
Addressing Issues of Cloud Resilience, Security and Performance 
through Simple Detection of Co-locating Sibling Virtual Machine 

Instances 

John O’Loughlin and Lee Gillam 
Department of Computing, University of Surrey, Guildford, GU2 7XH, Surrey, U.K.  

Keywords: Virtualisation, Xen, Cloud Computing, Co-location, Security, Performance. 

Abstract: Most current Infrastructure Clouds are built on shared tenancy architectures, with resources shared amongst 
large numbers of customers. However, multi tenancy can lead to performance issues (so-called “noisy 
neighbours”) and also brings potential for serious security breaches such as hypervisor breakouts. 
Consequently, there has been a focus in the literature on identifying co-locating instances that are being 
affected by noisy neighbours or suggesting that such instances are vulnerable to attack. However, there is 
limited evidence of any such attacks in the wild. More beneficially, knowing that there is co-location 
amongst your own Virtual Machine instances (siblings) can help to avoid being your own worst enemy: 
avoiding your instances acting as your own noisy neighbours, building resilience through ensuring host-
based redundancy, and/or reducing exposure to a single compromised host. In this paper, we propose and 
demonstrate a test to detect co-locating sibling instances on Xen-based Clouds, as could help address such 
needs, and evaluate its efficacy on Amazon’s EC2. 

1 INTRODUCTION 

Infrastructure Clouds offer compute resources for 
rent on-demand, typically on a per hour basis 
(Armbrust et al, 2009). One of the most popular 
offerings is the virtual server, which is the mainstay 
of providers of Infrastructure Clouds such as 
Amazon, Google and Microsoft. Infrastructure 
Clouds use virtualisation technologies such as Xen 
and KVM to offer physical servers as (often, 
multiple) virtual servers. Customers can rapidly 
acquire virtual servers, use them for as long as 
required, then release them back to the provider 
when no longer needed, with the equivalent resource 
then available for use by other customers. 

At any given time, a physical server in a Public 
Cloud could be running virtual servers, also referred 
to as instances, for a number of different users 
(customers). From the user’s perspective, shared 
tenancy raises various concerns, of which security 
and performance are key. For security, one particular 
concern is hypervisor breakouts, where hypervisor 
security can be compromised and a resulting 
privilege escalation can be used to obtain data from 
other customers’ instances. For performance, one 
such concern is noisy neighbours, where 

performance degradation occurs in one instance due 
to the (legitimate and not necessarily malicious) 
resource consuming actions of another.  

In such cases, the concern tends to focus on the 
security or performance impact from other users. 
Consequently, research has tended to be focused on 
identifying vulnerable instances, or hiding from 
potential attackers. However, identifying co-locating 
instances may be of even more use for the majority 
of users with respect to their own instances. We will 
refer to instances started by the same user, 
irrespective of when, as sibling instances in the 
remainder of this paper. 

Sibling instances that are co-located on the same 
host may be undesirable for the following reasons: 

1. They may degrade the performance of each
other when running compute bound 
workloads. 

2. They are all vulnerable to failure, or
degradation, of the underlying host. 

3. They are all vulnerable to other noisy
neighbours. 

4. There is a greater exposure to a security
compromise on a single host. 

Determining co-location is difficult, and to date, 
no simple methods have been proposed that would 
reliably allow for such detection. This paper aims to 

60 O’Loughlin J. and Gillam L..
Addressing Issues of Cloud Resilience, Security and Performance through Simple Detection of Co-locating Sibling Virtual Machine Instances.
DOI: 10.5220/0005485000600067
In Proceedings of the 5th International Conference on Cloud Computing and Services Science (CLOSER-2015), pages 60-67
ISBN: 978-989-758-104-5
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)



address this problem by exploring one kind of trace 
left by virtualization on Xen based Clouds - domain 
ids (domids).  The rest of this paper is structured as 
follows: In section 2 we review relevant related 
work to offer background to the problem; in section 
3, we discuss the Xen hypervisor and the generation 
of domain ids, and in section 4 we discuss the results 
of domids collected from a small sample (100) of 
virtual servers in the Amazon Cloud, and use this as 
a basis for tests for co-location in section 5. In 
section 6 we use domids collected from further 
samples to demonstrate likely recycling of resources. 
Finally, in section 7 we present our conclusions, and 
future directions of this work. 

