
A Tool for Management of Knowledge Dispersed throughout Multiple
References

Carlos Sáenz-Adán1, Francisco J. Garcı́a-Izquierdo1, Ángel Luis Rubio1,
Eduardo Sáenz-de-Cabezón Irigaray1, Emilio Rodrı́guez-Priego1 and Oscar Dı́az2

1Departamento de Matemáticas y Computación, Universidad de La Rioja, Logroño, Spain
2Departamento de Lenguajes y Sistemas Informáticos, Universidad del Paı́s Vasco, San Sebastián, Spain

Keywords: Model Analysis, Model Tools, References-enriched Concept Map, Natural Language Processing.

Abstract: When modeling tasks are performed, it is important that the different modeling team members share a com-
mon vocabulary. This implies not only agreement on the terminology itself but especially on the meaning of
the terms used. To this end it comes in handy to have graphical tools for sharing and analyzing the knowledge
dispersed throughout different sources. In this paper we present RCMTool, a tool for creating References-
enriched Concept Maps (RCM). This technique has been specially designed to facilitate the compact presen-
tation and comparison of different definitions provided by multiple authors in diverse sources. This paper
presents the main features of RCMTool, based on the development of an RCM metamodel and the inclusion
of a natural language processing engine.

1 INTRODUCTION

A clear delimitation of the particular nounances in the
work context is essential for the correct development
of any modeling task, especially when this task is car-
ried out jointly by teams of medium or large size.
However, the available information can be so broad
that the specification of the context often becomes a
complex task in itself. In particular, the simple act
of determining a vocabulary whereby the definition
of terms is accepted by the whole team is an impor-
tant task. The use of dictionaries, thesauri and ency-
clopaedias (Wikipedia being a case of note) is helpful
but it does not solve the problem. For instance, in pre-
vious experiences related to the development of a tool
for business project management, the authors had to
make a great effort to reach an agreement about what
was the meaning and features of the term “business
process” for the team. The problem is even more pro-
nounced in the field of research, in which different pa-
pers may have different and even contradictory defi-
nitions of the same concept. Typically, not all of them
are equally relevant to determine the meaning of the
discussed term. The author prestige or the influence
of one of the definitions in the literature makes some
defintions stand out from other, which may make the
nouenances of the meaning of the term are closer to
one or the other.

One way to alleviate this problem is to provide
tools that allow a visual and compact representation of
multiple definitions. In this paper we present RCM-
Tool, a tool that aims to perform this task either in-
dividually or collaboratively by means of the imple-
mentation of the References-enriched Concept Map
(RCM) technique (Rodriguez-Priego et al., 2013).

In (Rodriguez-Priego et al., 2013) RCM is defined
as a Concept Map that “allows the visualization of a
set of definitions about a term discussed in the liter-
ature, facilitating the analysis of such definitions in
relation to the authors who propose them. The appear-
ance of an RCM resembles a Concept Map since it is
basically a diagram showing relationships (links) be-
tween concepts. Nevertheless, RCMs enrich the links
with references to the publications”.

An RCM allows the graphical comparison of dif-
ferent propositions through the Path feature. Fig. 1
depicts a portion of the RCM from Fig. 5 to il-
lustrate its components. In this figure we can see
four different definitions of “Language” from differ-
ent sources. For instance, one of this definitions corre-
sponds to the Path “Language is a system of signs ex-
pressing ideas” (highlighted in the figure). This Path
is a sequence of Concepts such as “language”(main
concept), “system”, “signs” and “ideas”, graphically
represented with blue boxes. These Concepts are
connected by Linking Phrases -words between blue

79Saénz-Adán C., García-Izquierdo F., Rubio Á., Irigaray E., Rodríguez-Priego E. and Díaz O..
A Tool for Management of Knowledge Dispersed throughout Multiple References.
DOI: 10.5220/0005499700790086
In Proceedings of the 10th International Conference on Software Paradigm Trends (ICSOFT-PT-2015), pages 79-86
ISBN: 978-989-758-115-1
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)

boxes (“is”, “of” and “expressing”)-. A Path must al-
ways be associated with a corresponding bibliograph-
ical Reference, so that the source of the information
can be traced down (in the example this is the ref-
erence labeled with the number 3). In addition, an
RCM allows to have Concepts to be organized in Lay-
ers (boxes with different shades of blue), so that the
creator of the diagram assigns degrees of relevance to
the Concepts, depending for example on the proxim-
ity of each concept in the map to the main concept
whose meaning he/she is attempting to clarify. All of
these features ensure that an RCM is a type of model
that can represent knowledge gathered from defini-
tions that are dispersed throughout multiple sources.

