
A Review of Detecting and Correcting Deviations on Software Processes

Manel Smatti1, Mourad Oussalah2 and Mohamed Ahmed Nacer1

1LSI, USTHB, BP 32-Bab Ezzouar, Algiers, Algeria
2LINA, Université de Nantes, CNRS UMR 6241, 2 Rue de la Houssinière BP 92208-44322, Nantes, France

Keywords: Software Process (SP), Deviation, Software Process Enactment, Detection, Correction.

Abstract: Deviations are known as unexpected situations that could arise during Software Process (SP) enactment. They
are the difference between what is expected and what is carried out in real world. Experience has shown
that the appearance of such situations is unescapable, especially within large software development projects.
Moreover, their occurrence often leads to software development failure if they are not detected and corrected
as soon as they appear. This paper presents a literature review of deviation problem on software processes.
The most relevant approaches that have been dealing with this issue from the 90s until today are considered
within this study. The main goal is to have a clear insight of what has been achieved and what worth to be
considered by future works. To achieve this aim, we propose two comparison frameworks that highlight the
addressed approaches from two different perspectives, how to detect deviations and how to correct them. As a
result of this study, we propose a covering graph for each classification framework which puts in advance the
strengths and the weaknesses of each approach.

1 INTRODUCTION

PSEEs (Process-centered Software Engineering En-
vironment) (Matinnejad and Ramsin, 2012) are spe-
cial environments dedicated to support (large) soft-
ware development projects that are conducted through
a set of steps that define their processes. The goal
of proposing such environments is to assess soft-
ware agents through the development steps in order
to achieve the desired quality within the final prod-
ucts. Moreover, as they are often endowed of the
process model description using a Process Modeling
Language (PML) (Garcı́a-Borgoñon et al., 2014), and
in ideal situation a clear view of what is carried out
in real world, PSEEs play an important role in pro-
cess understanding, training, when hiring new engi-
neers, and even organization strategies improvement,
they are the core of any software development process
(Fuggetta, 2000).

Because of their significant importance, PSEEs
have gotten a great interest within the software engi-
neering field. Many prototypes have been proposed
to cater for all the needs of software development
projects by offering means to model processes and
enacting them, but the lack of flexibility, to cope with
unforeseen situations, within these environments has
led to their failure in being widely adopted within in-
dustry.

Deviations on Software Processes (SP) are known
as unexpected situations that could arise during soft-
ware development projects. They are either actions
that violate the SP model constraints or those per-
formed out of the control of the PSEE. In both cases,
the PSEE becomes unable to support the software de-
velopment and useless, though.

Many solutions have been proposed to address this
issue that is related to the evolution aspect of soft-
ware processes (Bandinelli et al., 1993) (Bandinelli
et al., 1994). Most approaches deal with deviations
at two different levels: (1) how to detect them, at
a first time and (2) how to cope with them. Sev-
eral methods have been used to address the first point
like logic formulas evaluation (Cugola et al., 1995)
(Kabbaj et al., 2008) (Almeida da Silva et al., 2011)
and algebraic-based analysis (Yang et al., 2007). On
the other hand, correcting the occurred deviations has
not been much considered except of some proposals
that aim at changing the process model so it could
further support the software development as done in
(Bandinelli et al., 1993) or the reconciliation approach
adopted in (Almeida da Silva et al., 2011).

Through this paper, we aim at offering an origi-
nal analysis of most approaches that have addressed
the problem of deviations on software processes. Our
main goal is to have a suitable classification that high-

15Smatti M., Oussalah M. and Ahmed Nacer M..
A Review of Detecting and Correcting Deviations on Software Processes.
DOI: 10.5220/0005517500150025
In Proceedings of the 10th International Conference on Software Engineering and Applications (ICSOFT-EA-2015), pages 15-25
ISBN: 978-989-758-114-4
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)



lights a set of important features we believe they
should be considered when choosing an existing ap-
proach or proposing a new one. Such classification
would be very useful to have a clear insight on what
has been achieved so far and what has been left and
worth to be considered by future works. Although we
have looked over several studies that have considered
the problem of deviations within different kinds of
processes, we will focus through this paper on study-
ing the most representative approaches that have ex-
plicitly considered this issue in the context of software
processes.

The paper is structured as follows. Section 2 gives
a general overview of deviations on software pro-
cesses, the deviation concept is introduced as well as
the motivations that have raised the interest devoted to
this research area. In Section 3, we focus on how de-
viations are detected within the existing approaches.
The comparison framework we have elaborated at this
aim is introduced after defining each item belonging
to the set of criteria we have selected for this purpose.
Another comparison framework is given in Section 4.
Unlike the first one, this second framework is con-
cerned with solutions proposed to correct deviations.
This framework is also built around a set of criteria we
define. Section 5 discusses the results achieved within
both frameworks. A covering graph is elaborated for
each classification framework in order to get a clear
insight about what criteria have been covered/ignored
by each approach. Section 6 concludes the paper.

