
Towards Knowledge-intensive Software Engineering

Samuel R. Cauvin, Derek Sleeman and Wamberto W. Vasconcelos
Department of Computing Science, University of Aberdeen, King’s College, Aberdeen, AB24 3UE, U.K.

Keywords: Knowledge-based Software Engineering.

Abstract: This research explores relations between software artefacts and explicitly represented (domain) knowledge.
More specifically, we investigate ways in which domain knowledge (represented as ontologies) can support
software engineering activities and, conversely, how software artefacts (e.g., programs, methods, and UML
diagrams) can support the creation of ontologies. In our approach, class names, and class properties are the
principal entities which are extracted from both sources. We implemented a tool, called Facilitator, to support
programmers and knowledge engineers when they develop ontologies or programs. This tool provides a list
of connections between the ontology and Java project, and provides reasons why these connections have been
identified. These connections are created by matching names, types, and superclass-subclass relationships.
Facilitator provides a range of semantic web enabled functionalities.

1 INTRODUCTION

This research seeks to provide computational links
between software artefacts and explicitly represented
(domain) knowledge. More specifically, this project
investigates ways in which domain knowledge (repre-
sented as OWL ontologies) can support software engi-
neering activities and, conversely, how software arte-
facts (programs, methods, and UML diagrams) can
support knowledge engineering activities.

Currently, there is a substantial gap between (do-
main) knowledge and software engineering. This
gap creates extra burdens on programmers who must
re-engineer domain knowledge (introducing possible
misconceptions) when they could exploit existing do-
main knowledge (e.g. ontologies). Consider a situa-
tion where a programmer is developing a program for
calculating council tax; it is likely that the program-
mer would look through a list of source materials to
find out how council tax is calculated. The program-
mer would then encode this calculation as a program,
possibly creating inaccuracies due to misunderstand-
ing the domain knowledge. Whereas for many com-
mon domains, an ontology exists which formally rep-
resents this knowledge, from which the programmer
could extract concepts and relations that have already
been represented in a machine-processable format by
an expert. This is the important issue that this re-
search addresses, namely providing methods to relate
knowledge represented in an ontology to software en-
gineering activities. We have also addressed the re-

verse process, i.e. matching the knowledge available
in software artefacts to ontologies.

We implemented various functionalities in a tool
called Facilitator, which takes an ontology and a Java
project and infers links between them. This tool ex-
haustively analyses the knowledge contained in an on-
tology and in a Java project and infers potential con-
nections among concepts, as well as providing the
reasons why these connections have been formed. Fa-
cilitator can also create a “skeleton” project from a
source project so that a Java program can be created
from an ontology, and vice versa.

Section 2 provides an overview of research in this
field. Section 3 describes the goals, requirements and
architecture of Facilitator, and discusses technologies
used and technical details of the system. Section 4
provides a set of illustrative scenarios to demonstrate
matches that Facilitator can detect. Section 5 presents
the performance of Facilitator on a variety of tasks.
Section 6 discusses some of the problems that were
encountered, provides an overall conclusion of this
research, and outlines future work.

2 BACKGROUND & RELATED
WORK

Knowledge-based software engineering (Havlice
et al., 2009; Kravets et al., 2014) aims to support ac-
tivities and stages of the software life-cycle, such as

285Cauvin S., Sleeman D. and Vasconcelos W..
Towards Knowledge-intensive Software Engineering.
DOI: 10.5220/0005504502850292
In Proceedings of the 10th International Conference on Software Engineering and Applications (ICSOFT-EA-2015), pages 285-292
ISBN: 978-989-758-114-4
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)



development, testing, integration, and so on. The re-
search reported here fits within this broad remit, and
we show how explicitly represented domain knowl-
edge can be used to support software development.

There have been many attempts to integrate on-
tologies into the software development process, with
most of them focussing on the design phase. Some
deal with the use of meta-modelling (Pan et al., 2012).
Some deal with translating ontologies into UML mod-
els to be used in the design phase of software develop-
ment (Parreiras et al., 2007). Equally, work has been
done to convert UML models into OWL ontologies
(Gasevic et al., 2004). However, little work has been
done to integrate ontologies into the implementation
phase of Software Development, which is the activity
which Facilitator supports.