The RCMTool pursues three objectives. First, it
allows the management of bibliographical references.
These sources can be inserted manually, also through
files (in BIBTEX format) or through integration with
reference management tools like Mendeley. Sec-
ond, RCMTool facilitates the graphical representation
of definitions through paths. A Path can be manu-
ally constructed (graphically with building blocks of
RCM) or created in a semi-automated way by a re-
stricted natural language processing assistant. Finally,
the tool should allow collaborative use, enabling sev-
eral creators of an RCM to work on the same diagram
providing new definitions or references or improving
those already existing.

RCMTool is a web tool developed using consol-
idated technologies such as HTML5/CSS3, NodeJS,
JS, oAuth, and REST APIs. It uses Rappid (Client
IO, 2014), a toolkit for building interactive diagram-
ming applications, under an Academic User License.

The paper is structured as follows. Section 2
shows the related work. Sections 3 and 4 explain the
fundamentals and features of the tool. RCMTool at
work is shown in Section 5. The last section sets out
our conclusions and further work.

2 RELATED WORK

Various techniques for knowledge representation ex-
ist in the literature. Many of these techniques are
based on the graphical representation of ideas, con-
cepts, topics or terms (in many cases using graphs).
Topic Maps (Park and Hunting, 2003) and Mind
Maps (Buzan, 2006) are two cases in point. Mind
Maps has tools, such as FreeMind (FreeMind Dev.
Team, 2014) or XMind (XMind Ltd., 2014) that al-
low the computer-based creation of that kind of maps.
On the other hand, Concept Maps (Novak and Cañas,
2006) stands out for its extensive use. Concept Maps
were created by Novak, based on Ausubel’s theory of

meaningful learning (Ausubel, 1963; Ausubel et al.,
1968).

When developing modeling tasks, however, often
what is important is not only the representation of
knowledge but a strong consensus on the concepts and
terms used. This consensus facilitates the modeling
task since ambiguities and misunderstandings among
members of the development team are avoided. We
found that although it might be feasible to use Con-
cept Maps (or other techniques) in order to compare
and to present definitions in a compact way, none
of the existing techniques are perfectly suited to this
task. On the one hand, the goal of a Concept Map is
not to present definitions of concepts, but to represent
knowledge about concepts. On the other hand, a Con-
cept Map does not facilitate comparison of different
definitions available from various sources, nor does it
have a precise system for managing these sources.

Inspired by Concept Maps, the References-
enriched Concept Maps (RCM) tech-
nique (Rodriguez-Priego et al., 2013) has been
developed to include several features, mainly path
labeling and concept layering, which meet the needs
explained above. The RCM technique also includes
additional features to measure the complexity of
the included definitions and their relationship with
their corresponding references. These features allow
authorship attribution to be mantained. This infor-
mation, in turn, allows the RCM creator to consider
the relative weight of different definitions (e.g. a
definition included in an online encyclopaedia could
be considered less relevant than another included
in an article in a prestigious scientific journal),
representing a certain kind of knowledge modeling.

CMapTool is also of interest (Cañas et al., 2005).
It focuses on Concept Map, emphasizing its informa-
tion visualization features. This tool is not tailored
to the specific features of RCM. It allows the associ-
ation of information resources to concepts or linking
words on the map, thanks to which a Concept Map
can be used as a repository of information about a
certain topic. However, it does not allow the associa-
tion of resources to sequences of concepts and linking
phrases (paths). Since the above feature is not avail-
able in any system, yet of paramount importance, so
it has been necessary to develop a tool that realizes it.

