
GoThings
An Application-layer Gateway Architecture for the Internet of Things

Wagner Luís de A. M. Macêdo, Tarcísio da Rocha and Edward David Moreno
Federal University of Sergipe, São Cristóvão, Sergipe, Brazil

Keywords: Constrained Devices, Internet of Things, Messaging Protocols.

Abstract: With the Internet of Things (IoT), it is predicted that the number of connected devices will reach 50 billion
by 2020. Many of these devices often adopt, at application layer, mutually incompatible messaging protocols.
A possible solution to this problem is to use a same messaging protocol among all devices. However, a
single protocol is not always suitable for both constrained and unconstrained devices. Several solutions to the
interoperability issue in the IoT have been proposed, but they neither provide transparent interoperation nor
are extensible and configurable enough. Meanwhile, this paper proposes GoThings, a preliminary gateway
architecture which can enable interconnectivity between different messaging protocols. GoThings is focused
on extensibility, configurability and generality, in the context of IoT problems.

1 INTRODUCTION

With the Internet of Things (IoT), it is predicted that
the number of connected devices will reach 50 billion
by 20201. IoT is a vision of a world where all physical
objects (things) have some form of Internet connectiv-
ity. Another explanation is that IoT enables Internet
to be used to connect people to things and things to
things.

Due to this expected number of devices the envi-
sioned environment for the IoT is extremely heteroge-
neous, so that different devices may be unable to com-
municate to each other. Heterogeneity happens in all
network layers, specifically in the application layer is
emerging a number of mutually incompatible messag-
ing protocols2. However, the interoperability issue is
even higher because messaging protocols may adopt
different message exchange patterns, such as request-
response and publish-subscribe.

A possible solution to this problem is to use
a same messaging protocol among all devices. In
the Web of Things (WoT) approach (Guinard et al.,
2010), for instance, HTTP was chosen to integrate
all devices. However, HTTP is not always suitable
for many participants of IoT, such as sensor devices,
since they are not able to work with any protocol due

1https://www.cisco.com/web/about/ac79/docs/innov/
IoT_IBSG_0411FINAL.pdf. Access in November 2, 2014.

2http://www.prismtech.com/download-documents/
1561. Access in November 2, 2014.

to strict constraints in terms of memory, processing
and energy (Dargie and Poellabauer, 2010). The re-
verse is also true, i.e. a protocol for constrained de-
vices is usually not adequate to unconstrained ones.

Some constrained devices are battery-limited. In
order to to save power, they are commonly configured
to frequently sleep and being active when strictly nec-
essary. This put some barriers, since devices are not
always active to answer.

Proposals have already been presented to solve the
interoperability issue in the IoT but we could not find
one solution allowing a bidirectional transparent in-
teroperation between constrained devices with differ-
ent messaging protocols that is extensible for any kind
of protocol regardless of message exchange pattern.
When we say transparent, we mean a solution that
provides a communication which is virtually direct,
i.e. sender is not aware of an intermediary.

The main goal of this paper is to propose an archi-
tecture for gateways that are able to interconnect dif-
ferent messaging protocols for the Internet of Things
that meets the following requirements:
� Multi protocol support by an extensible frame-

work via plugins which reduces complexity of
adding new protocols.

� Support to the message exchange patterns
request-response and publish-subscribe.

� Configurability, through a structure that lets you
easily add or change behaviors of the gateway de-
pending on the context.

135Luís de A. M. Macêdo W., da Rocha T. and David Moreno E..
GoThings - An Application-layer Gateway Architecture for the Internet of Things.
DOI: 10.5220/0005493701350140
In Proceedings of the 11th International Conference on Web Information Systems and Technologies (WEBIST-2015), pages 135-140
ISBN: 978-989-758-106-9
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)



� Caching support to avoid unnecessary accesses to
constrained networks and to enable requests to
suspended devices.

The rest of the paper is organized as following.
Section 2 discusses about common approaches to in-
teroperability. Section 3 presents a brief review of
related works. In Section 4 we show our proposed
solution. Section 5 concludes the paper.

