectors for parameters of S1 that are 
not shared with S2 while the set Q Q \ PQ 

denotes the set of Boolean vectors for parameters of 
S2 that are not shared with S1.  

Algorithm 3 for deriving a circuit C1 @ C2 
Inputs: Service components S1 and S2. 
S1 has the set P = {p1, p2, …, pk}of parameters; 

each pi parameter value is bounded an integer 
Mpi

. 

S2 has the set Q = {q1, q2, …, ql} of parameters; 
each qi parameter value is bounded an integer 
Mqi

. 

The circuit C1 has ]log2 Mpi
[

i1

k

  inputs and 

three outputs; the circuit C2 has ]log2 Mqi
[

i1

l

  

inputs and three outputs. 
Output: a logic circuit C1 @ C2. 
1. Determine the number of primary inputs of 

C1 @ C2: 
The number of primary inputs equals 

( ]log2 Mpi
[

i1

k

  + ]log2 Mqi
[

i1

l

 ) –

]log2 Mgi
[

i1

t

  for all gi that belong to the 

PQ, where |PQ| = t. The number of 

primary outputs of the circuit of C1 @ C2 equals 
three. 

2. Design the circuit Cmin. This circuit has six 
inputs i1, i2, … i6, and returns the minimal value 
of two integers I(i1i2i3) and I(i4i5i6). 

3. Synthesize the circuit C = C1 @ C2 
identifying inputs which correspond to the same 
parameters of services S1 and S2; the outputs of 
C1 are connected to inputs i1, i2, i3 of Cmin while 
the outputs of C2 being connected to the inputs i4, 
i5, i6 of Cmin,  

Return C. 

The circuit Cmin in Fig. 2 is used to compute the 
minimal value of the two QoE values computed by 
the circuits C1 and C2 for the services S1 and S2, 
correspondingly. The set I of Cmin denotes the set of 
Boolean vectors representing the QoE of the 
composite service of S1 and S2.   

By construction of the circuit C1 @ C2 using 
Algorithm 3, the following proposition holds. 

Proposition 1. Given a composite service S1 @ 
S2 and two statistical patterns p1_value, p2_value, …, 
pk_value, S1_UserSatisfaction_value, and q1_value, 
p2_value, …, ql_value, S2_UserSatisfaction_value. 
Algorithm 3 produces the output C = C1 @ C2 such 
that the output o of the circuit C corresponds to the 
minimum of the integers S1_UserSatisfaction_value 
and S2_UserSatisfaction_value. 

 

Figure 2: A scheme to derive the circuit C1 @ C2, where 
P  P \ PQand. Q Q \ PQ. 

We notice that the complexity of Algorithm 3 is 
polynomial as it is mostly ‘hidden’ in Step 3. The 
arithmetic evaluation of the number of primary 
inputs and outputs (Step 1) of the circuit C1 @ C2 
can be performed in ‘no time’ while the circuit Cmin 
can be derived just once for various service 
components S1 and S2. Therefore, the complexity of 
Algorithm 3 can be estimated as the number of 
operations required to connect each output of circuit 
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C1 (or C2) to a corresponding input of the circuit 
Cmin, and these operations are very scalable. The 
latter proves the scalability of the overall approach.  

As mentioned above, the proposed approach to 
estimate the QoE of a composite service can be also 
applied when there exist more than two component 
services. For example, when evaluating the QoE of 
the service S that is represented as composition (S1 
@ S2) @ S3 of three services, one can apply the 
proposed approach iteratively. At the first step, the 
QoE of the composition S1 @ S2 is predicted by the 
circuit C1 @ C2. At the second step, the circuit C = 
(C1 @ C2) is combined with the circuit C3 using 
again Algorithm 3. Let the set R correspond to 
Boolean vectors which represent the values of 
parameters r1, r2, …, rm of the service S3. In this 
case, the set of inputs of the circuit (C1 @ C2) @ C3 
is the union of the sets P, Q, and R of the circuit 
components. After the first application of Algorithm 
3, the union W of the sets P and Q is obtained, i.e., 
W  PQ. After the second Algorithm 3 

application, the circuit C = (C1 @ C2) @ C3 is 
obtained, and the set of its inputs is WR. A 
scheme that illustrates the procedure for deriving the 
circuit (C1 @ C2) @ C3 when evaluating the QoE of 
the composed service is shown in Fig. 3. 

 

 

Figure 3: A scheme to derive the circuit (C1 @ C2) @ C3, 
where W W \WRand. R  R \WR. 

 

4.2 Designing a Logic Circuit Cmin by 
ABC 

The complexity of the circuit C = C1 @ C2 
significantly depends on the complexity of the 
circuit Cmin. We have derived this logic network 
using the software tool ABC (Berkeley Logic 
Synthesis and Verification Group, ABC). For this 
purpose, we have derived a LUT for a corresponding 
MIN function. This LUT contains 64 lines, as the 
circuit has 6 inputs. The corresponding LUT is 
partially presented in Table 4. The circuit Cmin has 
significant input values that correspond to pairs (j, k) 
of integers, j, k  {1, 2, 3, 4, 5}. Other pairs with 
integers 0, 6, 7 are so-called Don’t Care (DNC) 
inputs, and as the circuit is used to compute the 
minimum of two integers, for these pairs, we define 
the output as the corresponding minimal value, 
extending the input domain of the corresponding 
MIN function. 