2 DEVIATIONS ON SOFTWARE
PROCESSES

2.1 Deviation Concept

A deviation is an action that violates the process
model constraints. It is the difference between what
is expected and what is carried out in real world.
In (Kabbaj et al., 2008), a consistency relationship,
which describes an ideal SP enactment, has been de-
fined based on the interactions between SP agents and
the PSEE. Thus, deviations have been defined as ac-
tions that break this consistency relationship.

When a deviation occurs, the PSEE becomes un-
able to support SP agents through the development
steps. The state resulting from such situation is called
inconsistency (Kabbaj et al., 2008). Such situations
are very likely to arise within any software devel-
opment project. Moreover, experience has shown
that the appearance of such situations is not an ex-
ception (Almeida Da Silva et al., 2013) because SP

agents have often to deviate from the software pro-
cess model. Thus, deviations are unescapable situa-
tions that need to be considered from the beginning
of the software development process.

2.2 Motivation

The huge software applications that companies claim
nowadays have increased the interest devoted to the
software process area. This interest results in many
contributions especially in SP modeling and SP en-
actment fields (Ruiz-Rube et al., 2012). The SP
modeling field has reached an advanced level thanks
to the wide panoply of PMLs that have been pro-
posed (Garcı́a-Borgoñon et al., 2014). Furthermore,
the proposition of the standard SPEM (sta, 2008) by
the OMG has facilitated the integration of such for-
malisms within industry. Whereas, most PSEEs have
failed to gain such success because of multiple rea-
sons, among them:

� PSEEs are built around SP models that are very
rigid while SP agents are requiring more and more
flexibility to be able to act using their skills and
their previous experiences;

� New ways of development, like agile methods,
are based on customers’ implication within all of
the software development steps. Thus, final re-
quirements are often changed or modified during
the software development life cycle, which often
leads to deviate from the SP model in order to
cope with these changes;

� Organizations often change their structures and
their strategies within (large-scale) software de-
velopment. New people are engaged while others
left, new tools are integrated and much certifica-
tions are required. All these are important factors
that need to be considered within software pro-
cesses and their dedicated supports;

� Competition within software development com-
panies to gain international markets is based on
two important factors: time and cost of software
development. Thus, having special environments
that are able to support SP agents in a controlled
fashion has become very challengeable.

3 DETECTING DEVIATIONS

The most important research works that have been led
during the last twenty years to deal with deviations
on software processes are considered through this pa-
per. These approaches are classified and discussed
through a set of criteria we have selected.

ICSOFT-EA�2015�-�10th�International�Conference�on�Software�Engineering�and�Applications

16



Figure 1: Detection framework criteria.

At a first time, we start by classifying the ad-
dressed approaches based on how they proceed to de-
tect the encountered deviations. To achieve this goal,
we project each solution on the set of criteria designed
for this purpose (Figure 1). We define within the next
subsection each criterion, its role and the values it
could have.

3.1 Criteria

1. Deviation Object: we believe that it is very im-
portant to have information about the responsible
element for the deviation occurrence. Based on
the SPEM conceptual meta-model (sta, 2005), the
deviation object could be the activity, SP agent
through his role or the artefacts consumed and/or
generated within a software process activity. Get-
ting a clear insight about the identity of this ele-
ment would make the correction much easier.

2. Deviation Type: based on their
causes/consequences, several kinds of devia-
tions could be distinguished. Even if there is no
standard classification, most approaches have
been built around a precise set of deviations they
define. Through the classification framework we
have elaborated (Section 3.2), we will highlight
the most relevant deviation classes by enumerat-
ing the different types that have been proposed by
the existing approaches.

3. Deviation Cause: enumerating the possible
causes makes the analysis much easier and the so-
lution much effective. Based on the existing ap-
proaches, deviations may occur because of dif-
ferent reasons. Depending on the nature/size of
the process, the chosen process model and the SP

agents skills, a deviation may occur because of:

� A bad choice of the process model;
� Misunderstanding of customers needs or misal-

location of resources;
� Wrong execution of activities or a bad sequenc-

ing;
� ...etc.

4. Deviation Moment: most approaches define de-
viations as a problem related to SP enactment
and/or SP evolution. In fact, most deviations are
detected while the process is enacting but they are
not all the reason of an execution problem. Devia-
tions could be static, which means that they are re-
lated to the SP specification and that the problem
has been encountered within the software process
model before any deployment. Deviations may
also occur during deployment due to a misunder-
standing of the SP model constraints or even be-
cause of a bad assignment of roles.

5. Detection Process: detecting the occurred devi-
ations within software processes falls into find-
ing mechanisms to analyze and evaluate the soft-
ware process along all its steps. Based on the
chosen process model, the PML used to describe
it and the tools integrated within the PSEE, sev-
eral methods have been implemented for this pur-
pose. For instance, visualization-based method
and evaluation of first order logic formulas are
two options that have been widely adopted by the
existing approaches.