Happel and Seedorf (2006) conducted a high level
review of the potential benefits of using domain on-
tologies in different stages of software development.
They suggest that in the implementation phase, on-
tologies could be used in various ways including: as a
domain object model, in coding support, in code doc-
umentation, and to integrate with software modelling
languages. They also note that ontologies could be
used in the analysis and design, deployment and run-
time, and maintenance stages in a variety of ways.
They do not discuss plans to implement these sugges-
tions.

One major example of a large scale project at-
tempting to integrate ontologies and software is
the Marrying Ontologies and Software Technologies
(MOST) project1. The project produced several pa-
pers describing techniques for integrating Ontologies
into the software design process. One paper presents
a detailed method for mapping class relationships to
description logics (Parreiras et al., 2008). Another
discusses the potential for combining UML and On-
tologies using a framework called TwoUse (Parreiras
et al., 2007). A third presents an approach to inte-
grating ontology based meta-models in software mod-
elling, again using the TwoUse framework (Staab
et al., 2010).

A tool called RDFReactor2 provides methods for
generating Java classes from an RDF ontology, which
is similar to the skeleton creation functionality of Fa-
cilitator (Quasthoff and Meinel, 2008).

An outline for a tool that maps software appli-
cations to domain ontologies is presented in (Hruby,
2005). The mapping is achieved by creating a model
of the software addressing two orthogonal dimen-
sions: Categories from the domain ontology, and
functional concerns from user requirements. Their

1http://west.uni-koblenz.de/Projects/MOST
2http://semanticweb.org/wiki/RDFReactor

approach begins by determining the domain, specif-
ically the scope of the application within a given do-
main. The tool then locates an ontology to cover this
domain, and also to contain the “minimal set of con-
cepts that completely covers the domain”. The system
then takes into account specific user requirements,
specifically those that could not be captured within
the ontology. The last step is to construct the appli-
cation model using the information gathered above.
This final step essentially encompasses the matching
task performed by Facilitator.

Aspects of the research presented here have been
addressed previously in (Cauvin, 2014), but have sub-
sequently been substantially expanded and revised.
Specifically, Facilitator can now display matches not
just as a list, but the information can be overlaid on
the Java source, displayed as a textual critique, or dis-
played as a statistical overview. Facilitator has also
been extended to detect more types of relationships
and properties in the sources.

3 SYSTEM DESCRIPTION

Here we discuss the goals, methodology, require-
ments, and architecture of the system before dis-
cussing the technologies and methods used by Facil-
itator. Source code from this research is available at
https://github.com/Glenugie/Facilitator/.

3.1 Goals

Facilitator’s overall hypothesis is that “It is possible to
connect a software artefact with an ontology”, which
can be decomposed into the following goals:

• To explore ways in which explicitly represented
knowledge (e.g., domain ontologies) can support
software engineering activities.

• To investigate how to computationally relate do-
main knowledge with mainstream software tech-
nology.

• To connect software artefacts with existing do-
main knowledge.

• To provide a means of relating an ontology to ex-
isting software.

3.2 Methodology

The project methodology comprised the following ac-
tivities:

1. Literature review to discover existing work in this
field.

ICSOFT-EA�2015�-�10th�International�Conference�on�Software�Engineering�and�Applications

286



Figure 1: Screenshot of Parsed Components (Showing Java andOntology Components).

Figure 2: Screenshot of Matching Results.

2. Study of stereotypical activities carried out by de-
velopers to construct a list of functional require-
ments (Section 3.3).

3. Propose a reference architecture to cater for func-
tional requirements (presented in Section 3.4).

4. Incremental development and integration of func-
tionalities.

5. Testing and evaluation of the tool to cater for dif-
ferent scenarios that fulfil the defined functional
requirements.

3.3 Functional Requirements

A stereotypical user of the tool would need the follow-
ing functional requirements (finer-grained require-
ments have been omitted from this list due to space
constraints, they can be found in full in (Cauvin,
2014)):

1. To formally connect an ontology with a software
artefact

2. To reason with/about an ontology and the soft-
ware artefact with a view to understand more
about the software and the ontology

Requirement-1 is needed to achieve Requirement-
2. Requirement-2 is important to achieve various
stages of software development – specifically critique
of current design choices as well as revising explicit
domain knowledge.

