
A Similarity Detection Platform for Programming Learning

Yuanyuan Li, Yu Sheng, Lei Xiao and Fu Wang
School of Information Science and Engineering, Central South University, Lushan South Road, Changsha, China

Keywords: Similarity Detection, Structure-Metric, GST Algorithm, Sub-Graph Isomorphism.

Abstract: Code similarity detection has been studied for several decades, which are prevailing categorized into attribute-
counting and structure-metric. Due to the one fold validity of attribute-counting for full replication, mature
systems usually use the GST string matching algorithm to detect code structure. However, the accuracy of
GST is vulnerable to interference in code similarity detection. This paper presents a code similarity detection
method combining string matching and sub-graph isomorphism. The similarity is calculated with the GST
algorithm. Then according to the similarity, the system determines whether further processing with the sub-
graph iIsomorphism algorithm is required. Extensive experimental results illustrate that our method signifi-
cantly enhances the efficiency of string matching as well as the accuracy of code similarity detecting.

1 INTRODUCTION

The combination of information technology and edu-
cation been increasingly applied to modern teaching.
For the programming course in computer Science and
Technology, we developed a learning platform to
help students improve the ability of programming
skills, and also help teachers to improve their teaching
efficiency. With the help of our platform, teachers can
assign and check homework, issue course news or or-
ganize examinations online, and the students can also
complete their task online. And therefore plagiarism
becomes a big headache of teachers. If teachers check
each program manually, it will cost much time and
effort, and if students modify the program slightly,
the task of program check becomes more difficult.

To address this issue, code plagiarism checking
has been studied widely, mainly focus on how to
compute the similarity of two program code and de-
termine whether plagiarism exisits. The attribute
counting method in checking code plagiarism is
firstly put forward by Halstead (M. H. Halstead,
1977), and using structure measurement techniques to
calculate the code similarity was presented by Verco
and Wise (K. L. Verco and M. J. Wise, 1996).
Through investigation we find out that most mature
anti-plagiarism system adopt the string matching
method to compare the code structure (Donaldson et
al., 1981; G. Whale, 1990; D. Gitchell and N. Tran,
1999; Michael J. Wise, 2003). The systems based on

such method can run efficiently, and can be imple-
mented easily; however the disadvantage is such sys-
tems can’t make accurate detection in complex copy-
ing method. This paper studies the related algorithms
and techniques, and designs a similarity detection
method, which combines string matching algorithm
and subgraph isomorphism algorithm.

2 CODE SIMILARITY
DETECTION OVERVIEW

Code similarity means that the degree of similarity
between one program and another program.

2.1 Code Plagiarism Description

Programming language course is a very practical
course, and extensive programming exercises are nec-
essary to improve students' programming ability.
However some students copy other students' source
code or just simply change the name of variables or
functions, which lead to plagiarism. Plagiarism waste
teachers’ effort, and can not lend any help to improve
the students' programming ability. Faidhi and Robin-
son (J. A. W. Faidhi and S. K. Robinson, 1987) di-
vided code plagiarism into seven levels. L0: not make
any modifications to the source code; L1: only mod-
ify the source code comments; L2: modify identifiers
of the source code, such as the name of the functions,

480 Li Y., Sheng Y., Xiao L. and Wang F..
A Similarity Detection Platform for Programming Learning.
DOI: 10.5220/0005490304800485
In Proceedings of the 7th International Conference on Computer Supported Education (CSEDU-2015), pages 480-485
ISBN: 978-989-758-107-6
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)

macros and variables ; L3: change the position of var-
iables; L4: replace the function call with the function
body, representing a decrease of function; L5: modify
the program statements, such as i++ becomes i + = 1;
L6: modify the program control logic.

2.2 Code Similarity Definition

Obviously, 100% means completely copying. The
plagiarism relationship with two programs is meas-
ured by code similarity. The higher the similarity is,
the greater the possibility of plagiarism. T. Yama-
moto, M. Matsushita, T. Kamiya and K. Inoue (J. A.
W. Faidhi and S. K. Robinson, 1987) give the defini-
tion of similarity of the two software systems. For two
software systems A and B, A consists of the elements
a1, a2, a3, ..., am, represented by the set: {a1, a2, a3,
..., am}.Similarly, B elements b1, b2, b3 , ... bn, rep-
resented by the collection {b1, b2, b3, ..., bn}. Here,
a1, a2, a3, ..., am and b1, b2, b3, ..., bn can be the file
or the line of a program in software systems A and B.

