
Modeling Traceability for Heterogeneous Systems

Nasser Mustafa and Yvan Labiche
Carleton University, 1125 Colone by Drive, Ottawa, Ontario, Canada

Keywords: Traceability, Modeling, Heterogeneity, Characterization, Generic.

Abstract: In System Engineering, many systems encompass widely different domains of expertise; there are several
challenges in relating these domains due to their heterogeneity and complexity. Although, literature
provides many techniques to model traceability among heterogeneous domains, existing solutions are either
tailored to specific domains (e.g., Ecore modeling languages), or not complete enough (e.g., lack support to
specify traceability link semantics). This paper proposes a generic traceability model that is not domain
specific; it provides a solution for modeling traceability links among heterogeneous models, that is, systems
for which traceability links need to be established between artifacts in widely different modeling languages
(e.g., UML, block diagrams, informal documents). Our solution tackles the drawbacks of existing solutions,
and incorporates some of their ideas in an attempt to be as complete as possible. We argue that our solution
is extensible in the sense that it can adapt to new modeling languages, new ways of characterizing
traceability information for instance, without the need to change the model itself.

1 INTRODUCTION

Traceability refers to the ability of following the life
of software artifacts (Winkler and Pilgrim, 2010). It
has gained more attention in the past 20 years and is
mandated by many industries such as aviation,
automobile, and nuclear power. It is required to
certify or qualify systems and software products
(Pinheiro, 2004). Traceability needs arise due to
many problems during system development. For
example, during system development in the System
Engineering field there is a need to relate many
heterogeneous artifacts. These artifacts are not
necessarily software related; they can be also
mechanical or electrical. Moreover, these artifacts
can be modeled by different languages and different
tools. In this context, we use the term model in the
widest sense of the word, and the notion of model
includes (but is not restricted to) diagrams, plain
language texts, equations, and source codes.

Another problem arises due to the fluidity of
activities since not all traceability requirements are
known to the system engineer upfront. For example,
the granularity and the type of traced artifacts are not
easy to discover upfront. In several cases a system
engineer might need to obtain traceability
information of new artifacts, or he might want to
link two models, or a requirement to a model that

refines it. Therefore, the heterogeneity and fluidity
of artifacts require a traceability model that can
accommodate capturing the traceability information
of such artifacts. We have demonstrated the need of
such model in our previous work using the example
of full flight simulator.

Our search in the literature for a solution to the
problems discussed above was not successful
(Mustafa, 2015). The main reason is that, each
solution we found is tailored to a specific domain:
e.g., some solutions can only trace artifacts from
MOF-based models; and some solutions can only
trace during model transformation.

This paper contribution is manifold. It involves
the design of a generic traceability model oblivious
of the heterogeneity of the model’s elements that
need to be traced. We argue that our solution is
extensible in the sense that it can adapt to new
modeling languages, new ways of characterizing
traceability information for instance, without the
need to change the model itself. Our traceability
model should be able to receive different kinds of
artifacts in different kinds of models that are
generated from different tools. Our trace model
instance can then be used to support traditional
traceability management tasks such as querying to
identify broken traceability links (e.g., a requirement
is traced to a component, which is traced to a class

358 Mustafa N. and Labiche Y..
Modeling Traceability for Heterogeneous Systems.
DOI: 10.5220/0005520303580366
In Proceedings of the 10th International Conference on Software Engineering and Applications (ICSOFT-EA-2015), pages 358-366
ISBN: 978-989-758-114-4
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)

operation, which does not trace to an
implementation). Note that the design of the
dedicated interpreters to feed the traceability model
instance from various modeling tools is outside the
scope of this paper, but others showed this is
possible in the limited case of I* and UML
(Cysneiros et al., 2003). Additionally, the use of
traceability information through query, visualization,
analysis, is outside the scope of this paper, although
there is no reason to believe this would be much
different than with other solutions. Our solution is
based on our previous work, where we identified the
requirements of a generic traceability model
(Mustafa, 2015).

The rest of the paper is structured as follows: we
discuss our solution, a traceability model, in section
2, justify our decisions, and argue that it brings
generality (heterogeneity of traces) and extensibility
(adapt to new models, new ways of characterizing
traceability information) without requiring changes
to the model itself, only its instantiation. Discussion
of related work can be found in our previous
publication (Mustafa, 2015) and is omitted from this
paper due to space constraints. We then validate our
solution in section 3, and conclude the paper in
section 4.