3.4 Architecture

The diagram in Figure 3 describes the components of
the system and how they interact. In this diagram,
processes are represented by a square, data structures
by a barrel, and the user by a stickman. Arrows rep-
resent interactions between components, and each in-
teraction is numbered.

Figure 3: System Architecture.

The components are:

• UI (GUI) – The interface through which the user
interacts with the system

• Control – The main logic behind the system. Re-
sponsible for loading files, storing information
and querying the ontology/software artefact. This
component also utilises the stemmer.

• Matcher – Determines matches between compo-
nents of the ontology and the software artefact

• Reasoner – The ontology reasoner is used to ex-
tract more detailed information from the ontology

Towards�Knowledge-intensive�Software�Engineering

287



• Ontology – The ontology which the system is
analysing

• Software Artefact – The Java project which the
system is analysing

Each of the components helps to fulfil at least one
of the requirements. Requirement 1 is fulfilled by
the Control, Matcher, Ontology, and Software Arte-
fact components. Requirement 2 is fulfilled by the
Control, Reasoner, Ontology, and Software Artefact
components.

A typical session is outlined in Table 1 which also
summarises the system interactions.

Table 1: Architecture Interactions.
Interaction Explanation

1 User interaction with UI
2 Commands from the User
3 Querying the Ontology
4 Results of Query
5 Gathering information from the Software Arte-

fact
6 Receiving information from the Software Arte-

fact
7 Querying the Reasoner
8 Results from Reasoner
9 Updating the UI

3.5 Technologies

We now discuss technologies used in this project.

3.5.1 Java Parser

It is important for the system to parse Java files for
content. When searching for an effective way to do
this, it quickly became apparent that there were a
number of choices in the form of pre-existing APIs.
Habelitz JSourceObjectizer3 is the API that was even-
tually chosen, as it works with Java 1.7 and can parse
source files (without compiling first). JSourceObjec-
tizer produces an Abstract Syntax Tree (AST) which
the system can then search for specific components.
This package parses Java files accurately and effi-
ciently. The parsing process uses the JSourceObjec-
tizer library to traverse the Java file. While traversing
a file the system detects certain Java declarations –
Classes, Types, Variables and Methods.

3.5.2 Ontology Access

We chose to use OWL as the format for our ontolo-
gies, due primarily to its wide spread availability, so
we needed a means to parse OWL ontologies. The
obvious choice for this parser was the OWL API4, as
it fully supports reading and creating OWL ontologies
and has extensive documentation.

3http://www.habelitz.com/
4http://owlapi.sourceforge.net/

3.5.3 Stemming

The matching process includes the ability to loosely
match names as part of the stemming process. Stem-
ming provides a means to detect names that share sim-
ilar roots, but are not an exact match. As stemming is
a fairly common operation, a stemmer tool was sought
to avoid reimplementation. The Snowball Stemmer5,
specifically the Modified Snowball Stemmer6 which
adds compatibly for Java 1.6 and up, was chosen as
it returns a single stem. This allows matching to re-
main a one-click process. The stemming operation
simply takes a word and produces a stemmed version
of that word, in theory. In practice the word produced
is not always real, due to inaccuracies in the algorithm
– however it does provide a stemmed match in many
circumstances.

3.6 Taxonomy of Types

Facilitator, rather than trying to match field types di-
rectly, makes use of a taxonomy of types which at-
tempts to find the match between two types as low
in a tree-like structure as possible. This type hierar-
chy is shown in Figure 4. The top of the tree has the
type “Generic” such that anything can match it. When
reporting a field match based on type, the system dis-
tinguishes between direct matches and matches which
occur further up the taxonomy of types, which are
then reported to the user.

Figure 4: Taxonomy of Types.

This taxonomy of types was created by mapping
basic OWL data types to the equivalent Java classes.
These were then re-ordered slightly to produce the hi-
erarchy shown in Figure 4.