Suppose we are able to calculate the matching be-
tween ai and bj (1 <= i <= m, 1 <= j <= n). The col-
lection of all match (ai, bi) is is represented by Rs, the
similarity S is defined as follows:

||||

|}),(|{||}),(|{|
),(

BA
RbabRbaaBAS siiisiii

+
∈+∈= (1)

As shown in Eq.(1), this definition indicates that
the similarity between A and B is a ratio, which is ob-
tained by the sum of A’ size and B’ size divided by
the size of Rs. if Rs is small, then S will be smaller ,if
the RS is the empty set, then S = 0. When A and B are
the same, S = 1.

3 CODE SIMILARITY
DETECTION METHOD

Code similarity detection methods are divided into
two categories: attribute-counting technique and
structure-metric technique. Attribute-counting tech-
nique is proposed and used in code detection firstly.
Program code has its features, such as: the number of
lines of code, the number of variables, operators, the
number of control conditions and the number of cy-
cles. Attribute-counting technique should figure out
the number of the unique attributes of a program. Ob-
viously different programs have different result of at-
tributes statistic, and the result of the attributes statis-
tics of the same or similar program code should be

similar. Verco and Wise have proved that a anti-pla-
giarism detection system based on attribute-counting
technique just be well work in the situation that the
two programs are same or very similar, it does not
work for the programmers with a little programming
experience who could make several modifications to
the source code. The structure-metric method is used
to determine whether the two procedures are similar
by comparing their structural information. It is well
known that, for programmers, it is easy to change the
attributes of a program, but the structure of the pro-
gram is very difficult to change, otherwise it can’t be
called as plagiarism.

At present, the structure-metric method based on
string matching algorithm is widely used in most anti-
plagiarism systems. This method has two key points.
The first point is how to analyze the structure of the
program code and converse the code into a string. The
second point is how to choose a string matching algo-
rithm to compute the similarity.

3.1 Code Plagiarism Description

The string matching algorithm in the Anti-plagiarism
detection system is used to calculate the similarity of
the program code. The plagiarism refers to the situa-
tions that the students simply make some modifica-
tions to some of the variables, change the position of
some functions; and therefore the string matching al-
gorithm must be able to detect these cases. String
matching must be possible to find the longest match,
due to the fact that some short match exists even if
there is no plagiarism. String matching algorithm for
plagiarism detection is not simply find the position of
the mode string, but to find the set of all exact matches
in the two strings; the proportion of the size of exact
matched strings to the size of total string can be used
to determine the level of similarity. String matching
algorithm should mark the location of the longest
matches to facilitate the detection. There are many ef-
fective string matching algorithm such as: LCS (long-
est common substring), Levenshtein distance (Mi-
chael Gilleland, 2007), Heckel algorithm (Michael J.
Wise, 1992), dynamic programming and GST. Given
the features of anti-plagiarism system, in this paper,
we use the GST algorithm which has a better accu-
racy. The processes of GST are as follows:

Step 1: defining MIN_MATCH_LEN, which
should be equal to or greater than 1; the TILES is in-
itialized as empty; S and T are not marked by default,
which means the matching has not start yet.

Step 2: Find one or more maximum-matching
string; initializing the maximum matching length
max_match as MIN_MATCH_LEN; setting matches

A�Similarity�Detection�Platform�for�Programming�Learning

481

to empty, and then repeatedly scanning and compar-
ing the unmarked character in S and T. If the two
characters are equal, then increase the matching
length len. Repeating the process until the characters
are not equal or the characters have been marked. If
len equals to max, match,which means that we find a
new match with the max_match size, and therefore
we add the new match into matches. if len is greater
than max_match which means the collections in the
matches we found before are not the longest common
strings, therefore we should reset the matches to
empty, add the current maximum matching item into
matches, and reset max_match to len. Repeating the
process above until there are no unmarked character
in S and T.