2 THE TRACEABILITY MODEL

In this section we discuss our traceability model
(section 2.2). Prior to this, we discuss the general
context of use of our solution: section 2.1.

2.1 Context of Use

We are proposing a new traceability modeling
solution to model traceability links between artifacts,

while accounting for requirements we stated in the
Introduction and in our previous work (Mustafa,
2015). We typically need to link artifacts that come
from widely different sources. We also want to
accommodate any taxonomy of traceability links
engineers may want to use. The solution should not
change when new artifacts, coming from newly
created modeling notations need to be traced, or
when new classification taxonomies need to be used.
One can view these two constraints as having to
identify a traceability model that can be extensible,
to accommodate new models, new artifacts,
different, possibly new ways of characterizing them,
without having to change the traceability model
itself. Only the instantiation (i.e., existing
traceability links) would have to be changed
(updated).

2.2 The Traceability Model Design

Our traceability model comprises classes that can
accommodate the capturing of traceability
information among heterogeneous artifacts. It
includes: the TraceabilityRoot class (Figure 1),
which acts as the root of the traceability model. Its
purpose is to hold the traceability information about
the artifacts under study. These include artifacts
created during a specific software/system
development. The name attribute is required to
retrieve or store all the traceability information that
the TraceabilityRoot instance holds (e.g., the
attribute name can be the name of the
software/system development which artifacts are
being traced to one another). A TraceabilityRoot
contains TraceElements (abstract class), which are
either instances of TraceLink, Trace, or Artifact. The
TraceElement class is associated to class
Characterization to allow the characterization of any
given trace element according to any taxonomy the

Figure 1: Generic Traceability Model.

Modeling�Traceability�for�Heterogeneous�Systems

359

user wishes to employ. These ideas are borrowed,
merged, and integrated from previous works, such as
(Ramesh and Edwards 1993; Drivalos et al., 2008;
Anquetil et al., 2010; Paige et al., 2011), though not
all come from a single of these works (we integrate
previous solutions). A Trace represents a sequence
(constraint {ordered} in the model) of chained trace
elements, generated during a sequence of model
transformations (e.g., as modeled by Falleri et al.,
(2006)), or simply to represent the transitive nature
of some traceability links where the target artifact of
a link becomes the source artifact of another link.
We opted for a composite pattern to provide
flexibility to the user of the model in handling a
Trace as a series of either TraceLink or Artifact
instances.

We decided to further specify, under the form of
an OCL constraint (not shown in the paper) that the
chained elements are either all Artifact or all
TraceLink instances, and forbid any mix of Artifact
and TraceLink instances (which is allowed by the
model class diagram) since we do not find it useful
to have such a mix; on the contrary we felt a mix
would hinder reasoning about the Artifact and
TraceLink instances that are involved in a Trace. In
addition to constraining the types being in the
sequence, the OCL constraint specifies that in case
the Trace instance is a sequence of TraceLink
instances, the target Artifact of the ith TraceLink
instance is the source Artifact of the (i+1)th
TraceLink instance. Similarly, in case the Trace
instance is a sequence of Artifact instances, the ith
and (i+1)th Artifact instances are the source and
target of a TraceLink instance.

A TraceLink instance represents a traceability
link between artifact(s): one or many source artifacts
and one or many target artifacts. Note that some
previous works limit those multiplicities to be
strictly 1, though we believe 1..* brings more
flexibility. Its purpose, thanks to (inherited)
associations to Characterization and Constraint, is
to capture information about the relationship
between source and target artifacts. The purpose of
Characterization is to characterize a TraceElement
according to zero or several taxonomies. Indeed, we
felt that different taxonomies characterizing
traceability links according to various dimensions
could be of interest in practice: e.g., the notions of
horizontal and vertical traceability, the categories
and traceability types (Ramesh and Edwards 1993),
categories of traceability types specific to MDE
software development (Paige et al., 2011).

We decided to exclude the specification of
specific taxonomies from our solution. The

advantage is that we are not tied to a specific set of
taxonomies, that we can use several taxonomies
together, and that our solution is therefore not
specific to either taxonomy and can evolve. In short,
the user can decide which taxonomies are important
to their context. The drawback is that our solution
may appear too generic or permissive: i.e., one can
provide meaningless characterization. This can
however be solved by requiring that
Characterization attribute only take allowed values
(in a specific set of taxonomies), which can be
enforced by means of constraints (class Constraint).