6. Automation Level: PSEEs are supposed to sup-
port SP agents to achieve the desired quality
within the final products. The automation level
offered by these environments play a key role in
the success of any software development project.
Thus, the ability of the PSEE to detect incorrect
actions or transitions without human intervention
is very important. In spite of the great number of
prototypes that have been designed to support de-
viations on software processes, we have noticed
that detecting such situations still require human
intervention in most cases. As a result, the detec-
tion operation is often semi-automatic or manual.

7. Execution Environment: a software process
could be enacted either within a mono machine
environment or a distributed one. Moreover, some
recent research works are focusing on finding out
solutions to easily integrate nomadic users within
software development projects. Thus, proposing
a support for deviations, or for any other problem
encountered within the software engineering field,
requires a good estimate of the runtime environ-

A�Review�of�Detecting�and�Correcting�Deviations�on�Software�Processes

17



ment. It is obvious that the larger is the environ-
ment, the more difficult is the solution to imple-
ment.

3.2 Classification Framework

Deviations have been considered by researchers from
the beginning of the 90s. Since that, several ap-
proaches have been proposed to address this problem
within the different kinds of processes. The most rele-
vant approaches are listed in Table 1. To select the ap-
propriate papers, our work was partially inspired from
the methodology followed in (Ruiz-Rube et al., 2012)
when performing a systematic review. The papers re-
lated to our study have been selected based on a rig-
orous search using one of the three words: deviation,
inconsistency, evolution conjointly with the software
process expression. Searchers were performed on the
most known digital libraries such: IEEE Digital Li-
brary, Springer and ACM Digital Library. As a sec-
ond step, papers that have not treated the studied issue
as a main subject, but have just given an insight about
it, have been discarded.

Moreover, As we are interested to the Software
Process area, and to not have a cluttered tables and
graphs, we consider through this study only the most
representative approaches that have been proposed
within this field.

We start within this section by classifying the se-
lected approaches based on how they proceed to de-
tect deviations on software processes. Each solution
is projected on the aforementioned set of criteria. The
results obtained from this classification are presented
in Table 2. Some of the values listed in this table have
been explicitly extracted from their sources while oth-
ers constitute the outcome of the analysis we have per-
formed on each of the selected works.

Discussion. As we have mentioned before, the
problem of deviations on SP enactment is not recent.
SPADE (Bandinelli et al., 1993) and SENTINEL (Cu-
gola et al., 1995) are the most known approaches that
have dealt with this issue. Based on the SLANG
and LATIN languages respectively, these two proto-
types have been the basis of all the approaches that
have been proposed later. Although they have reached
an advanced level, especially after the proposition of
their successors SPADE-1 (Bandinelli et al., 1996)
and PROSYT (Cugola and Ghezzi, 1999) respec-
tively, these prototypes have failed in being adopted
within industry because of multiple reasons such as
the complexity of the languages used to conceive
them and the lack of flexibility within SPADE that
does not support deviations until the process model is

changed. Moreover, the wide panoply of PMLs that
have been proposed in addition of the proposition of
SPEM has led to consider new features to model soft-
ware processes and enacting them.

On the other hand, recent approaches take advan-
tage from what has been achieved within the soft-
ware engineering field and its dedicated tools and lan-
guages. For instance, (Kabbaj et al., 2008) propose
to support deviations within software processes de-
scribed as a UML profile. Authors use XMI (XML
Metadata Interchange) to automatically generate first
order logic formulas from the UML description of the
SP model. The analysis performed upon the obtained
formulas enable authors to easily detect the occurred
deviations.

4 CORRECTING DEVIATIONS

Detecting the unexpected situations that could arise
during a given software development project is very
important but the most important is to be able to
handle them. Among all the approaches considered
within this study, few have proposed a correction plan
to fix the occurred deviations. Through this section,
correction mechanisms that have been adopted by the
covered approaches are highlighted. First, we start
by enumerating some motivations that have incited
to propose these correction plans. Then, we provide
a brief definition of the possible solutions that have
been widely adopted to deal with deviations on soft-
ware processes. Finally, as done for the detection
aspect, a classification framework is elaborated after
defining each item belonging to the selected set of cri-
teria.

4.1 Motivation

Offering a suitable development environment that
meets all the SP agents requirements, including flex-
ibility, still remains a big challenge within the Soft-
ware Engineering field.

Deviations are very likely to occur within any
software development project. At each moment, SP
agents may decide not to follow the software process
model because they think they are able to accomplish
things better than as described within the SP model.
Thus, they decide to act based on their skills or on
their previous experiences. Such deviations, even if
they are performed with a good faith, could be the
main reason of any software project failure. Offering
a good support for software processes results in:

� Considering the SP model as a plan that is sup-
posed to guide SP agents to achieve the final goals

ICSOFT-EA�2015�-�10th�International�Conference�on�Software�Engineering�and�Applications

18



Table 1: Approaches dealing with deviations.