Step 3: If the matches generated in the second step
is not empty, then add it to the set tiles and mark the
characters in matches.

Step 4: Repeating the second and the third step.
And the algorithm is ended.

3.2 Subgraph Isomorphism Algorithm

Subgraph isomorphism problem is an NP-hard prob-
lem (M. Garey and D. Johnson, 1979), however serv-
eral decades of studies have shown that some optimi-
zation algorithm is relatively fast,such as the back-
tracking search algorithm (Evgeny B. Krissinel and
Kim Henrick, 2004) proposed by E.B.Krissinel in the
University of Cambridge, and only in rare cases such
algorithm is slow. The process of the backtracking
search algorithm is as follows:

function BackTrace() {
if !Extendable(queue)

return
 end if

node vi = PickVertex()
X = GetMatchedNodes(v);

 for all ui in X
map.put(vi,ui);
If Validate() then

Marked(vi);
Marked(ui);
n=n>map.size()?n:map.size();
UpdateQueue(vi);
Backtrace();

else
map.remove(vi,ui);

end if
end for

}

4 THE REALIZATION OF THE
SIMILARITY DETECTION

The code similarity detection designed in this article
works in the process shown in Fig.1. Preprocess the
program code A and B and calculate the similarity
with the GST algorithm. Then according to the simi-
larity, the system determines whether further pro-
cessing with the subgraph iIsomorphism algorithm is
required. The algorithm finally return the similarity.

Figure 1: Similarity detection process.

4.1 Preprocessing

Due to the readability of the program code, there are
always several comments or text prompts in the code.
The programmer can just modify these comments or
text prompts. And preprocessing module is used to
filter out such useless information and avoid plagia-
rism level L1. Preprocessing module will first scan
the source code and delete the comments and empty
lines, as well as text prompts. Besides such useless
information, preprocessing module also should delete
the header files, because copycat add a lot of irrele-
vant header files will confuse similarity detection;
mostly the same but a lot of program header file, for
example, in C language, programmer will use these
standard header files such as stdio.h, stdlib.h, file.h,
math.h. For that even if there is no plagiarism the

CSEDU�2015�-�7th�International�Conference�on�Computer�Supported�Education

482

header files could be the same, so the header file in-
formation is not necessary in similarity detection.

4.2 GST Algorithm Implementation

1. Tokenization

Tokenization means converse the source code to a tag
string by lexical analysis, which can facilitate the
string matching. The concrete realization of tokeniza-
tion is changing the program code into an intermedi-
ate object called LangGrammerElem. LangGram-
merElem is divided into four types: SINGLE,
METHOD, LOOP and CONTROL. SINGLE ele-
ments include single-line elements, such as variable
declarations, assignments and function calls.
METHOD elements include functions, including the
main function. Loop elements include for, while, do-
while and other loop statement. Control elements in-
clude if, else, switch and other branch control state-
ments. LangGrammerElem is a recursive structure
because METHOD,LOOP and CONTROL elements
may contain more than one SINGLE elements. Table
1 shows an example of tokenization of a C program.

Table 1: Example of Tokenization.

 C Source Code Tokenization
1 void main() MAIN{
2 {
3 int number[20],n,m,i; DECLAREDECLARED

ECLARE DECLARE
4 scanf("%d",&n); METHOD_CALL
5 scanf("%d",&m); METHOD_CALL
6 for(i=0;i<n;i++) FOR{
7 scanf("%d,",&number[i]); METHOD_CALL }

8 move(number,n,m); METHOD_CALL
9 for(i=0;i<n-1;i++) FOR{
10 printf("%d ",number[i]); METHOD_CALL }

11 printf("%d",number[n-1]); METHOD_CALL
12 } }

2. Similarity Calculation

Similarity is using the result of string matching algo-
rithm-GST. GST is using the BR brute force algo-
rithm to compare two strings. However, we can use
KMP algorithm to optimize it. Or we can replace GST
with the RKR-GST algorithm which is better and also
based on the the famous string matching algo-
rithm,Karp-Rabin (Michael J. Wise, 1993).