We have run the ABC tool against the  LUT  that 

Table 4: A LUT for the circuit Cmin. 

x1 x2 x3 x4 x5 x6 MIN 
000 000 000 
000 001 000 
000 010 000 
000 011 000 

… … 
001 110 001 
001 111 001 
010 000 000 
010 001 001 
010 010 010 
010 011 010 
010 100 010 
010 101 010 
010 110 010 

… … 
100 000 000 
100 001 001 
100 010 010 
100 011 011 
100 100 100 
100 101 100 
100 110 100 

… … 
110 100 100 
110 101 101 
110 110 110 

… … 
111 100 100 
111 101 101 
111 110 110 
111 111 111 
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is partially represented in Table 4. For this purpose, 
we have presented the set on input/output vectors in 
the PLA format. The resulting circuit Cmin designed 
by the ABC has 40 AIG nodes (gates). 

We mention that the size of the circuit Cmin is 
essentially related to the scalability of the proposed 
approach and the circuit Cmin came out to be very 
compact and thus, can be effectively combined with 
the circuits C1 and C2. Moreover, the size of Cmin is 
very close to the size of the circuits that can be 
obtained when predicting the quality of some ‘real 
life’ services. As an example, the reader can address 
the experimental results for multimedia services 
presented in (Kushik et al., 2014), where the size of 
the circuit with two service parameters, namely jitter 
and packet loss, was 154 AIG nodes. 

Nevertheless, as various services are designed 
for different purposes and, therefore, have different 
crucial parameters, we note that further experimental 
research is needed to estimate the efficiency of the 
proposed approach. 

6 DISCUSSION ON 
APPLICABILITY OF THE 
APPROACH 

In this section, we briefly discuss how the proposed 
approach for the composite service QoE evaluation 
can be more rigorously implemented. In the previous 
sections, we considered the worst case scenario 
when the QoE value is the minimal value of QoE 
over all component services. However, this 
assumption is very strict and not realistic in many 
cases. More often, the QoE of the composite service 
significantly depends on the structure of the 
composite service and can be estimated as a special 
formula taken into consideration the service 
composition pattern. As usual, a linear combination 
of the two variables QoE1 and QoE2 (or more if there 
are more component services) that represent the QoE 
values of the services C1 and C2 can be considered as 
the simplest case. In this case, following the 
technique proposed in the paper, one should derive a 
logic circuit Cformula that substitutes the Cmin one and 
implements a corresponding linear combination. 
Consider a circuit Cformula that returns the Boolean 
vector o = (o1o2o3) that corresponds to the integer 
that is calculated with a formula (α1 I(i1i2i3) + α2 
I(i4i5i6)). The coefficients α1 and α2 can been taken 
from various domains, however, in order to simplify 
the logic synthesis procedure they should be 
normalized as integer values. A modified scheme 

that illustrates the procedure for deriving the circuit 
C1 @ C2 such that the QoE of the overall circuit is 
computed as the linear combination (α1 I(i1i2i3) + α2 
I(i4i5i6)), is shown in Fig. 4. 

The circuit Cformula that computes the linear 
combination (α1 I(i1i2i3) + α2 I(i4i5i6)) in the circuit 
C1 @ C2, can be implemented in different ways. 
Nevertheless, this implementation is reduced to 
implementing two arithmetical multiplications and 
one addition. 

� 

 

Figure 4: A modified scheme to derive the circuit C1 @ 
C2, where P  P \ PQand. Q Q \ PQ. 

In this case, the most scalable implementation can be 
achieved when the coefficients α1 and α2 are integers 
that represent the powers of two, namely, there exist 
x > 0 and y > 0, such that α1 = 2x and α2 = 2y. This 
fact simplifies the multiplication procedure. Indeed, 
the circuit that performs such multiplication can be 
implemented as a shift register that shifts the inputs 
i1i2i3 and i4i5i6 by x and y bits, correspondingly. 
Therefore, such linear combinations preserve the 
scalability of the proposed approach. However, the 
use of different coefficients can reduce the approach 
scalability. This drawback can be overcome by 
considering α1 and α2 as external inputs of the 
Cformula. Similar to Section 4, the circuits can be 
constructed not for two but for bigger number of 
service components. More general types of the 
circuit Cformula that implement some specific 
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functions that compute the QoE value of the 
composite service and take into account the 
compositional pattern as well as the component QoE 
values need additional research and are left as future 
work.  