Year

Proposed Approach

19990-2000 2000-2010 2010-Today
(Bandinelli et al., 1993) (Thompson et al., 2007) (Yong and Zhou, 2010)

(Cugola et al., 1995) (Yang et al., 2007) (Almeida da Silva et al., 2011)
(Bolcer and Taylor, 1996) (Egyed et al., 2008) (Cugola et al., 2011)

(Dami et al., 1998) (Kabbaj et al., 2008) (Ge et al., 2011)
(Egyed et al., 2008) (Bendraou et al., 2012)

(Zhang et al., 2012)
(Hull et al., 2013)

(Rangiha and Karakostas, 2014)

Table 2: Classification framework for detecting deviations on SP.
Deviation
object

Deviation
type

Deviation
causes

Deviation
moment

Detection
process

Automation
level

Execution
environment

(Bandinelli et al., 1993) -Activity
-Static
-Dynamic

-Changing in
requirements
-Changing
in the environ-
ment/organization

-Execution Ad-hoc analysis Manual
Mono
machine

(Cugola et al., 1995) -Role
-Environment
level
-Domain level

Violation of
activities’
constraints

Deployment
Evaluation of
logic formulas

Semi-
automatic

Mono
machine

(Thompson et al.,
2007)

-Activity
-Role

None
A predefined
set of seven
causes

-Deployment
-Execution

Evaluation of
SQL queries

Semi-
automatic

Mono
machine

(Kabbaj et al., 2008)
-Activity
-Role

-Environment
level
-Domain level

-Violation of
Activities’ con-
straints
-Misallocation
of roles

Execution
Evaluation of
logic formulas

Automatic
Mono
machine

(Almeida da Silva
et al., 2011)

-Activity None -Sequencing Execution
Evaluation of
logic formulas

Automatic
Mono
machine

(Bendraou et al.,
2012)

-Activity
-Artefact

-Organizational
-Behavioral
-Structural

-Activities’
sequencing
-Violation of
methodological
guidelines

-Deployment
-Execution

Comparing the
execution trace
to a predefined
set of rules

Automatic Distributed

without imposing a specific manner;

� Offering a suitable tool that brings together all the
SP modeling benefits and the required flexibility
within a single environment;

� Obtaining a complete environment that could be
easily integrated into industry.

4.2 Correction Plans

After detecting the occurred deviations, three pos-
sible solutions have been distinguished in (Cugola,
1998), these solutions have been adopted by all the
approaches that have been proposed later:

1. Nothing to Do: in this case, deviations are de-
tected but ignored. The software project is pur-
sued without correcting deviations consequences.
The PSEE has an erroneous view of what is
carried out in real world and becomes useless,
though.

2. Changing the Model: the process model is
changed to meet the new requirements that have
led to the triggered deviation. This solution is
very costly and may generate other problems es-
pecially if there are several running instances of
that model. In addition, a deviation may occur
temporarily and does not require changing the en-
tire SP model.

3. Tolerating the Deviation: in this case, the SP
model is not changed but mechanisms are inte-
grated within the PSEE to tolerate deviations un-
der its control. Moreover, the PSEE supports SP
agents to reconcile the observed process (the ob-
served process is the partial view, of what is car-
ried out in real world, owned by the PSEE (Cu-
gola, 1998) (Kabbaj et al., 2008), the expres-
sion Process definition enactment has been used
in (Cugola et al., 1996) and (Yang et al., 2007)
to indicate the same view) with the process model
(the planned process in (Zazworka et al., 2009)).

A�Review�of�Detecting�and�Correcting�Deviations�on�Software�Processes

19



Unlike Section 3 where we have focused on the
problem itself. Through this section, we will be deal-
ing with deviations from a solution perspective. To be
on the same wavelength, we start within the next sub-
section by defining each item belonging to the chosen
set of criteria (Figure. 2). Approaches that have pro-
posed a correction plan are then discussed according
to these criteria.

Figure 2: Correction framework criteria.

4.3 Criteria

1. Correction Object: A deviation is always caused
within one (or more) of the SP elements: activ-
ity, role or product. As well, the correction step
is applied within one, or more, of these items. It
could be the same that has caused the deviation or
another one. For instance, the deviation may be
detected within an output product while the cor-
rection is applied within the activity that has pro-
duced it.

2. Correction Type: based upon the correction
plans we have explained above. SP managers may
decide even to change the model to cope with the
triggered deviations or to change just the running
instance within which the deviation has occurred.
Thus, we are talking about static and dynamic
changes, respectively. We consider the first kind
of corrections as preventive correction while the
second as curative correction.

3. Correction Reason: while interested to devi-
ations on software processes, most researchers
have focused their studies on how to detect these
deviations and how to correct their consequences.
We believe that holding this problem may have
more benefits than just correction. For instance,
the implementation of a given correction could

have a perfective effect by improving the process
functionalities. Moreover, such correction may
improve the reusability of SP models by offering
reusable configurations.