3 TOOL FUNDAMENTALS

The tool has been designed keeping in mind two
fundamental principles. Firstly it clearly distin-
guishes the graphical representation from the con-
ceptual model behind an RCM. In a similar way

ICSOFT-PT�2015�-�10th�International�Conference�on�Software�Paradigm�Trends

80

Figure 1: Portion of RCM shown in Figure 5.

to (Kowata et al., 2010), who propose a metamodel
for Concept Maps, we have developed an RCM meta-
model. Using this approach, each particular RCM is
a model, since it is an instance of a metamodel. This
instance is linked internally with the graphical repre-
sentation drawn by the tool. Secondly, the tool has
a natural language processing engine. This engine
can largely automate the construction of RCMs, since
when a restricted natural language text definition is
typed, the tool is able to draw the path corresponding
to that definition.

3.1 Metamodel

Fig. 2 shows the core of the RCM metamodel. This
metamodel is completed with a series of Object Con-
straint Language (OCL).

The two basic building blocks (RCMNodes) of any
RCM are Concept and LinkingPhrase. With these ba-
sic elements, Paths are constructed as an ordered list
of Concepts connected through LinkingPhrases. In
order to precisely define the notion of Path required
by RCM it is necessary to include the technical notion
of Syntagm. Thus, a Path is actually a list of Syntagms
(which in turn are formed joining a Concept and a
LinkingPhrase). The semantic construction of Paths
is completed with the following OCL constraints:

context Path
inv: syntagmList->

excluding(syntagmList->first())
->forAll(elements.size()=2)

inv: (syntagmList->first()).elements->
size()=1

inv: (syntagmList->first()).elements.
oclIsKindOf(Concept)

These rules set up the facts that “Every Syntagm
in syntagmList from a Path has two elements except
the first” and that “The first Syntagm in syntagmList
has only one element, and this element is a Concept”.

Other relevant properties are represented in the
RCM metamodel. Both Concepts and LinkingPhrases
may be included in several different Paths. This prop-
erty enables the comparison of definitions collected

from different sources, by calculating metrics of sim-
ilarity between groups of definitions. Furthermore,
Concepts are assigned to Layers, following the crite-
ria chosen by the RCM creator. Finally, every Path
has a Reference associated with it, and one Reference
may include several definitions (and therefore have
several associated Paths).

3.2 Natural Language Processing

According to (Novak, 1984) it is essential to iso-
late concepts from linking words (LinkingPhrases in
RCM). Both are important as language units, but they
play different roles in the transmission of meaning.
While concepts are labeled by words that represent
things and events, relationships are a way of linking
two concepts in a propositional form.

With the aim of processing the mark up of a
word in a text as corresponding to a particular part
of speech, based on both its lexicon, as well as its
context, we use part-of-speech tagging (POS tagging
or POST). This technique (also called grammatical
tagging or word-category disambiguation) has been
used for tagging words in accordance with the part
of the speech tag-set used by the Penn Treebank
Project (Santorini, 1990) (see Table 1).

We could consider Noun Phrase (NP), Verb Phrase
(VP) and Prepositional Phrase (PP) as primary can-
didates to be mapped as RCMNodes. Noun Phrase
(NP) is the most important candidate to be a concept;
Verb Phrase (VP) is aspirant to be a LinkingPhrase,
and Prepositional Phrase (PP) could be both a con-
cept, taking the essence of the Noun Phrase, and a
relationship, if we take into consideration the prepo-
sition that appears before the Noun Phrase.

The implemented algorithm is based on (Brill,
1995), and it is used to apply transformation rules
(some examples of these rules are shown in Table 2).
This algorithm tags words using the rules and follow-
ing the schema in Fig. 3. The original, unannotated
text moves to a second state called “initial state”. In
this second state words are tagged in four steps which
are independent of the context: first, tag words from

A�Tool�for�Management�of�Knowledge�Dispersed�throughout�Multiple�References

81

Figure 2: RCM Metamodel.

Table 1: List of tags of corresponding part of speech used by Penn Treebank project.