6 CONCLUSIONS 

In this paper, we have proposed an approach for 
scalable QoE prediction of a composite service. The 
approach relies on logic circuits that are designed to 
predict the QoE values of the service components. 
The algorithm provided in the paper returns the logic 
circuit that predicts the QoE value of a composite 
service taking into account the fact that the user 
satisfaction can be only decreased in the service 
composition. Therefore, a MIN function can be 
effectively used to decide between the two QoE 
values of the service components. We have 
estimated the complexity of the resulting circuit that 
predicts the QoE of the composite service. 
Preliminary experimental results show the scalability 
of the proposed approach. More experiments with 
different services considering different service 
parameters are planned as a future work. 

We also notice that despite the fact that using the 
worst-case scenario provides a scalable approach for 
the QoE composition estimation, in many realistic 
cases, the internal composition structure, i.e., 
compositional patterns have to be taken into 
account. The reason is that the degradation of the 
QoE in one component can affect the QoE of other 
components in different ways. On the other hand, a 
user satisfaction within a composite service cannot 
rely only of the values of the service component 
parameters, it also depends on the network traffic, 
the properties of the computer of the user, additional 
user parameters such as his/her mood, etc. The 
approach proposed in the paper does not take into 
account the above issues, and this study is also 
remained for the future work. 

ACKNOWLEDGEMENTS 

The authors gratefully acknowledge the scientific 
support of the research group lead by Prof. Ana 
Cavalli (TELECOM SudParis, France) that initiated 
the study of the QoE estimation and was 
significantly involved in the first steps of using the 
logic synthesis techniques for the service analysis 
issues. The authors are pleased to provide novel 

contributions to this area based on these first steps 
that have been made together. 

The authors also mention that this work is 
partially supported by RFBR grant № 14-08-31640 
мол_а (Russia). 

REFERENCES 

Ahmed, S., Begum, M., Hasan Siddiqui, F., Abul Kashem, 
M., 2012. Dynamic Web Service Discovery Model 
Basedon Artificial Neural Network with QoS Support. 
International Journal of Scientific & Engineering 
Research Volume 3, Issue 3, pp. 1-7. 

Al-Masri, E., Mahmoud Qusay, H., 2009. Discovering the 
Best Web Service: A Neural Network-based Solution. 
SMC 2009, pp. 4250-4255. 

Berkeley Logic Synthesis and Verification Group, ABC: 
A System for Sequential Synthesis and Verification, 
url: http://www.eecs.berkeley.edu/~alanmi/abc/. 

Booth, D., Haas, H., McCabe, F., Newcomer, E., 
Champion, M., Ferris, C., Orchard, D., 2004. Web 
services architecture. W3C Working Group Note, W3C 
Technical Reports and Publications, url: 
http://www.w3.org/TR/ws-arch/. 

El Hadad, J., Manouvrier, M., Rukoz, M., 2010. TQoS: 
Transactional and QoS-Aware Selection Algorithm for 
Automatic Web Service Composition. IEEE 
Transactions on Services Computing, vol. 3, issue. 1, 
pp. 73-85. 

Kondratyeva, O., Kushik, N., Cavalli, A., Yevtushenko N., 
2013. Evaluating Web Service Quality using Finite 
State Models. In Proc. of QSIC 2013. 

Kushik, N., Pokhrel J., Yevtushenko N., Cavalli A.R., 
Mallouli W., 2014. QoE Prediction for Multimedia 
Services: Comparing Fuzzy and Logic Network 
Approaches. International Journal of Organizational 
and Collective Intelligence, 4(3), pp. 44-65. 

Lin, M., Xie, J., Guo, H., Wang, H., 2005. Solving QoS-
driven web service dynamic composition as fuzzy 
constraint satisfaction. EEE 2005, pp. 9-14. 

Mitchell, T.M., 1997. Machine learning. McGraw Hill 
series in computer science, McGraw-Hill. 

Pokhrel, J., Mallouli, W., Montes de Oca, E., 2013. QoE 
Prediction and Self-Learning Mechanisms. Technical 
report on the PIMI Project. 

Pokhrel, J., Wehbi, B., Morais, A., Cavalli, A., Allilaire, 
E., 2013. Estimation of QoE of video traffic using a 
fuzzy expert system. In Proc. of CCNC, pp. 224-229. 

Torres, R., Astudillo, H., Salas, R., 2011. Self-Adaptive 
Fuzzy QoS-Driven Web Service Discovery. In IEEE 
SCC 2011, pp. 64-71. 

ITU-T, 2006. Mean opinion Score (MOS) terminology. 
Recommendation P.800.1. 

Winckler, M.A., Bach, C., Bernhaupt, R., 2013. 
Identifying user experience dimensions for mobile 
incident reporting in urban contexts. IEEE 
Transactions on Communications, vol. 56, no. 2, pp. 
40-82. 

Scalable�QoE�Prediction�for�Service�Composition

25



Zadeh, L.A., 1965. Fuzzy sets. Information and Control, 8 
(3), pp. 338–353. 

Zheng, H., Zhao, W., Yang, J., Bouguettaya, A., 2013. 
QoS analysis for web service compositions with 
complex structures. IEEE Transactions on Services 
Computing, vol. 6, issue. 3, pp. 373 - 386. 

 
 

ESaaSA�2015�-�Workshop�on�Emerging�Software�as�a�Service�and�Analytics

26