4. Correction Process: when deviations occur, SP
agents/managers may choose multiple options
while performing their correction plans. For in-
stance, changing the component (activity, role or
product) parameters could be very useful to recon-
cile the enacting process with the process model.
The problem may also be solved by applying a set
of transformations or even by changing the com-
ponent by another one to add new concepts while
keeping the old ones (inheritance concept).

5. Correction Moment: to correct a given devia-
tion, changes could be applied to the process spec-
ification, while deployment or even during the
process enactment. Thus, the deviation is not nec-
essarily corrected at the same moment where it
has been detected. For instance, the deviation
may be detected at enactment time while changes
are applied to the process specification (process
model) to correct it or to avoid it in future time.

6. Automation Level: as for the detection process,
correcting the occurred deviations may be done
manually by SP agents. In best cases, the cor-
rection is automatic if it is entirely done by the
PSEE without any human intervention. However,
based on what has been achieved by former re-
search works, this is almost impossible. Thus, a
suitable correction always involves both the PSEE
and SP agents (semi-automatic).

7. Execution Environment: through the different
approaches that have been proposed in the litera-
ture, we have noticed that the solution, when pro-
posed, is not always applicable at the same level
within which the process is conducted. Therefore,
the process may be led trough a distributed en-
vironment while the deviation support is imple-
mented in a mono machine environment.

4.4 Classification Framework

The approaches that have proposed a correction pol-
icy are considered in this section. As mentioned be-
fore, we are interested at those approaches that have
explicitly proposed a correction plan within the con-
text of software processes. These approaches are clas-
sified according to the set of criteria listed above. The
results obtained from this classification are summa-
rized in Table 3.

ICSOFT-EA�2015�-�10th�International�Conference�on�Software�Engineering�and�Applications

20



Table 3: Classification framework for correcting deviations on SP.
Correction
object

Correction
type

Correction
reason

Correction
moment

Correction
process

Automation
level

Execution
environment

SPADE

(Bandinelli et al.,
1993)
(Bandinelli et al.,
1994)

All SP elements Static Perfective Specification Transformation Manual
Mono
machine

SENTINEL (Cugola et al., 1995) All SP elements
-Static
-Dynamic

-Perfective
-Corrective

-
Specification
-Execution

Transformation
Semi-
automatic

Mono
machine

(Almeida da
Silva et al.,
2011)

All SP elements Dynamic Corrective Execution Restructuring
Semi-
automatic

Mono
machine

Table 4: Signification of Covering Graphs values.

Qualification
Detection Correction

Criterion Description Criterion Description
Low

Deviation
object

detecting deviations within just one SP element.
Correction
object

All the SP elements
Medium Two SP elements are considered Two SP elements are considered
High All the basic SP elements are considered One SP element is corrected
Low

Deviation
type

Behavioral
Correction
type

Static
Medium Functional Dynamic
High Behavioral & Functional Static & Dynamic
Low

Deviation
causes

One kind of deviations
Correction
reasons

Corrective or Perfective
Medium A predefined set of possible causes Corrective & Perfective
High Causes related to each SP elements are distinguished Promote reusing
Low

Deviation
moment

Execution or deployment
Correction
moment

Specification
Medium Execution and deployment Deployment
High Execution, deployment and specification Execution
Low

Detection
process

Ad-hoc
Correction
process

Transformation or restructuring
Medium Using external tools Inheritance or parametrizing
High Integrated within the process specification Design pattern
Low

Automation
level

Manual
Automation
level

Manual
Medium Semi-automatic Semi-automatic
High Automatic Automatic
Low

Execution
environment

Mono machine
Execution
environment

Mono machine
Medium Distributed Distributed
High Mobile Mobile

Discussion. As we can notice from this classifica-
tion, in spite of the great number of contributions that
have addressed the problem of deviations on software
processes, just few of them have been interested at
proposing correction mechanisms. The others have
been much concerned with studying the problem it-
self than finding out solutions for it. The results are
several classifications and prototypes that aim at de-
tecting those deviations.

Through this section, we have highlighted those
approaches that aim at proposing some policies to
correct deviations. Approaches like (Zazworka et al.,
2009) have been discarded from this classification be-
cause they do not propose an explicit solution except
pieces of advice authors give to help SP managers
finding out some resolutions that are supposed to fix
the occurred deviations once applied.

Almost all approaches that have proposed correc-
tion mechanisms have been validated on simple pro-
totypes within mono machine environments. Some

authors have focused on studying the problem of de-
viations within distributed environments as done in
(Bendraou et al., 2012) but, as we have already men-
tioned, they have been much concerned with the prob-
lem than the solution.

5 RESULTS AND DISCUSSION

Within the previous sections, we have highlighted
the most relevant approaches that have dealt with the
problem of deviations on software processes. These
approaches have been classified according to two dif-
ferent axes: (1) how they detect deviations and; (2)
how they correct them.

As we may decide to choose one method or one
tool among the existing ones, and since this choice
is strongly based on the constraints (criteria) that
are most relevant to us, offering an explicit covering

A�Review�of�Detecting�and�Correcting�Deviations�on�Software�Processes

21



Figure 3: Coverings Graphs for detecting and correcting deviations on SP.

graph for both detection and correction aspects is very
important to make the choice much effective.