2 INTEROPERABILITY
APPROACHES

Interoperability may refer to the ability for one or
more systems or domains to connect, understand and
exchange data with one another for a given purpose
(Blair et al., 2011). The goal in providing interoper-
ability between different protocols is to allow commu-
nication between different domains keeping the trans-
ferred original message unchanged or without losing
original semantics.

To have interoperability, it is required to map the
different behaviors of the domains. This mapping is
usually called a bridge. In the literature, there are two
main approaches to interoperability between different
domains: direct bridges and indirect bridges (Issarny
et al., 2011).

Figure 1: Direct bridges approach.

Direct bridges (see Figure 1) consist of a direct
translation of behaviors between domains, so a trans-
lator is required for each pair of involved domains.
The advantage of a direct bridge is to require only
one translation operation, but the needed number of
translators grows quadratically to the number n of do-
mains, as stated in equation 1.

t(n) =
n(n�1)

2
(1)

Contrasting, in indirect bridges an intermediate
format is used, so the behaviors of each domain are

mapped by only one translator to an intermediate do-
main (see Figure 2). Although this approach has the
disadvantage of requiring two translation operations,
since every message is first translated into interme-
diate format before being translated to target domain
format, the needed number of translators is linear to
the number of domains, what indeed is a major ad-
vantage of using indirect bridges.

Figure 2: Indirect bridges approach.

We adopt in this paper the indirect bridge ap-
proach. The reasoning related with this decision is
explained in Section 4.

3 RELATED WORK

The great number of different messaging protocols
follows the wide range of heterogeneous devices
ready to the IoT. So, in this section, we will first re-
view some of the most relevant protocols and then we
will discuss some related proposals to this paper.

In the context of IoT protocols, some more ro-
bust devices, like IP cameras, are often equipped with
more than one protocol to access the images (HTTP
and RTSP are the most common). However, most
IoT devices are so restricted that cannot operate with
heavyweight protocols such as HTTP.

In order to meet demands for a lightweight pro-
tocol compatible with the popular HTTP, the Internet
Engineering Task Force (IETF) designed the CoAP
protocol (RFC 7252), that keeps the same seman-
tics of HTTP, but, instead of TCP, it is implemented
over UDP. CoAP has some important features to con-
strained devices like multicast communication and the
observe request, a kind of request where the server
responds whenever the resource is changed. Contiki3,
one of the major operating systems for the IoT, adopts
CoAP as its primary application protocol.

3http://contiki-os.org/

WEBIST�2015�-�11th�International�Conference�on�Web�Information�Systems�and�Technologies

136



Also important to the IoT is MQTT4, a publish-
subscribe protocol created by IBM and designed to be
simple, lightweight and suitable for constrained envi-
ronments. The MQTT implementation is over TCP,
inhibiting adoption in extremely constrained devices
such as some wireless sensors, which led to the de-
velopment of MQTT for Wireless Sensor Networks
(Hunkeler et al., 2008).

Coming from chats, i.e. human-to-human com-
munication (H2H), it is remarkable the presence of
XMPP (RFC 6120) in the list of protocols for IoT.
But in the interesting work of (Hornsby and Bail,
2009) and (Klauck and Kirsche, 2012), XMPP is pro-
posed for human-to-machine communication (H2M)
in a scheme that allows users to add sensors as friends
for receiving sensor updates via instant messaging. A
negative factor of XMPP is that it relies in XML data
format, considered heavy for constrained devices, so
its use in the IoT is still not wide.

Several approaches have been proposed to solve
the interoperability problem of messaging protocols
in the IoT. The Web of Things (Guinard et al., 2010) is
an implementation of IoT that makes use of web tech-
nologies, such as REST (Fielding and Taylor, 2002),
as a common paradigm among people and devices.
But when devices cannot run a HTTP server, inte-
gration takes place using intermediaries called Smart
Gateways which is a kind of web proxy that abstracts
heterogeneous communication through a RESTful
API. In addition, the WoT approach supports publish-
subscribe interactions via web feeds. Our proposal is
directly related with the WoT Smart Gateway, but it is
not limited to a REST-like interface.

(Castellani et al., 2012) discuss about problems
and solutions in mapping between HTTP and CoAP
protocols regarding the implementation of a cross
proxy between these protocols. This kind of proxy
can transparently interconnect protocols maintaining
most of semantics, but it has the drawbacks of being
locked to only two and limited to very closer proto-
cols.