2 RELATED WORK 

The ability for one instance to degrade the 
performance of other co-located instances is well 
known, and is referred to as noisy neighbours. Intel 
identifies the primary cause of the problem as the 
sharing of resources, such as the L2 cache, which 
cannot be partitioned (Intel, 2014); that is, there is 
no mechanism to limit how much of the resource an 
instance may consume. Consequently, it is possible 
for instances to use such resources 
disproportionately, to the detriment others.  

The standard metric for compute performance is 
execution time. Identifying if a running task is likely 
to suffer from poor performance i.e. need increased 
execution time, is difficult. On their production 
clusters, Google detects likely poor performance by 
repeatedly measuring a task’s cycles per instruction 
(CPI), i.e. the number of cycles required to execute 
an instruction, and comparing with the known CPI 
distribution (Zhang et al, 2013). If more outliers 
(defined as more than 2 standard deviations from the 
mean) are detected than expected, then performance 
of the task is likely to be poor. The protagonist, i.e. 
the noisy neighbour, is identified by correlating 
other instances’ CPU usages with the increase in 
CPI outliers for the victim. 

On a Public Cloud, information about when an 
instance is scheduled for CPU time by the 
hypervisor is only available to the provider, and is 
not subsequently made available to customers. As 
such, it is not possible to precisely state when an 
instance is running or not. A coarser approach would 
be to attempt to correlate instance performance using 
compute benchmarks. Such an approach would 
likely require a minimum number of co-located 
instances on a given host in order to be successful, 
and so this already requires co-location to be 
knowable, and there is the potential to miss a small 
degree of co-location per host. 

The problem of extracting information between 
co-locating virtual machines has been investigated 
by a number of authors. In (Zhang et al, 2012) the 
sharing of an L2 cache between VMs was shown to 
be vulnerability when it was demonstrated that one 
VM may extract cryptographic keys from another 
VM on the same host. Such an attack is known as an 
access driven side channel attack. Particularly 
noteworthy, is the fact that the attack was 
demonstrated on an SMP system. In this case the 
challenge of core migrations i.e. the scheduling of 
VMs onto different cores during its lifetime, as 
would be encountered in a Cloud environment, 
needs to be overcome. However, the demonstration 
was on a standalone Xen system rather than on a 
Public Cloud.  

The vulnerability of a shared cache relies, in 
part, on exploiting hypervisor scheduling. Methods 
to increase the difficulty of successfully using such 
attacks are under development (Lui, Ren and Bai, 
2014), and indeed, are already being integrated into 
Xen. Whilst such work mitigates fine grained 
attacks, denial of service attacks, which seek to 
obtain a large share of the L2 cache, are considered 
viable. 

This has led to work on targeted attacks in the 
Cloud, whereby an attacker seeks to co-locate with a 
specific target. This requires methods for 
determining co-location with the target before the 
attack can be launched. In (Ristenpart, Tromer, 
Shacham and Savage, 2010) a number of network 
based probes have been proposed, for example ping 
trip time and common IP address of dom0. In order 
to test the veracity of these methods they also use 
access timings of shared drives. No details are 
provided of the type of drive being used (local or 
network) or how the disk is being shared.   

However, as the authors state, a provider can 
easily obfuscate network based probes and this 
already appears to the case. From our experiments 
we can confirm this. Whilst access times to shared 
drives may potentially be used for detecting co-
locating siblings, there are a number of issues not 
discussed that need require further investigation. 
Perhaps most importantly, is the widely reported 
variation in disk read/write timings on EC2 
(Armbrust et al, 2009), which clearly needs to be 
accounted for in any test that proposes to use them. 