3.7 Matching Process

The matcher compares each Java class/field to each
ontology class/field, and if it detects a potential match
logs this together with a reason. This reason ensures

5http://snowball.tartarus.org/
6http://trimc-nlp.blogspot.co.uk/2013/08/

snowball-stemmer-for-java.html

ICSOFT-EA�2015�-�10th�International�Conference�on�Software�Engineering�and�Applications

288



transparency to the user, allowing them to appreciate
why a match has been reported and thus letting them
decide whether to accept it. If, for example, the user
has written a program with a class Car and it is being
compared to an ontology which describes all sorts of
vehicles, using classes Vehicle and its subclass Car.
In this situation the matcher could potentially match
the two Car classes, but highlight that the superclass
Vehicle is missing in the Java project. Another role
for displaying reasons is to give the user an approxi-
mate idea of the strength of the match (a match with
five reasons is much stronger than a match with just
one reason).

The algorithm effectively has three stages:

1. Detecting class matches between class and field
names

2. Detecting class matches using superclass relation-
ships

3. Detecting field7 matches

The last stage, detecting field matches, can be fur-
ther divided into three sub-stages:

1. Detecting field matches by name and type

2. Detecting field matches using inferred fields

3. Detecting field matches by type but not name, ex-
clusively using previously unmatched fields

These sub-stages are repeated for every class
match, as this is effectively looping for each “set” of
fields which should match. Two key concepts are in-
troduced by these sub-stages: Being able to detect
unmatched fields, and inferred fields. The latter is
a field which has been “inferred” from a superclass
or subclass, meaning that it is not necessarily accu-
rate. Matches using these fields are labelled as such
to alert the user to the potential errors that can occur.
Only Java classes have inferred fields, if the ontology
were also to have inferred fields the system would be
overwhelmed with (incorrect) matches. The choice
was made to associate the inferred fields with Java, as
we assumed the ontology is the more accurate source.
While this is not always true, in most cases it would
be reasonable to assume that the ontology has under-
gone more verification than the Java project/program.

Detecting unmatched fields is handled by a dis-
tinct process which simply goes through the list of
all fields and compares them against the list of field
matches. It then returns the list of fields which have
not appeared in the field matches. Using this informa-
tion is important, as some specific matches are treated
as a final attempt at generating matches. An exam-
ple of this is attempting to detect matches by type

7Fields have both a name and a type.

when names do not match. Due to the limited num-
ber of types, if this was performed on all fields there
would be a huge number of incorrect matches gen-
erated. Whereas if this process is only run on un-
matched fields, there is a lower chance of generating
a large number of incorrect matches.

4 ILLUSTRATIVE SCENARIOS

Illustrative scenarios were explored to enable us
to demonstrate Facilitator’s (reasoning) capabilities.
These provide situations (with worked examples) of
how reasoning can be used to perform more sophis-
ticated matching. These scenarios are based on two
different example domains: Cars and Cups. These
two domains are detailed below, along with associated
scenarios. The Cars example is from (Cauvin, 2014)
and the Cups example is from (Carbonara and Slee-
man, 1999). Toy examples are presented here so as
to enable a detailed discussion, but we explore larger
and more sophisticated examples in Section 5.

4.1 Cars Example

In the Java program we have the following classes:

• Car with fields: String colour, int wheels, and En-
gine engine

• Engine with fields: int horsepower, and boolean
turbo

In the corresponding ontology we have the following
classes:

• Car with fields: String colour, int num-
berOfWheels, int horsepower, boolean turbo, int
doors

4.2 Cups Example

In the Java program we have the following classes:

• Cup with fields: String colour, boolean hasBot-
tom, boolean hasHandle, boolean hasConcavity,
String material, int volume

• Mug (Subclass of Cup) with fields: String pattern

• Tumbler (Subclass of Cup) with fields: String pat-
tern, boolean opaque

• Plate with fields: String colour, boolean isFlat,
String material

In the corresponding ontology we have the following
classes:

• Crockery with fields: boolean isCrockery

Towards�Knowledge-intensive�Software�Engineering

289



• Cup with fields: String colour, boolean hasBot-
tom, boolean hasHandle, boolean hasConcavity,
String material, int volume

• CoffeeMug (Subclass of Cup) with fields:
boolean hasDesign

• Glass (Subclass of Cup) with fields: String pat-
tern, boolean opaque

• Plate (Subclass of Crockery) with fields: String
colour, boolean isFlat, String material

4.3 Functionalities

The following is a list of scenarios which relate to the
examples above.