(Collina et al., 2012) proposed a publish-subscribe
topic-based broker where access to topics is done
via multiple protocols, regardless of the communica-
tion pattern. The authors validated the proposal by
implementing a broker reached via HTTP (request-
response) and MQTT (publish-subscribe). Despite
this proposal provides interoperability, the broker
only allows communication between device and bro-
ker, not a direct communication between devices. In
other words, transparent interoperability is not sup-
ported.

(Bromberg et al., 2009) proposed z2z, a sophisti-

4http://mqtt.org/

cated generative approach to build generic gateways.
It is composed by a domain-specific language (DSL)
also called z2z, a runtime system and a compiler, and
it is focused on easier development and efficiency.
The gateways are statically generated to C code from
specifications written in z2z. Although z2z provides a
very customized approach to gateway development, it
generates gateways for only pairs of protocols (by di-
rect translation) and request-response is the only sup-
ported message exchange pattern.

Facing problems of existing solutions in the con-
text of IoT-driven gateways, next section presents our
proposal which is expected to solve their limitations.

4 GATEWAY ARCHITECTURE

This paper proposes GoThings, an architecture for
building application-layer gateways for the IoT. The
proposal aims at the following:

Interoperability. The architecture should make pos-
sible to develop a gateway which intermediates
devices with different application-layer protocols.

Extensibility. The architecture should allow addition
of new protocols to the gateway without modifica-
tion of its internal structures.

Generality. The architecture should be generic
enough to permit its use in various IoT scenarios.

Configurability. The architecture should provide
mechanisms to modify the system behavior at a
granular level.

HTTP Client

HTTP CoAP

XMPP MQTT

MQTT Server

CORE

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

Figure 3: The flow throughout the gateway of a HTTP-
MQTT request.

GoThings�-�An�Application-layer�Gateway�Architecture�for�the�Internet�of�Things

137



Interconnection
Controller

API

Communication Manager

HTTP plugin CoAP plugin MQTT plugin New Protocol
plugin

Input
Controller

Listeners Cache

Output
Controller

Listeners

…

HTTP Clients and Servers CoAP Clients and Servers MQTT Clients and Servers NP Clients and Servers

Figure 4: The GoThings architecture overview.

Justified by the need of a gateway easily extensi-
ble to other protocols we followed in GoThings archi-
tecture the indirect bridge approach. Indirect bridges
make necessary an intermediate format as stated in
Section 2. For that we set as intermediate format a
message model carrying common fields and options
from an intersection of IoT protocols and message ex-
change patterns.

A known problem in indirect translations is about
missing protocol semantics of one or both sides. We
do not think GoThings architecture will suffer of this
because we focus our attention on IoT interaction pat-
terns that are usually very simple and specific.

Figure 3 shows at high level the flow passing
through the gateway of a successful request from a
HTTP client to a MQTT server. The flow begins when
a HTTP client requests to gateway through the HTTP
plugin (step 1), which forwards to the core (step 2).
After request is parsed, the gateway knows to what
plugin the message will be forwarded, which in this
case is the MQTT one (step 3). Accordingly, MQTT
plugin makes a request to MQTT server and receives
a response (steps 4 and 5), that is returned to the gate-
way core (step 6), which returns to HTTP client (steps
7 and 8).

It is important to see how a HTTP request is recog-
nized by the gateway as a request to a MQTT server.
For that we used URI as the element that carries rout-
ing information between protocols. Thus, assum-
ing the gateway is at gw.me.com and the server at
bk.you.org, the following URI

http://gw.me.com/mqtt/bk.you.org/moisture

indicates the request must be forwarded to the MQTT
plugin (note mqtt in the address) which is able to re-
quest /moisture from bk.you.org.

The GoThings architecture overview can be seen
in Figure 4. The visible components are briefly ex-
plained below:

� Communication manager intermediates the
communication between plugins and controllers.
It enables the gateway extensibility and abstracts
each protocol ways through the message model.
The plugins talk to communication manager us-
ing an API to facilitate plugin development.