4.3 Decision-making Process

Using the GST algorithm mentioned above we can
get a similarity of two program codes. In this paper,
to get a more precise result, we design a decision-
making module to decide whether we should use the
subgraph isomorphism algorithm to detect the simi-
larity. In our system, users can configure the similar-
ity threshold max and min. For example, we set max
to 0.9 and min to 0.5. If the similarity got by GST
algorithm is greater than max(0.9), we can make a
conclusion that there is plagiarism; in contrast, if the
similarity is less than min(0.5), we can assume that
there is no plagiarism. Otherwise, if the similarity is
between max and min, this situation is suspected of
plagiarism and therefore further detecting via the sub-
graph isomorphism algorithm is necessary. The set-
ting of similarity threshold max and min are consid-
ered as follows, on one hand we should try to ensure
the accuracy of the detection of plagiarism, the other
is that we should assures the high efficiency of the
system. For example, if min is too high the accuracy
of the detection would be decreased. And if min is too
small the efficiency of the system would be reduced.
Generally, max=0.9 and min=0.5 is relatively modest
according to the accuracy and efficiency of the sys-
tem.

4.4 Subgraph Isomorphism Algorithm
Implementation

Subgraph isomorphism algorithm implementation in-
cludes two parts. The first part convert the structure
of the program into a dependency graph. The second
is the subgraph isomorphism calculation.

1. The Dependency Graph Generation

For the programmers, no matter how they modify a
program they will not change the output of the pro-
gram. If they change the results, such plagiarism does
not make any sense. And the output is determined by
the program's data and its structure. The program's
data, namely the variables in the program, can be di-
rectly assigned a value. Also it is indirectly assigned
by another variable, which is a dependency relation-
ship of the variables. The structure of a program in-
cludes sequential process, branching process and
loop. Program dependence graph (PDG) can fully
represent the data and the structure of a program, and
therefore we use PDG in our system. In PDG, the
node represents a programming statement, and an
edge represents a data dependency and control flow.

Table 2: Types of program dependence graph node.

Type Description
Declare Declaration of variables

A�Similarity�Detection�Platform�for�Programming�Learning

483

Assign Assignment of variables,such as =,+=,++,--
Control if,else,while,for,do-while,switch
Jump goto,break
Call Function call
Return return
Case Case or default in switch

The nodes in PDG are divided into the types shown
in Table 2. The PDG edges are divided into two types:
control dependency edges and data dependency
edges. Control dependency edges represent control-
ling relationship, such as if, else or while control.
Data dependency edges represent that there are data
dependencies between nodes.

The following program is the source code for
summing.

int i;
int sum = 0;
for(i=0;i<=100;i++) {
 sum+=I;
}

And Fig. 2 shows the PDG after conversion.

Figure 2: Program Dependence Graph.

2. Similarity Calculation

Using subgraph isomorphism algorithm on PDG and
we can get the maximum common subgraph, and then
we can calculate the ratio of nodes number in the
maximum common subgraph(represented with T) to
that in the pattern graph(represented with P). And
the similarity sim=|T|/|P|.

5 EXPERIMENTAL ANALYSIS

In this study, we tested our system by two groups of
program codes. The first group contains five ques-
tions fetched from the programming language plat-
form. And each question is finished independently by
nine students. During the similarity detection test, to

any question, there are 9 source codes, and we com-
pared these source codes in pairs. That is, to one ques-
tion, there are 9X(9-1) /2 = 36 compare and a total of
five questions generated 36X5 = 180 comparisons. In
our experiments we set plagiarism threshold value
max = 0.9, min = 0.5. The detection results are shown
in Fig. 3.

Figure 3: Experimental results.