Number tag Description Number tag Description
1 CC Coordinating conjunction 2 CD Cardinal number
3 DT Determiner 4 EX Existencial there
5 FW Foreign word 6 IN Preposition or subordinat-

ing conjunction
7 JJ Adjective 8 JJR Adjective, comparative
9 JJS Adjective, superlative 10 LS List item marker

11 MD Modal 12 NN Noun, singular or mass
13 NNS Noun, plural 14 NNP Proper noun, singular
15 NNP Proper noun, plural 16 PDT Predeterminer
17 POS Possesive ending 18 PRP Personal pronoun
19 PRP$ Possesive pronoun 20 RB Adverb
21 RBR Adverb, comparative 22 RBS Adverb, superlative
23 RP Particle 24 SYM Symbol
25 TO to 26 UH Interjection
27 VB Verb, base form 28 VBD Verb, past tense
29 VBG Verb, gerund or present

participle
30 VBN Verb, past participle

31 VBP Verb, non-3rd person sin-
gular present

32 VBZ Verb, 3rd person singular
present

33 WDT Wh-determiner 34 WP Wh-pronoun
35 WP$ Possessive Wh-pronoun 36 WRB Wh-adverb

a dictionary; second, tag words from a suffix; third,
tag words as NN if they are not the first word and
they are capitalised; and finally transform numbers
and tag as CD. After this step the text is annotated,
although some errors can occur. These errors are cor-
rected with transformation rules (Table 2) which are
context-dependent.

Example. Consider the statement “Language is
a set of sentences”. This proposition has been frag-

mented and tagged in the initial state as follows :

� Language/ NN

� is /VB

� a /DT

� set /VB

� of /IN

� sentences /NNS

ICSOFT-PT�2015�-�10th�International�Conference�on�Software�Paradigm�Trends

82

Figure 3: Flow for tagging based on (Brill, 1995).

Table 2: Some transformation rules.

From To Condition
- NN Before a MD

NN VB After a RB
JJ RB Before a JJ

VB NN After a DT
VB JJ After CP and RB
VB JJ After DT before NN

The tagging task is performed without context and
has errors, since the word “set” has been tagged as
VB despite the fact that in this example “set” means
a number or combination of things of similar nature
or function, and is therefore a noun. This error is cor-
rected by means of the application of transformation
rules in the last step. There is a rule that states that if
a word is a VB and the preceding word is a DT, the
first word will be tagged as NN. Hence, as “set” is
preceded by a DT it has been tagged to NN.

4 TOOL DESIGN

The design of the tool incorporates aspects related
both to functionality and the user interface.

4.1 Features

RCMTool was developed with several key features
(Fig. 4) in mind. Naturally, and since it is a di-
agramming tool, addition and deletion of the build-
ing blocks of RCM (namely Concepts and Linking
phrases) and editing of their properties are allowed.
Linking of elements is no longer immaterial, since
only concepts with linking phrases (in either direc-
tion) must be connectable. It makes no sense that two
concepts (or linking phrases) are connected to each
other, since by definition of RCM must be possible
traverse a path in a natural way and read a meaning-

Figure 4: Functionality of the tool.

ful statement. Furthermore, the user must be able to
edit link structure’s and labels, which are lists of ref-
erence identifiers. One of the key features of RCM
is the creation of paths. Several elements (both con-
cepts and linking phrases) can be selected simultane-
ously and can be then marked as a path. This path
corresponds to a statement that appears in a biblio-
graphical reference, so that both path and reference
are related. The computation of the metrics for de-
termining the complexity of an RCM and the collab-
orative use of the tool are other features that should
be included. Finally, it is important that the user can
export RCMs to other formats, both as graphics (such
as JPEG) and other formats based on data processing
(such as JSON). This export feature facilitates con-
nectivity and interoperability with other tools. Thus
RCM can be incorporated into other documents or an-
alyzed by specific tools.

4.2 User interface

The interface is split into areas in line with the func-
tionality of the tool (see Fig. 5).

1. Toolbar. Located at the top of the interface. It al-
lows users to add anonymous propositions, add a
list of propositions with their corresponding ref-
erences, add new references to the references list,
highlight a path, import/export the RCM, clear the
canvas and create an image of the RCM.

2. Stencil. Located on the top left of the interface
and groups the main building blocks of an RCM
(Concepts and LinkingPhrases). The user can add
them by dragging them onto the workspace.

A�Tool�for�Management�of�Knowledge�Dispersed�throughout�Multiple�References

83

3. References list. Located at the left of the interface
and shows the available references. Each refer-
ence has an identifier, a list of authors and the title
of the article or the URL.