� Interconnection controller is the component that
forwards requests to the target plugin and main-
tains request states until receives an answer. The
cache is an important element of this component.

� Input and output controllers are components
that handle, respectively, requests and responses.
The listeners are actions triggered by events from
both input and output controllers. A listener could
be either a simple logging action or a complex ac-
tion that may change the message.

� Plugin is both a client and a server implementa-
tion of a specific protocol. The plugins cannot
communicate directly with each other, but only
via communication manager.

4.1 Gateway Operation

When a client makes a request to the gateway, it
makes through a plugin. But until the client receives a
response, some effort is required. An outline of these
effort can be seen in Figure 5 that shows a collab-

WEBIST�2015�-�11th�International�Conference�on�Web�Information�Systems�and�Technologies

138



HTTP plugin

1: HTTP client
makes a
request

12: HTTP client
receives the

response

MQTT plugin

Communication
Manager

2: HTTP
request is
accepted

7: MQTT
response

Input
Controller

Interconnection
Controller

4: Request
handling

11: Response
received

6: MQTT
detected as
the target
protocol.
A MQTT

server will
be contacted.

3: Request goes to
input queue

Output
Controller

8: Response
will be

cached

10: Response
handling

5: Cache miss?
It needs

to contact
server.

9: Cache hit or no.
Response goes to

output queue.

Figure 5: Collaboration diagram for a HTTP-MQTT re-
quest.

oration diagram for the same HTTP-MQTT request
touched upon before. We explain the sequence below:

1: The client makes a HTTP request to the gateway
exactly like he would request to a normal HTTP
server.

2–3: HTTP plugin receives the request and sends it
to Communication Manager (CM), which in turn
forwards to Input Controller (IC).

4: IC sends the request message to every registered
input listeners and then forwards to Interconnec-
tion Controller (ICC).

5–8: This sequence is performed only if ICC finds
the asked resource in cache (cache hit). On con-
trary, if nothing found (cache miss), an actual in-
teraction with a MQTT server is required. This
is done after ICC passes the request to CM which
forwards it to target plugin (MQTT in this case).
The plugin makes a request to server, and when
response arrives the plugin passes it to CM that
sends it to ICC which, finally, stores it in cache.

9: Whether the response was retrieved from cache or
not, it is passed to Output Controller (OC).

10: Similar to IC, the OC sends the response mes-
sage to every registered output listeners and then
forwards to CM.

11–12: CM sends the response to the source proto-
col plugin (HTTP in this case) which finalizes the
request by sending the response to client.

4.2 Interoperability

Each protocol talks a particular language in a partic-
ular way. This makes heterogeneous devices unable
to interoperate unless every protocol needed for the
communication is installed.

Constrained devices, however, are not able to have
many protocols available at the same time due to
memory limitations. Furthermore, the complexity of
maintaining multi protocol applications is higher than
single protocol ones. Our gateway architecture was
designed to be able to deal with these issues.

4.3 Extensibility

As stated before, GoThings makes use of the indi-
rect bridge approach because we focus on easiness of
plugging in any number of previously unknown pro-
tocols. That said, our proposed gateway architecture
was designed to be easy for interconnecting protocols
not thought before, relying on plugin subsystem. In
fact, enabling a new protocol into the gateway is only
a matter of develop and install a new plugin.

A plugin is a software component that has to im-
plement some interfaces to send and receive mes-
sages, and interact with communication manager. The
plugin should have both a client and a server of a
given protocol to a complete functionality, but a par-
tial functionality is possible. One point here is that
many protocols have ready-to-use libraries that can
be used to accelerate development of plugins.

4.4 Configurability and Generality

The listeners inside input and output controllers are
the key to the configurability. They allow a more
granular gateway configuration. With them, as an ex-
ample, we could instruct gateway to assure payload of
response is in JSON format if request comes from a
constrained device. Or we could program one or more
listeners to add semantic interoperability features to
the gateway.

By providing such mechanisms that can alter the
gateway behavior, the configurability supports the
generality. Additionally, the message model is a vital
element to make the architecture be generic enough.
In this sense, it is important to remember that the gen-
erality concept of this paper is in the context of IoT
problems.