• Loosely match fields with different names if a)
they have the same type and have not already
been matched, and b) if the Java and ontology
class names match. In the Cars example, the
Java field wheels would be loosely matched to
numberO fWheels, horsepower anddoors in the
ontology as the latter are unmatched and have the
same type aswheels. This example shows that
Java fields with no match on name can be matched
by type.

• In a Java class if a field is a non-primitive type
(most likely a user-defined class), and the fields
do not match the ontology completely then the
system could inspect the user defined class and
check its fields. In the Cars example this would
allow the algorithm to deduce that classCar ef-
fectively has the fields: Stringcolour, int wheels,
int horsepower, and booleanturbo. This com-
bined list of fields matches the ontology better as
the process increases the number of field matches
by two. This example states that Java fields with a
non-primitive type can havetheir fields combined
with those of the top-level class.

• If two superclasses match, their subclasses are
likely to match. In the Cups example the classes
(Java)Mug and (ontology)Co f f eeMug do not
match on name or type, however they both have
superclassesCup which do match. The system
would suggest this as a match, and in this situa-
tion it would be correct. This example states that
if two classes share a superclass, then they poten-
tially match.

• Missing inheritance – Super and subclass exist in
Java, only the subclass exists in Ontology. The
system should point out the (potentially) missing
superclass to the user. Conversely, the same is re-
ported when the ontology has a superclass that the
Java does not have. In the Cups example the class

Plate is present in both sources and matches by
name and fields, however the Java program does
not have the superclassCrockery that exists in the
ontology. This is flagged as a potential Inheri-
tance Problem. This example indicates that if two
classes match but only one of them has a super-
class, then the other is assumed to be missing.

• If a class is “misnamed” in Java, the system could
look for any class in the ontology with similar
fields and infer a possible match if more than a
predetermined number of the fields match. In the
Cups example the classTumbler in Java and the
classGlass in the Ontology have the same fields,
and would be marked as a possible match. This
example indicates that if two classes have similar
fields, then they might match.

5 EVALUATION

To determine if Facilitator can process a wide range of
Java projects/ontologies a set of tests were conducted.
There were three Java projects, and three ontologies
involved in the test. For each combination, the time
to parse each component was recorded. The matching
times were not recorded, as they run in less than a
second when there are no matches. A study of the
matcher performance appears in Section 5.1, where
two sets of related Java projects and ontologies are
compared.

The three Java projects were:

• Facilitator – The code for this project (19 classes,
3643 lines – parsed in 0.001 seconds).

• TDWB – Code from the TDWB system (Sleeman
et al., 2014), used for discovering patterns in tem-
poral data (62 classes, 20007 lines – parsed in 2
seconds).

• Xerces – Apache Xerces project8 which is an
XML parser written in Java (707 classes, 216744
lines – parsed in 20 seconds).

The three ontologies were:

• Eng UoL quONTOm – quONTOm9 project based
in the University of Lodz, Poland containing de-
tails about quantum physics (58 concepts – parsed
in 0.001 seconds).

• Ling GOLD 2010 – GOLD (General Ontology for
Linguistic Description)10 is an ontology for de-
scriptive linguistics (last updated in 2010). Source

8http://xerces.apache.org/
9http://merlin.phys.uni.lodz.pl/quONTOm/

10http://datahub.io/dataset/gold

ICSOFT-EA�2015�-�10th�International�Conference�on�Software�Engineering�and�Applications

290



appears to be the E-MELD project (503 concepts
– parsed in 0.001 seconds).

• Chem RSoC CMO – Chemical Methods Ontol-
ogy from the Royal Society of Chemistry11 (2358
concepts – parsed in 0.001 seconds).

5.1 Matcher Performance

To test the performance of the matcher algorithm, it
is important to use two related sources so that at least
some matches exist. To this end, there are two sets of
Java projects and ontologies that are comparable:

• Cups Advanced – This consists of an ontology (6
concepts) which was extended from a cup theory
(Winston et al., 1983). The corresponding Java
source (4 classes, 41 lines) was constructed to
match the ontology, with a few differences intro-
duced. Matching was run in 0.001 seconds, with
1 out of 6 classes being reported as matching ex-
actly.