4. Paths list. Located on the bottom left of the inter-
face. It shows the existing paths, each path has an
identifier linked with the corresponding reference.

5. Workspace. it is the main editing area, located in
the centre of the interface.

6. RCMs list. Located at the top right of the interface
and shows all the RCMs shared by the user.

7. Inspector. Located on the right of the interface. It
is used to display and edit properties of elements.

8. Status bar. Located at the bottom of the interface.
It displays information about the application state.

5 TOOL USAGE

The tool has been developed as a web application,
based on the metamodel explained in Section 3.1,
implementing the features listed in Section 4.1 and
following the user interface design described in Sec-
tion 4.2. The tool also includes a natural language
processing engine that uses the algorithm described
in Section 3.2.

5.1 Drawing Interaction

There are three different ways to add elements in or-
der to build an RCM:

� The user can create a branch of the graph through
an anonymous (i.e. without an associated refer-
ence) textual statement.

� Branches of the graph can be created through a
text containing statements associated with their
references.

� The user can add new elements by manually drag-
ging them from the stencil to the workspace and
then editing the text property.

In the two first cases, the tool uses the natural lan-
guage processing engine (described in Section 3.2).
Although this process splits sentences into concepts
and linking phrases, it does not generate a final re-
sult in all cases, but provides powerful support for
the construction of the graph, which can be manually
edited by the RCM creator. It is important to note that,
since each concept is unique and all the elements in
the graph must be associated with at least one refer-
ence (see Fig. 2), the elements that temporarily have

no associated reference are depicted in red to serve as
an aid during construction.

The tool generates the graph following RCM con-
struction principles, and therefore it will be a directed
graph with only one main concept on the left side of
the graph. The rest of the concepts are automatically
located on the right of the main concept following the
statement structure. When, in the opinion of the cre-
ator, the RCM is structurally complete, the user can
assign layers to the included concepts.

5.2 References and Paths Interaction

One of the main features in RCMs is references man-
agement. Every definition and every path must have
an associated reference. The graph reflects the fact
that different paths can share concepts or linking
phrases, so directed links between elements are la-
beled with the applicable references (see example in
Fig. 5).

The tool manages a repository of references that
the user can add in three different ways. Firstly, the
user can add a reference manually in BIBTEX format.
Secondly, the references may come from a BIBTEX
file. Lastly, references can be imported from exter-
nal repositories such as Mendeley (which requires a
user account). OAuth 2.0 authentication is used in or-
der that the user can give secure access to their saved
references in Mendeley. This is an open authorisa-
tion standard, which provides client applications like
RCMTool secure delegated access to server resources
on behalf of a resource owner.

Each of the references in the RCMTool internal
repository is identified by a number, and includes ba-
sic information about the source: title, authors, date,
URL, etc. Whenever a reference is assigned to a set
of correlative elements, one path is created. This is
the case when branches of the graph are created from
referenced statements by using the engine (see previ-
ous subsection). Paths must have a unique identifier
that links them to the reference (reference identifier).
If two paths are connected to the same reference (e.g.,
when the same source includes two different defini-
tions of the same concept), the tool disambiguates
them with a different label, such as the reference iden-
tifier and a letter of the alphabet (i.e. 1, 1b, 1c, etc.).

5.3 Example

Fig. 5 shows the tool in use with an RCM collect-
ing definitions of the ‘Language’ concept. Since this
is a highly complex concept, for the sake of brevity
we present an RCM that includes only ten definitions
from nine different references.

ICSOFT-PT�2015�-�10th�International�Conference�on�Software�Paradigm�Trends

84

Figure 5: Tool capture with the RCM of ‘Language’. The areas marked with large red numbers correspond to the list in
Section 4.2.

Figure 6: References list (zoomed).

Following the procedures described in the previ-
ous sections, we have included the set of references,
in this case by connecting the tool to Mendeley. The
references list appears in area 3 of the interface, en-
larged in Fig. 6 for better readability. The definitions
that we want to represent are extracted from these ref-
erences (each number in the following numbered list
corresponds to the reference identifier in Fig. 6).