Class Artifact represents any traceable unit of
data such as a UML class diagram, a message in a
UML sequence diagram, a block in a block diagram,
a natural language requirement, a PDF document.
The resourceURI attribute specifies the exact
location of a traceable artifact, whether it is within a
model, a file, or a document. One very important
difference with many other attempts at modeling
traceability links, regarding the artifact specification,
is that our artifact specification is not tied to any
language with which the artifact being linked is
modeled: e.g., it is not tied to ECore languages as in
TML (Drivalos et al., 2008).

Artifact and TraceLink instances can be linked to
zero or several Constraint instances in order to
enforce some structural integrity of the model
instance, i.e., of the traceability information
(Drivalos et al., 2008; Paige et al., 2011). For
instance, one can specify that only certain types of
artifacts can be linked together, thereby forbidding
links between other kinds of artifacts; one can
specify that only specific characterizations can be
linked to a TraceLink (e.g., a trace link cannot be at
the same time horizontal and vertical). Since such
constraints are domain specific, they cannot be all
specified in the model and must be specified by the
Engineer. To that end, the Constraint class provides
attribute type to identify the constraint, attribute
value to specify the constraint itself, and attribute
language to specify the language in which the
description is written to then allow an algorithm to
trigger automatically the right constraints evaluation
engine: e.g., the type value could equal “OCL” and
the description could be an OCL expression. Our
traceability model is more generic than previously
published solutions since it can accommodate, by
design, tracing artifacts that come from widely
varying model types (i.e., class Artifact is not tied to
any other metamodel), tracing new kinds of artifacts
(because Artifact is not tied to any other
metamodel), from possibly new kinds of models,
and that those artifacts can be characterized in any

ICSOFT-EA�2015�-�10th�International�Conference�on�Software�Engineering�and�Applications

360

possible way the engineer sees fit (thanks to classes
Constraints and Characterization). Extensibility
without changing the model is ensured by the
abstract notion of Characterization, which can be
tailored (i.e., instantiated) to specific needs and can
be constrained thanks to class Constraint to enforce
structural integrity of the model instance. It is
interesting to note that the level of complexity of our
solution, for instance in terms of number of classes,
associations and attributes, is similar to that of other
solutions (e.g., (Drivalos et al., 2008; Anquetil et al.,
2010)), though it is more generic and addresses our
needs, contrary to those other solutions.

3 MODEL VALIDATION

Since our model is generic, its validation is not
trivial because we cannot define a threshold for the
required number of case studies to prove its

generality. Therefore, we envisioned the validation
in terms of four different criteria: (1) validity by
construction which means justifying the reasons for
the need of all our model elements (i.e., classes,
associations, cardinalities) as we have already done
in section 2.2; (2) showing that the existing
traceability models fail to accommodate all the
traceability requirements for our problem (Mustafa,
2015); (3) showing that our solution can model some
representative examples collected from related
works; and (4) showing that our solution can be
applied in a realistic industry context.

With respect to (2), we propose several
validation scenarios based on our design
requirements and show that all existing models fail
to satisfy some requirements (see requirements 1, 6,
7, 9, 10, 13, 14, 15, 19 in Table 1). The table shows
that each existing solution only satisfies at most six
of the 19 validation scenarios, and that together, all
solutions only satisfy 10 of the 19 validation

Table 1: Traceability model test cases and validation.

 Traceability Model Characteristics Test Case Satisfied by

1
Independent of languages, tools,
frameworks

Check the characteristics of the existing models None

2
Horizontal traceability between artifacts of
heterogeneous models

Trace artifacts of heterogeneous models (Paige, 2011); (Anquetil, 2010).

3
Horizontal traceability across phases within
the same model.

Trace one requirement in one model to another
requirement in another model.

(Paige, 2011); (Anquetil, 2010);
(Pavalkis, 2008); (Drivalos, 2011);
(Falleri,2006); (Cysneiros, 2003).

4
Vertical traceability (i.e., tracing artifacts
within the same model or phase)

Trace one requirement in analysis phase to
another requirement at the same phase.

(Pavalkis, 2008); (Drivalos, 2011);
(Falleri,2006); (Cysneiros, 2003);
(Paige, 2011); (Anquetil, 2010).

5 Trace cardinality between artifacts: 1-1 Trace a source requirement to a target test case
(Pavalkis, 2008); (Drivalos, 2011)
(Falleri,2006); (Cysneiros, 2003);
(Paige, 2011); (Anquetil, 2010).