Through this section, and based on the results ob-
tained within sections 3 and 4, we draw a cover-
ing graph for each classification framework. For a
sake of simplicity, each criterion, in both graphs, will
have three possible values: low, medium and high 1.
For instance, for the Deviation Object criterion, if a
given approach is able to detect the occurred devi-
ations within just one SP element, the value low is
assigned to this criterion. If two SP elements are con-
sidered within the detection mechanisms, this crite-
rion would have medium as value. Otherwise, if all
SP elements are covered, the value high is assigned
to this criterion. On the other hand, when correct-
ing a deviation, we are interested at involving as less
components as possible into the correction procedure.
This is because the more components are involved,
the more expensive the correction is to apply, espe-
cially if there are several instances of that SP model.
Thus, if a given approach proposes to change/modify
just one SP element to correct the occurred deviation,
the criterion Correction Object gets High as value, if
two elements are involved, Medium is assigned to this
criterion. Otherwise, Low is assigned.

We apply the same reasoning for the remaining
items of both sets of criteria. Thus, we have no-
ticed that in spite of the great number of classifica-
tions proposed in the literature (Deviation type), most
of them could be categorized into either behavioral,
related to SP agents, or functional, related to func-
tionalities provided by the SP environment. Accord-
ing to what has been achieved within previous works,

1This is a choice of our own, authors may prefer to assign
other values for both sets of criteria.

we assume that detecting behavioral deviations is eas-
ier than functional ones because they are related to
SP agents behaviors that we are more familiar with.
Being able to detect functional deviations comes at a
second degree; such deviations could be the reason
of a misunderstanding of customers needs or because
of a bad execution of activities. In such cases, the
PSEE must be endowed of mechanisms that facilitate
the analysis of the enacting software process in order
to warn SP agents and help them to fix these incon-
sistencies. Unfortunately, most of existing environ-
ments still require human intervention to detect such
deviations. Thus, if we are able to treat these two
classes of deviations, we would be able, we think, to
offer a suitable environment that could be adopted by
industrials. Once detected, the triggered deviations
must be corrected. Changing the model (static cor-
rection) is one alternative that could solve the prob-
lem but we argue that this solution is not much ef-
ficient since some deviations are casual and do not
require to change the entire SP model. Thus, being
able to change the enacting SP instance (dynamic cor-
rection) without affecting the other instances is very
challengeable. Nevertheless, as they have a very long
lifecycle, some processes need to change their spec-
ification to fit the new requirements of their environ-
ment. Therefore, we consider approaches that offer
the possibility of dynamic corrections, and static ones
when necessary, as the best approaches.

Deviations occur because of multiple reasons (De-
viation causes); treating one kind of deviations does
not seem to be very useful, especially if we consider
the huge size of some software processes. In addi-
tion, software processes tend to evolve during time;
consequently, limit the solution to a predefined list of

ICSOFT-EA�2015�-�10th�International�Conference�on�Software�Engineering�and�Applications

22



possible deviations does not give any guarantee. The
most adequate solution is to be able to define cor-
rection patterns for each SP element independently
from the other ones. The reason of finding out mech-
anisms to support these deviations (Correction rea-
son) is to correct the mistakes occurred from not re-
specting SP models constraints (corrective). Ignor-
ing such mistakes could induce to software project
failure. Some SP agents may prefer to ignore these
inconsistencies within a given SP instance and apply
some changes/modifications in order to prevent them
in a next time (Perfective). An ideal solution when
supporting deviations is to offer mechanisms to cor-
rect them and avoid their further occurrence within
not just the software process within which they have
been detected but also within a wide spectrum of other
kinds of software processes. Thus, we assume that
proposing a correction pattern for each SP element is
the best solution to promote SP reusing.

Each software process passes by three important
phases: Specification, deployment and execution. De-
tecting deviations during enactment (Detection mo-
ment) means that we were unable to perform an ear-
lier analysis that detects the existing anomalies (dur-
ing specification or while deployment). We believe
that the sooner these deviations are detected, the
closer to success the software project is. On the other
side, correcting deviations should not affect the SP
model (SP specification) in best cases. In fact, we are
interested at reducing the correction level as much as
possible while integrating the different correction pat-
terns into the SP specification.

Deviations could be detected (Detection process)
due to an analysis performed by SP agents (ad-hoc)
or thanks to special analysis tools (external tools). In
best cases, the analysis mechanisms are offered within
the SP specification and implemented while instanti-
ating the SP model. On another side, when correct-
ing deviations (Correction process), we can choose to
change the SP model even by restructuring the exist-
ing elements or by transforming them. In this case,
we are required to change all the enacting instances
so they could fit the new SP model. Another solution
could be to keep the same SP model while changing
some parameters or adding some sub-elements in or-
der to facilitate difficult tasks. The best solution re-
mains to integrate correction patterns that could be
changed when necessary without affecting the related
SP element.