The second The second group only contains one ques-
tion, namely "Find out all the intimacy numbers less
than 3000”, and then the source code was modified in
plagiarism way by 12 students respectively. Also we
provide ten modifying references to the students as
follows: (1) completely copy the original program;
(2) modify the annotation; (3) alter the program for-
mat and blank lines; (4) change the name of variable;
(5) adjust the location of the code statement; (6) ad-
just the variable declaration position; (7) change the
location of the operand or operator in the expression;
(8) change the data type; (9) add redundant code; (10)
replace the control structure with a equivalent way.
Finally only 2 of the 12 plagiarism samples had the
similarity less than 0.9, 4 codes went through GST
similarity calculation, and the rest 8 codes tested by
subgraph isomorphism algorithm. We found that the
subgraph isomorphism algorithm was more accuracy
in program structure modifications than GST.
Similarity calculation based on string matching is
widely used in the plagiarism detection system. How-
ever, it cannot effectively detect plagiarisms if adding
numerous useless code or changing the code posi-
tions, due to the characteristics of the string matching
algorithm. JPlag tried to achieve a high detection ac-
curacy for the structure modification with a string
matching algorithm and failed finally. From the
course of experiment above, we came to the conclu-
sion that the Similarity Calculation based on subgraph
isomorphism algorithm was more accurate than that
based on string matching algorithm. String matching

CSEDU�2015�-�7th�International�Conference�on�Computer�Supported�Education

484

algorithm needs to find a matching set, which is
greater than the minimum matching length, and re-
ducing the minimum match length can increase the
similarity of the GST algorithm. But if a minimum
match length was too small, it would cause suspicion
of plagiarism for some code without coping. This sys-
tem used the GST and subgraph isomorphism algo-
rithm to calculate the similarity, achieving a better ac-
curacy compared to JPlag etc. for most copying
means, and the efficiency was also close to the string
matching algorithm.

6 CONCLUSIONS

In this paper, we use the well-known string matching
algorithm-GST and subgraph isomorphism algorithm
in the similarity detection system, and these classic
algorithms were applied to practical applications. The
detection processes were completed by four steps. We
tested our system by two experimental procedures, of
which the program source codes were submitted by
real students. The first result shows that the code sim-
ilarity detection system runs faster, with low accu-
racy. The second testing result demonstrates that the
system could detect the all the plagiarism level de-
fined by Faidhi and Robinson with high accuracy of
nearly 90%.

ACKNOWLEDGEMENTS

This work is supported by the National Natural Sci-
ence Foundation of China (61202494), The teaching
reform project of Hunan Province.

REFERENCES

Donaldson, L. John, Ann-Marie Laricaster and H. Paula
Sposato. A Plagiarism Detection System. Twelfth
SIGCSE Teachnical Symposium, St. Louis, Missouri,
1981:21-25.

G. Whale. Identification of Program Similarity in Large
Populations [J]. The Computer Journal, 1990,
33(2):140-146.

D. Gitchell and N. Tran. Sim: A Utility for Detecting Sim-
ilarity in Computer Programs [C]. In Proceedings of the
30th SIGCSE Technical Symposium, March 1999.

Michael J. Wise. YAP3: Improved Detection of Similarities
in Computer Program and other Texts [J]. Department
of Computer, University of Sydney, 2003.

M. H. Halstead. Elements of Software Science [J]. Elsevier
computer science library, New York, 1977 (17):5-7.

K. L. Verco, M. J. Wise. Software for Detecting Suspected
Plagiarism: Companng Structure and Attribute-Count-
ing Systems [J]. Computer Science, University of Syd-
ney, 1996:3-5.

J. A. W. Faidhi and S. K. Robinson. An Empmcal Approach
for Detecting Program Similarity within a University
Programming Environment [J]. Computers and Educa-
tion, 1987, 11(1):1-19.

Michael Gilleland. Levenshtein Distance, in Three Flavors
[J]. http://www.Merriampark.com/ld.htm.2007-4-18.

Michael J. Wise. Detection of Similarities in Student Pro-
grams: YAP’ing May Be Preferable to Plague’hag [J].
SIGSCI Technical Symposium, Kansas City, USA,
March 5-6, 1992:268-271．

Evgeny B. Krissinel and Kim Henrick. Common subgraph
isomorphism detection by backtracking search [J]. Soft-
ware-Practice and Experience 2004(34):591-607(DOI:
0.1002/spe.588).

Michael J. Wise. String Similarity Via Greedy String Tiling
and Running Karp Rabin Matching [J]. Department of
Computer Science, University of Sydney. December
1993.

M. Garey and D. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness [J]. Freeman,
1979.

A�Similarity�Detection�Platform�for�Programming�Learning

485