6 Trace cardinality between artifacts: 1-M
Trace one source requirement to two target
requirements that refine it.

None

7 Trace cardinality between artifacts: M-N Tracing many to many artifacts None

8 Bidirectional traceability Trace a requirement to a use case and vice versa.
(Pavalkis, 2008); (Cysneiros,
2003); (Anquetil, 2010).

9
More than one characterization to a trace
link

Use two orthogonal characterizations None

10 More than one characterization to an artifact Characterize an artifact by its type and location None
11 Tracing artifacts of different granularities Trace a requirement in a word file to a use case. (Anquetil, 2010).

12 Constraint to a trace, artifact, or trace link Apply an OCL constraint to a trace link
(Pavalkis, 2008); (Cysneiros,
2003); (Anquetil, 2010).

13 More than one constraint to a trace. Apply two OCL constraints to a trace None
14 More than one constraint to an artifact Apply two OCL constraints to a requirement None
15 More than one constraint to a trace link. Apply two OCL constraints to a trace link. None

16
Traceability information during model to
model transformation.

Identify a trace (chained trace links or artifacts)
in a sequence of model transformations.

(Falleri,2006).

17 Specifying the direction of the trace link.
Trace two artifacts A and B, where A is the
source and B is the target or vice versa

(Pavalkis, 2008); (Falleri, 2006);
(Paige, 2011); (Anquetil, 2010)

18
Prevents illegal links between certain
artifacts.

Define a constraint to prevent specific links. (Paige, 2011); (Anquetil, 2010).

19 Extensibility
Apply new characterization to a trace link by
creating a new instance of the characterization
class.

None

Modeling�Traceability�for�Heterogeneous�Systems

361

Figure 2: Traceability model instance for the example in Figure 3.

Figure 3: Traceability Example: I* (excerpt) model (left), UML (excerpt) class diagram (right), traceability links (grayed
dashed lines).

scenarios. Since, as discussed later, our solution
does satisfy all those scenarios, our solution is more
than the mere combination of existing ideas. For the
validation of our model against those unsatisfied
requirements, we instantiated all the examples
provided in the related work, sometimes adding to
the original examples to illustrates more aspects of
our solution. We used two examples from literature,
and validated most of those scenarios (section 3).

The instantiations of the two examples of this
paper show that our traceability model can
accommodate the traceability requirements (1, 9, 10,

14, 19) of Table 1, which cannot be satisfied by the
existing traceability models. It is not necessary to
validate requirements 6, 7, 13, and 15 with an
example since they are satisfied by construction:
multiplicities in our model; and they are not satisfied
by existing solutions (again by construction). Step
(4) is under way, and there would anyway not be
enough room in this paper due to size constraints to
do that in addition to step (3). Note that “None” in
Table 1 means that the existing models fail to satisfy
the required scenario.

ICSOFT-EA�2015�-�10th�International�Conference�on�Software�Engineering�and�Applications

362

3.1 Case Study 1: Traceability between
I* Model and UML Class

We use this example to validate the extensibility of
our model by demonstrating how an artifact or a
trace link can have different characterizations as
wished by the engineer, and how different
constraints can be applied to a source or target
artifacts without changing the model. When tracing
between an I* model and a UML class model (Paige
et al., 2011), I* actors and resources trace to UML
classes, I* goals, either hard or soft ones trace to
UML class attributes, and I* tasks trace to UML
class operations. We illustrate this using a cab
dispatching system, whereby a customer wants a
dispatcher to book a cab for a specific pick up
location, possibly requesting a cab that can
accommodate people with disabilities, and is
interested in the expected time of arrival (ETA): see
the I* excerpt diagram in Figure 3 (left), with I*
actors Customer and Dispatcher, I* resource
PickupLocation, I* goals PeopleWithDisability and
ShortestETA (hard and soft goals, respectively).

Figure 3 (right) shows a UML class diagram with
five different classes and some attributes and
operations. The figure shows, as greyed out dashed
lines between I* artifacts and UML class diagrams
artifacts, the traceability links that need to be
established according to Paige and colleagues (Paige
et al., 2011). In addition, we defined the following
constraints to be enforced on the artifacts and links
of I* and UML models:

 The instance of Attribute (Disability) that is
linked to an instance of HardGoal

(PeopleWithDisability) must be of Boolean type
to verify whether a hard goal is fulfilled or not.

 The name of an Actor in the I* model and the
name of the linked Class in the UML model
must be identical to ensure models are consistent.

 The name of a Resource in the I* model and the
name of the linked Class in the UML model
must be identical to ensure models are consistent.