The signification of all the adopted values for each
criterion is summarized in Table 4.

To not have cluttered graphs, we will project
three approaches on each covering graph: detection
and correction. The results are shown on Figure 3.

We have intentionally projected the same three ap-
proaches on both graphs. Thus, the reader may have
a clear insight on how the same approach proceeds to
treat both detection and correction aspects.

As we may decide to choose one method or one
tool among the existing ones, and since this choice
is strongly based on the constraints (criteria) that
are most relevant to us, offering an explicit covering
graph for both detection and correction aspects is very
important to make the choice much effective.

6 CONCLUSIONS

Through this paper, we have highlighted the problem
of deviations on Software Processes. The most rele-
vant approaches that have dealt with this issue have
been considered within this study.

The paper starts by introducing the deviation con-
cept. A deviation is an unexpected situation that could
arise within a software development process. The
appearance of such situation, if not corrected, often
leads to the violation of SP model constraints and to
the software development failure, consequently. The
paper gives also an insight about the relevant reasons
that have incited to devote such interest to this re-
search area.

As it is almost impossible to cover, in one study,
all what has been achieved within a given research
field. We have covered, through this paper, the most
important approaches that have explicitly considered
the deviation issue as a separate problem. Moreover,
approaches that have been concerned with this issue
within business processes have been discarded.

We have classified the selected approaches using
two comparative frameworks. These frameworks deal
with: (1) detecting deviations and (2) correcting them.
Our choice to make such a distinction while develop-
ing this study is justified by the following reasons:

� Holding thi problem on software processes falls
into two important directions: finding ways to de-
tect the occurred deviations and offering mecha-
nisms to correct them;

� Separating the classification from these two per-
spectives makes the analysis much effective. The
reader would be easily awards of what has been
achieved and what has been left within both di-
rections.

For both classification frameworks, we have con-
ceived a set of criteria. Then, we have detailed every
set by defining each item belonging to it. After that,
we have projected the selected approaches on each

A�Review�of�Detecting�and�Correcting�Deviations�on�Software�Processes

23



set. To facilitate the comprehension of each classi-
fication, we have listed the obtained results within ta-
bles.

As a result, we can notice that besides the great
number of approaches proposed to deal with devia-
tions within software processes, just few works have
explicitly offered mechanisms to correct them. More-
over, we have realized that most of approaches are
tool-dependent. For instance, in (Bendraou et al.,
2012), authors say Having different modeling lan-
guages would not change anything to the proposed
solution because of the use of Praxis. On the other
side, within the Software Engineering field, we are
not interested at having the same execution tool. The
goal has always been to offer generic solutions and let
the developers free about the choice of the execution
features.

To consider this last issue, we are currently work-
ing on proposing a platform-independent solution to
detect deviations and correcting them at a second
time. Our main objective is to offer a conceptual-
level approach that facilitate the detection of devia-
tions within a large spectrum of software processes.
Moreover, the challenge for us is to offer a reusable
approach since it is one of the main objectives within
the Software Engineering field.

REFERENCES

(2005). Software Process Engineering Metamodel (SPEM)
1.1. Object Management Group.

(2008). Software Process Engineering Metamodel (SPEM)
2.0. Object Management Group.

Almeida da Silva, M., Bendraou, R., Robin, J., and Blanc,
X. (2011). Flexible deviation handling during soft-
ware process enactment. In Enterprise Distributed
Object Computing Conference Workshops (EDOCW),
2011 15th IEEE International, pages 34–41.

Almeida Da Silva, M. A., Blanc, X., Bendraou, R., and Ger-
vais, M. P. (2013). Experiments on the impact of de-
viations to process execution. Ingénierie des systèmes
d’information, 18(3):95–119.

Bandinelli, S., Di Nitto, E., and Fuggetta, A. (1994). Poli-
cies and mechanisms to support process evolution
in psees. In Software Process, 1994. ’Applying the
Software Process’, Proceedings., Third International
Conference on the, pages 9–20.

Bandinelli, S., Di Nitto, E., and Fuggetta, A. (1996).
Supporting cooperation in the spade-1 environ-
ment. Software Engineering, IEEE Transactions on,
22(12):841–865.

Bandinelli, S., Fuggetta, A., and Ghezzi, C. (1993). Soft-
ware process model evolution in the spade environ-
ment. Software Engineering, IEEE Transactions on,
19(12):1128–1144.

Bendraou, R., Almeida da Silva, M. A., Gervais, M. P., and
Blanc, X. (2012). Support for deviation detections
in the context of multi-viewpoint-based development
processes. In CAiSE Forum, pages 23–31.

Bolcer, G. A. and Taylor, R. N. (1996). Endeavors: A
process system integration infrastructure. In Soft-
ware Process, 1996. Proceedings., Fourth Interna-
tional Conference on the, pages 76–89. IEEE.