• Xerces – Discussed above, and based on the
Apache Xerces project which is an XML parser
written in Java (707 classes, 216744 lines). Skele-
ton creation was used to make an ontology (743
concepts) which matched the Java source. Match-
ing was run in 26 seconds, with 515 out of 743
classes matching exactly.

5.2 User Experiments

We are currently carrying out user experiments to
ascertain if/how Facilitator can support the various
stages of software and knowledge engineering. Our
initial studies use as subjects computing science stu-
dents in their final years and present them with a frag-
ment of a Java program (printed on paper) and an on-
tology (represented as a UML diagram and printed
on paper) and ask them to perform a series of tasks
with and without the aid of Facilitator. We designed a
questionnaire to get the subject’s opinion on whether
they agree with the suggestions made by Facilitator.
In this initial study, we present participants with the
results from Facilitator and only have them use Fa-
cilitator as an informal task at the end of the study.
In a future study we intend to have participants use
Facilitator directly to help them locate and correct a
complex bug within a piece of software.

The Java/Ontology source used in the first exper-
iment is the Cups example from Section 4.2. The
questionnaire that participants were asked to fill out
consisted of a list of all the matches produced by Fa-
cilitator, and it provides space to explain whether they

11http://www.rsc.org/ontologies/CMO/

agree or disagree with each match. We have not yet
completed enough of this study to produce meaning-
ful quantitative data, but informal feedback provided
by the participants on the Facilitator software has so
far been positive, and the features they have requested
were already planned to be implemented in the near
future. For example, one of them asked if there was
a way to view the ontology as a graph, which is dis-
cussed in Section 6.

5.3 Comparison with Existing Work

We compare Facilitator with related work surveyed in
Section 2). RDFReactor12 performs a subset of Fa-
cilitator’s features – it provides a similar functional-
ity to skeleton creation, but with no matching facility.
TwoUse (Parreiras et al., 2007) discusses combining
UML and Ontologies, which would suggest it applies
to the design phase – whereas Facilitator works with
source code in the implementation phase. The tool
proposed by Hruby (2005) is the most similar to Fa-
cilitator in that it also proposes mapping software to
an ontology. However, rather than mapping two spe-
cific sources together it deals with situations in which
you have an existing piece of software and then the
tool will determine the appropriate domain and locate
an ontology automatically. Reviewing the paper it is
not clear where they get these ontologies from (e.g.
searching the web or a centralised repository). Ad-
ditionally, the method seems to just consider simple
concept relationships without performing any reason-
ing.

6 DISCUSSION, CONCLUSIONS
& FUTURE WORK

Facilitator encountered a problem (caused by the dif-
ferences between ontology and Java structures) when
dealing with classes with the same name. Within a
Java project, there can be multiple classes with the
same name occurring in different packages. In con-
trast, an ontology can only contain one class with a
given name. This creates an inconsistency when con-
verting between the formats (through the skeleton cre-
ation features) as the multiple Java classes are auto-
matically merged into a single class conglomeration
(union operation) in the ontology. The same problem
occurs with fields. Facilitator has been designed in
such a way that this problem does not affect the reg-
ular running of the system, it is only when creating
a skeleton (specifically creating an Ontology skeleton

12http://semanticweb.org/wiki/RDFReactor

Towards�Knowledge-intensive�Software�Engineering

291



from Java) that the issue arises. After analysing pos-
sible solutions to the problem, it was decided to pre-
process Java classes to add numbers to disambiguate
class names.

This solution allowed the system to retain all
classes, without requiring user intervention. How-
ever, a further problem remains. If one of the “dupli-
cate” classes was a parent of another class, that child
class would now be pointing to an ambiguous class
name. This problem was overcome by using Java im-
port statements of a class to resolve the package of the
parent class. Since a package can only contain one
class of a given name, knowing the package allowed
unambiguous identification of the parent class.

We report on work aiming at bridging the gap be-
tween software and knowledge engineers. We devel-
oped a tool, Facilitator, as a proof-of-concept proto-
type to implement various functionalities to support
knowledge-based software engineering. We present
an overview of the techniques used by Facilitator to
make use of ontologies in the implementation phase
of the software development process. This has in-
cluded a review of other tools with a similar purpose,
a detailed overview of how Facilitator performs the
matching process, discussion of some of the impor-
tant functionalities of Facilitator, and a list of planned
features of Facilitator.