1. Language is a system of symbols based on con-
vention.

2. Language is a system of codes.

3. Language is a system of signs expressing ideas.

4. Language is a set of expressions used to commu-
nicate.

5. Language is a set of strings from alphabet.

6. Language is a set of system.

7. Language is a set of sentences constructed of fi-
nite set of elements.

8. (a)Language is a set of sentences. (b)Language
has specific rules.

9. Language is a concept.

These definitions are included in a list of state-
ments, including a reference identifier for each state-
ment. The tool processes the list, and generates a
graph that can be revised for corrections. In the last
step, the user must classify concepts in the four avail-
able layers (depicted with a color gradation in the
graph).

6 CONCLUSIONS AND FURTHER
WORK

We have presented RCMTool, a web application ded-
icated to the creation of References-enriched Concept

A�Tool�for�Management�of�Knowledge�Dispersed�throughout�Multiple�References

85

Maps. This technique allows to the compact repre-
sentation of multiple definitions of the same concept,
and the comparison of these definitions by using dif-
ferent criteria and metrics. These features are espe-
cially useful when modeling tasks are performed, in
which there are often ambiguous concepts whose def-
inition must be agreed by all members of the develop-
ment team. Additionally, RCMs themselves are mod-
els, since they are created as instances of the meta-
model that presented in Section 3.1. In this sense
the RCM technique acts as a modeling language that
allows RCM modeling, and therefore RCMTool is a
tool that enables the creation of such models.

RCMTool is a web application ready for further
expansion. Among future improvements we will con-
sider, for example, the automated computation of
metrics (Rodriguez-Priego et al., 2013), and the inclu-
sion of an advanced authoring system that facilitates
the collaborative use of the tool.

ACKNOWLEDGEMENTS

This work was partially funded by Project
MTM2014-54151-P.

REFERENCES

Ausubel, D. P. (1963). The psychology of meaningful verbal
learning. Grune & Stratton.

Ausubel, D. P., Novak, J. D., Hanesian, H., et al. (1968). Ed-
ucational psychology: A cognitive view. Holt, Rine-
hart and Winston New York.

Brill, E. (1995). Transformation-based error-driven learning
and natural language processing: A case study in part-
of-speech tagging. Comput. Linguist., 21(4):543–565.

Buzan, T. (2006). Use Your Head. Mind Set Series. BBC
Active.

Cañas, A. J., Carff, R., Hill, G., Carvalho, M., Arguedas,
M., Eskridge, T. C., Lott, J., and Carvajal, R. (2005).
Concept maps: Integrating knowledge and informa-
tion visualization. In Knowledge and information vi-
sualization, pages 205–219. Springer.

Client IO (2014). Rappid toolkit. http://jointjs.com/about-
rappid. [Stable release: Rappid 1.4 / September 16,
2014].

FreeMind Dev. Team (2014). FreeMind tool.
http://freemind.sourceforge.net/wiki/index.php/Main
Page/. [Stable release: FreeMind 1.0.1 / April 12,

2014].
Kowata, J. H., Cury, D., and Boeres, M. C. S. (2010). Con-

cept maps core elements candidates recognition from
text. In Proceedings of Fourth International Confer-
ence on Concept Mapping, pages 120–127, Viña del
Mar, Chile.

Novak, J. D. (1984). Learning how to learn. Cambridge
University Press.

Novak, J. D. and Cañas, A. J. (2006). The theory underlying
concept maps and how to construct them. Technical
report, Institute for Human and Machine Cognition,
Pensacola Fl.

Park, J. and Hunting, S. (2003). XML Topic Maps: Creating
and Using Topic Maps for the Web. Addison-Wesley.

Rodriguez-Priego, E., Garcia-Izquierdo, F. J., and Rubio,
A. L. (2013). References-enriched Concept Map: a
tool for collecting and comparing disparate definitions
appearing in multiple references. Journal of Informa-
tion Science, 39(6):789–804.

Santorini, B. (1990). Part-of-speech tagging guidelines for
the Penn Treebank Project (3rd revision). Technical
report, University of Pennsylvania.

XMind Ltd. (2014). XMind tool. http://www.xmind.net/.
[Stable release: XMind 6 (v3.5.1) / 20th, Nov 2014].

ICSOFT-PT�2015�-�10th�International�Conference�on�Software�Paradigm�Trends

86