(Note that, as per Table 1 such constraints cannot be
specified with the solution of Paige and colleagues).

Figure 2 shows the instantiation of our
traceability model for the traceability information in
Figure 3. This is only an excerpt, because of size
constraints, showing the traceability link of I*
Customer actor to the UML class Customer, and the
I* BookCab task to the UML BookCab(). The
instantiation illustrates many important aspects of
our traceability model. First, it can capture
traceability information of heterogeneous models
(i.e., I* and UML models). Second, it provides
flexibility to the model’s user to apply more than
one characterization to an artifact, for instance,
customer instance in Figure 3 is instantiated with
two characterizations (see test case 10, Table 1).
Third, the traceability model stayed unchanged,
although the traceability requirements can vary
based on application needs.

3.2 Case Study 2: Traceability in
Model Transformation

This example is borrowed from Falleri and
colleagues (Falleri et al., 2006) and demonstrates
how our model handles traceability in case of model

Figure 4: Metmodels of UML Class to Database mapping.

Modeling�Traceability�for�Heterogeneous�Systems

363

Figure 5: Traceability instance for the example in Figure 4.

transformation while applying constraints on the
traces, specifically, from a UML class diagram to a
database schema: Figure 4. The Trace class in our
model is utilized to handle such a transformation.
The greyed dashed lines in Figure 4 show a mapping
between a UML metamodel and database
metamodel. A class hierarchy in the UML model
must transform into a database, a class in the UML
model must transform into a database table, and a
property in the UML model must transform into a
database column. The following constraints must be
enforced during the transformation in addition to the
constraints on the Trace class mentioned in section
2: The name of a table that is transformed from a
class should be the same as that class’ name; The
name of a table column that is transformed from a
UML Property should be the same as this Property’s
name. In addition we identified the following trace
links with characterizations that belong to
orthogonal taxonomies: all the links are Vertical
links since they link artifacts at two levels of
abstraction; all the links are Consistent-with links
since they ensure consistency between the two
models.

Figure 5 shows an excerpt instantiation of our

traceability model that corresponds to Figure 4. Note
that the constraints are written in pure English for
demonstration purposes. Also, the instance of the
Trace class (trace) in this example represents an
ordered set of artifacts. This example demonstrates
different aspects about our model than the previous
case study. First, it demonstrates how our model can
accommodate model-to-model transformations using
the Trace class (test case 16 in Table 1). Second, it
allows the user to add constraints to an artifact (test
case 14, Table 1). Third, it allows the user to identify
multiple levels of granularity for a trace link
characterization: e.g., the Tracelink instance trl1 in
Figure 5 can have coarse grained characterization
(vertical) or fine grained characterization
(consistent-with), (test case 9, Table 1).

4 CONCLUSIONS

Traceability in its simplest form is the ability to
describe and follow the life of software artifacts
(Winkler and Pilgrim 2010). In our work we
consider traceability needs during the engineering of
systems that are realized through software and

ICSOFT-EA�2015�-�10th�International�Conference�on�Software�Engineering�and�Applications

364

hardware solutions, and that include a wide range of
disciplines and therefore heterogeneous modeling
notations.

We argued that, as a result, the solution to model
traceability information between artifacts in many
models that specify a system must be oblivious of
the solutions being used to model those artifacts.
Additionally, we argued that the solution to model
traceability should accommodate the situation where
new artifacts, possibly in new models, need to be
traced, where new ways of characterizing artifacts
and traceability links need to be used. The solution
to model traceability information should be flexible
to accommodate many different situations.

We have proposed a traceability model that can
address all those general issues, while at the same
time incorporating ideas from many previous works
on traceability modeling. We showed that this novel
fusion of previous ideas, to satisfy specific
requirements, is more than their sum. Indeed, we
derived validation scenarios from the requirements
and showed that each existing solution only satisfies
at most six of the 19 validation scenarios, and that
together, all solutions only satisfy 10 of the 19
validation scenarios.

Given the level of artifacts generality, validating
our solution is a challenge. On the one hand, we
argued that our traceability model addresses the
requirements by design: we described and justified
the classes, associations, and attributes in our model
based on our knowledge of the literature and the
problem we had to solve. One the other hand, we
proceeded with respect to validation of our solution
similarly to all the other traceability metamodeling
techniques we have reviewed, that is, we used (two)
instantiation examples we collected from the
literature and enriched. In doing so we showed
which aspect of our validation requirements are
illustrated with which case study to cover as many
cases as possible given space constraints. Future
work will necessarily involve additional validation
activities.