Connecting software design and domain knowl-
edge has the potential to increase the productivity of
programmers by automatically spotting misconcep-
tions at an earlier stage. Similarly, a mismatch be-
tween software and domain knowledge could result
in the latter being revised. There are also advantages
of explicitly modelling knowledge in software as well
articulated components.

We have reported some preliminary results from
evaluation studies earlier in Section 5.2; more exten-
sive evaluations are planned.

Two major additional system features are planned:
Harmonisation and Ontology Graphing. Har-
monisation is a proposed feature of Facilitator,
where the system can make specific, user-specified
changes/corrections to anexisting project based on
another source. Ontology Graphing will use a graph-
ing API to display ontology source as a UML-
like graph, with the further possibility of overlaying
matches onto this graph.

ACKNOWLEDGEMENTS

The first author would like to acknowledge the sup-
port of the University of Aberdeen, Development
Trust Intelligent System Fund.

We would also like to thank Dr. Honghan Wu
and Dr. Yuan Ren from the University of Aberdeen
for their insight into the current state of Knowledge-
Based Software Engineering.

REFERENCES

Carbonara, L. and Sleeman, D. (1999). Effective and effi-
cient knowledge base refinement.Machine Learning,
37(2):143–181.

Cauvin, S. R. (2014). Towards knowledge-intensive soft-
ware engineering. Honours B.Sc. Dissertation, Dept.
of Comp Sci, University of Aberdeen.

Gasevic, D., Djuric, D., Devedzic, V., and Damjanovi, V.
(2004). Converting uml to owl ontologies. InProcs of
the 13th International WWW Conference.

Happel, H.-J. and Seedorf, S. (2006). Applications of on-
tologies in software engineering. InProc. of Work-
shop on Sematic Web Enabled Software Engineering
(SWESE) on the ISWC.

Havlice, Z., Adamuščı́nová, I., Pločica, O., Révés,M., and
Železnı́k, O. (2009). Knowledge based software engi-
neering.Computer Science and Technology Research
Survey, elfa, Kosice, pages 1–10.

Hruby, P. (2005). Ontology-based domain-driven design.
In OOPSLA Workshop on Best Practices for Model-
Driven Software Development, San Diego, CA, USA.

Kravets, A., Shcherbakov, M., Kultsova, M., and Iijima,
T. (2014). Knowledge-Based Software Engineer-
ing: 11th Joint Conference, JCKBSE, volume 466.
Springer.

Pan, J. Z., Staab, S., Aßmann, U., Ebert, J., and Zhao,
Y. (2012). Ontology-Driven Software Development.
Springer.

Parreiras, F. S., Staab, S., and Winter, A. (2007). Twouse:
Integrating uml models and owl ontologies. Techni-
cal Report 16/2007, Institut für Informatik, Univer-
sität Koblenz-Landau.

Parreiras, F. S., Staab, S., and Winter, A. (2008). Improving
design patterns by description logics: A use case with
abstract factory and strategy. InModellierung 2008,
12.-14. Mrz 2008, Berlin.

Quasthoff, M. and Meinel, C. (2008). Semantic web admis-
sion free–obtaining rdf and owl data from application
source code. In4th International Workshop on Se-
mantic Web Enabled Software Engineering.

Sleeman, D., Moss, L., and Kinsella, J. (2014). Temporal
discovery workbench: a case study with icu patient
datasets. InBCS Health Informatics Scotland Confer-
ence, Glasgow.

Staab, S., Walter, T., Grner, G., and Parreiras, F. S. (2010).
Model driven engineering with ontology technologies.
In Reasoning Web. Semantic Technologies for Soft-
ware Engineering, volume 6325.

Winston, P. H., Binford, T. O., Katz, B., and Lowry, M.
(1983). Learning physical descriptions from func-
tional definitions, examples, and precedents. InNa-
tional Conf on A.I.

ICSOFT-EA�2015�-�10th�International�Conference�on�Software�Engineering�and�Applications

292