Cugola, G. (1998). Tolerating deviations in process sup-
port systems via flexible enactment of process mod-
els. Software Engineering, IEEE Transactions on,
24(11):982–1001.

Cugola, G., Di Nitto, E., Fuggetta, A., and Ghezzi, C.
(1996). A framework for formalizing inconsisten-
cies and deviations in human-centered systems. ACM
Trans. Softw. Eng. Methodol., 5(3):191–230.

Cugola, G. and Ghezzi, C. (1999). Design and implemen-
tation of prosyt: a distributed process support system.
In Enabling Technologies: Infrastructure for Collabo-
rative Enterprises, 1999. (WET ICE ’99) Proceedings.
IEEE 8th International Workshops on, pages 32–39.

Cugola, G., Ghezzi, C., and Pinto, L. (2011). Process pro-
gramming in the service age: Old problems and new
challenges. In Tarr, P. L. and Wolf, A. L., editors,
Engineering of Software, pages 163–177. Springer
Berlin Heidelberg.

Cugola, G., Nitto, E., Ghezzi, C., and Mantione, M. (1995).
How to deal with deviations during process model en-
actment. In Software Engineering, 1995. ICSE 1995.
17th International Conference on, pages 265–265.

Dami, S., Estubler, J., and Amiour, M. (1998). Apel: A
graphical yet executable formalism for process mod-
eling. In Nitto, E. and Fuggetta, A., editors, Process
Technology, pages 61–96. Springer US.

Egyed, A., Letier, E., and Finkelstein, A. (2008). Gener-
ating and evaluating choices for fixing inconsistencies
in uml design models. In Automated Software Engi-
neering, 2008. ASE 2008. 23rd IEEE/ACM Interna-
tional Conference on, pages 99–108.

Fuggetta, A. (2000). Software process: a roadmap. In Pro-
ceedings of the Conference on the Future of Software
Engineering, pages 25–34. ACM.

Garcı́a-Borgoñon, L., Barcelona, M., Garcı́a-Garcı́a, J.,
Alba, M., and Escalona, M. (2014). Software process
modeling languages: A systematic literature review.
Information and Software Technology, 56(2):103–
116.

Ge, X., Paige, R. F., and McDermid, J. A. (2011). Failures
of a business process in enterprise systems. In EN-
TERprise Information Systems, volume 219 of Com-
munications in Computer and Information Science,
pages 139–146. Springer Berlin Heidelberg.

Hull, R., Su, J., and Vaculin, R. (2013). Data manage-
ment perspectives on business process management:
tutorial overview. In Proceedings of the 2013 interna-
tional conference on Management of data, pages 943–
948. ACM.

Kabbaj, M., Lbath, R., and Coulette, B. (2008). A deviation
management system for handling software process en-
actment evolution. In Wang, Q., Pfahl, D., and Raffo,

ICSOFT-EA�2015�-�10th�International�Conference�on�Software�Engineering�and�Applications

24



D. M., editors, Lecture Notes in Computer Science,
volume 5007, pages 186–197. Springer.

Matinnejad, R. and Ramsin, R. (2012). An analytical re-
view of process-centered software engineering envi-
ronments. In Engineering of Computer Based Sys-
tems (ECBS), 2012 IEEE 19th International Confer-
ence and Workshops on, pages 64–73.

Rangiha, M. and Karakostas, B. (2014). Process recommen-
dation and role assignment in social business process
management. In Science and Information Conference
(SAI), 2014, pages 810–818.

Ruiz-Rube, I., Dodero, J. M., Palomo-Duarte, M., Ruiz, M.,
and Gawn, D. (2012). Uses and applications of spem
process models. a systematic mapping study. Jour-
nal of Software Maintenance and Evolution: Research
and Practice, 1(32):999–1025.

Thompson, S., Torabi, T., and Joshi, P. (2007). A frame-
work to detect deviations during process enactment. In
Computer and Information Science, 2007. ICIS 2007.
6th IEEE/ACIS International Conference on, pages
1066–1073.

Yang, Q., Li, M., Wang, Q., Yang, G., Zhai, J., Li, J., Hou,
L., and Yang, Y. (2007). An algebraic approach for
managing inconsistencies in software processes. In
Software Process Dynamics and Agility, pages 121–
133.

Yong, Y. and Zhou, B. (2010). Software process devia-
tion threshold analysis by system dynamics. In Infor-
mation Management and Engineering (ICIME), 2010
The 2nd IEEE International Conference on, pages
121–125.

Zazworka, N., Basili, V., and Shull, F. (2009). Tool sup-
ported detection and judgment of nonconformance in
process execution. In Empirical Software Engineer-
ing and Measurement, 2009. ESEM 2009. 3rd Inter-
national Symposium on, pages 312–323.

Zhang, H., Kitchenham, B., and Jeffery, R. (2012). Toward
trustworthy software process models: an exploratory
study on transformable process modeling. Journal of
Software: Evolution and Process, 24(7):741–763.

A�Review�of�Detecting�and�Correcting�Deviations�on�Software�Processes

25