We have started is to systematically illustrate
how our solution can accommodate the examples
found in the literature (similarly to what we did in
section 2.2). We will also have access to realistic
traceability requirements from our industry partners.

REFERENCES

Aizenbud-Reshef, N., B. T. Nolan, J. Rubin, et al. (2006).
"Model traceability " IBM Sys. J. 45(3): pp. 515–526.

Amar, B., H. Leblanc and B. Coulette (2008). A

Traceability Engine Dedicated to Model
Transformation for Software Engineering. EC-MDA -
Traceability Workshop.

Anquetil, N., U. Kulesza, A. Moreira, et al. (2010). "A
model-driven traceability framework for software
product lines.” Softw. Syst. Model 9(4): pp. 427-451.

Cysneiros, F., A. Zisman and G. Spanoudakis (2003).
Traceability approach for I* and UML models. Int.
Workshop on Soft. Eng. for Large-Scale Multi-Agent
Systems.

Drey, Z., C. Faucher, F. Fleurey, et al. (2014). "Kermeta
language reference manual." Available at:
http://www.kermeta.org/docs/fr.irisa.triskell.kermeta.d
ocumentation/build/pdf.fop/KerMeta-Manual/
KerMeta-Manual.pdf. (Accessed 10 Sep 2014).

Drivalos, N., D. S. Kolovos, R. F. Paige, et al. (2008).
Engineering a DSL for software traceability. Software
Language Engineering.

Espinoza, A., P. Alarcon and J. Garbajosa (2006).
"Analyzing and Systematizing Current Traceability
Schemas." Software Engineering Workshop, Annual
IEEE/NASA pp. 21-32.

Falleri, J., M. Huchard and C. Nebut (2006). Towards a
traceability framework for model transformations in
kermeta. ECMDA - Traceability Workshop.

Gotel, O. and A. Finkelstein (1994). An Analysis of the
Requirements Traceability Problem. Proceedings of
the Int. Conf. on Requirements Eng..

Kolovos, D., R. Paige and F. Polack (2008). Detecting and
Repairing Inconsistencies Across Heterogeneous
Models. IEEE ICST.

Kolovos, D. S., L. Rose, A. Garcia-Dominguez, et al.
(2014). 'The Epsilon Validation Language', in (eds.)
The Epsilon Book. pp. 57-76.

Mustafa, N. and Labiche, Y. (2015). 'Toward Traceability
Modeling for the Engineering of Heterogeneous
Systems', Modelsward.

Object Management Group. (2014a). "Business process
Model Notation (BPMN)." Available at:
http://www.omg.org/bpmn/Documents/BPMN_1-
1_Specification.pdf. (Accessed 20 July, 2014).

Object Management Group. (2014b). "Object Constraint
Language (OCL)." Available at: http://www.omg.org/
spec/OCL. (Accessed 20 July, 2014).

Paige, F., N. Drivalos, D. S. Kolovos, et al. (2011).
"Rigorous identification and encoding of trace-links in
model-driven engineering." SoSyM 10(4): pp. 469-
487.

Pavalkis, S., L. Nemuraite and E. Milevičienė (2011).
Towards Traceability Metamodel for Business Process
Modeling Notation. IFIP Advances in Information and
Communication Technology: pp. 177-188.

Pinheiro, F. A. C. (2004). 'Requirements traceability', in J.
C. Sampaio do Prado Leite and J. H. Doorn (eds.)
Perspectives on software requirements. Springer pp.
91-113.

Ramesh, B. and M. Edwards (1993). Issues in the
Development of a Requirements Traceability Model.
IEEE Int. Symp. on Requirements Eng.

Spanoudakis, G. and A. Zisman (2005). 'Software

Modeling�Traceability�for�Heterogeneous�Systems

365

Traceability: A road map', in S. K. Chang (eds.)
Handbook of Software Engineering and Knowledge
Engineering. pp. 395-428.

Winkler, S. and J. Pilgrim (2010). "A survey of
traceability in requirements engineering and model-
driven development." SoSyM 9(4): pp. 529-565.

Yu, E. (2009). 'Social modeling and I*', in A. T. C.
Borgida, V. K., P. Giorgini and E. S. Yu (eds.)
Conceptual Modeling: Foundations and Applications.
Springer. pp. 99-121.

ICSOFT-EA�2015�-�10th�International�Conference�on�Software�Engineering�and�Applications

366