4.5 Suitability for Constrained Devices

The cache in the interconnection controller is the key
element that makes GoThings apt to constrained de-

GoThings�-�An�Application-layer�Gateway�Architecture�for�the�Internet�of�Things

139



vices. A cache allows the gateway to reduce forward-
ing of requests and to ensure that a value is always
returned, even when requested devices are sleeping.

In Section 4.1 we could see how cache may reduce
the communication overhead. In general, by avoiding
requests made to constrained devices, the gateway be-
comes suitable for them.

5 CONCLUSIONS

This paper proposed GoThings, a preliminary ar-
chitecture for creating gateways to interconnect
application-layer messaging protocols focused on In-
ternet of Things, and suitable for constrained de-
vices. In regard to message exchange pattern, the ar-
chitecture support both request-response and publish-
subscribe.

The main aspects of the architecture are interop-
erability, extensibility, generality and configurability.
GoThings allows transparent interoperability in a way
that devices can use its own protocol to have a het-
erogeneous communication. GoThings was designed
to be extensible: enabling a new protocol is only a
matter to install a new plugin. GoThings is generic
enough in the context of IoT problems, and the users
are able to change gateway behaviors through the use
of listeners.

Finally, there are some ongoing work. We are
looking for the best ways to specify the message
model in a manner that existing and possibly future
IoT protocols can be interconnected without losing
their semantics. When the message model is properly
specified we can work on plugin subsystem which in-
cludes the specification of communication manager
API. We plan to deploy our proof-of-concept gateway
implementation in a Raspberry Pi5. We will compare
performance with the achieved of native protocol im-
plementations. We expect to finish these work until
January 2016.

REFERENCES

Blair, G., Paolucci, M., Grace, P., and Georgantas, N.
(2011). Interoperability in Complex Distributed Sys-
tems. In Formal Methods for Eternal Networked Soft-
ware Systems. Springer Berlin Heidelberg.

Bromberg, Y.-D., Réveillère, L., Lawall, J., and Muller, G.
(2009). Automatic Generation of Network Protocol
Gateways. In ACM/IFIP/USENIX, 10th International
Middleware Conference.

5http://www.raspberrypi.org/

Castellani, A., Fossati, T., and Loreto, S. (2012). HTTP-
CoAP cross protocol proxy: an implementation view-
point. In IEEE 9th International Conference on Mo-
bile Ad-Hoc and Sensor Systems.

Collina, M., Corazza, G. E., and Vanelli-Coralli, A. (2012).
Introducing the QEST broker: Scaling the IoT by
bridging MQTT and REST. In IEEE 23rd Interna-
tional Symposium on Personal, Indoor and Mobile
Radio Communications.

Dargie, W. and Poellabauer, C. (2010). Fundamentals of
wireless sensor networks: theory and practice. John
Wiley & Sons Ltd., United Kingdom.

Fielding, R. T. and Taylor, R. N. (2002). Principled design
of the modern Web architecture. ACM Transactions
on Internet Technology, 2:115–150.

Guinard, D., Trifa, V., and Wilde, E. (2010). A resource ori-
ented architecture for the Web of Things. In Internet
of Things (IOT), pages 1–8, Tokyo. IEEE.

Hornsby, A. and Bail, E. (2009). µXMPP: Lightweight im-
plementation for low power operating system Contiki.
In IEEE International Conference on Ultra Modern
Telecommunications & Workshops.

Hunkeler, U., Truong, H. L., and Stanford-Clark, A. (2008).
MQTT-S – A publish/subscribe protocol for Wireless
Sensor Networks. In 3rd IEEE International Confer-
ence on Communication Systems Software and Mid-
dleware and Workshops.

Issarny, V., Bennaceur, A., and Bromberg, Y.-D. (2011).
Middleware-Layer Connector Synthesis: Beyond
State of the Art in Middleware Interoperability. In
Formal Methods for Eternal Networked Software Sys-
tems. Springer Berlin Heidelberg.

Klauck, R. and Kirsche, M. (2012). Chatty things – Making
the Internet of Things readily usable for the masses
with XMPP. In 8th International Conference on Col-
laborative Computing, Pittsburgh, PA.

WEBIST�2015�-�11th�International�Conference�on�Web�Information�Systems�and�Technologies

140