In (Bates et al, 2013) watermarking of network 
flows is proposed and demonstrated on a variety of 
stand- alone virtual systems. However, as the 
authors state, there a number of defences against 
watermarking in place in Public Clouds, and in 
particular on EC2, which prevented them from 
successfully using the tests.      

In (Zhang, Juels, Oprea and Reiter, 2011) a 
cache avoidance strategy is used so that instances 

Addressing�Issues�of�Cloud�Resilience,�Security�and�Performance�through�Simple�Detection�of�Co-locating�Sibling�Virtual
Machine�Instances

61



can co-ordinate their use (or avoidance) of the L2 
cache and measure resulting cache use. This, then, is 
a basis for detecting co-locating siblings. The 
method is applicable to Xen-based Clouds but 
requires modification of how the guest OS kernel 
manages memory, and has a performance overhead 
when cache use is turned off. Such an approach is 
technically challenging, as it involves kernel 
changes, and this is likely beyond the capabilities of 
most Cloud users. 

In summary, neither simple network probes nor 
network flows watermarking co-location tests work 
on EC2 due to measures in place, whilst cache 
avoidance technically challenging. There is a need 
for simple methods then.    

3 THE XEN HYPERVISOR 

The Xen system (Xen, no date) is a widely deployed 
hypervisor in Infrastructure Cloud systems, and is in 
use at Amazon, Rackspace, IBM and GoGrid, 
amongst others. The Xen system consists of the Xen 
hypervisor together with a privileged VM called 
domain 0 or dom0.  Xen is a bare-metal hypervisor, 
started by the BIOS, which in turn starts dom0. The 
dom0 is a privileged VM and can directly access 
hardware such as network cards and local disk 
storage. Dom0 provides a management interface for 
the Xen system, from which system administrators 
can launch and manage the life cycle of VMs. These 
VMs are unprivileged domains and are referred to as 
domUs. 

The Xen hypervisor is responsible for scheduling 
VM CPU time, managing memory, and handling 
interrupts. On an x86 CPU, dom0 privilege 
escalation is provided by running dom0 in ring 1, 
whilst the Xen hypervisor runs in ring 0 (and the 
unprivileged VMs, domUs, run in ring 3). DomUs 
gain access to hardware devices such as disks and 
network cards via calls to dom0.  

Each domain is given two identifiers, a domid 
and a UUID. The UUID is a unique identifier 
amongst a deployment of multiple Xen systems; that 
is, it uniquely identifies a domain amongst the set of 
all domains across the Xen systems. For example on 
EC2, the UUID assigned to a new instance will (in 
theory) be unique to that instance, at least within the 
Region it was launched in.  

In addition, a newly launched domain is assigned 
a domain identifier, referred to as the domid. This 
uniquely identifies domains on the physical server 
only. On EC2, instances on the same physical server 
will have different domids. However, these may well 
clash with domids for instances on other hosts. The 
domid is a 16 bit integer and allocation is 

monotonically increasing - Xen assigns the next 
available domid. This means that instances that are 
started one after the other will obtain consecutive 
domids. On EC2, therefore, we would expect co-
locating instances, started at the same time, to have 
consecutive domids – or, with other requests also 
being satisfied, being quite close to each other.  

Xen domids have a rather interesting property, 
and one which will be crucial to us later: an instance 
can increase its own domid simply by rebooting. An 
instance’s new domid will be its old domid plus the 
number of instances that have started on the same 
host since it was last rebooted, plus the number of 
reboots that have occurred. Domids do not, however, 
seem to survive an underlying host reboot, and in 
this case the next available domid is reset to 1. 

A user does not have administrative access to 
Xen on EC2 (or indeed any Public Cloud). However, 
we can determine an instance’s domid via Xenstore. 
Xenstore (Xenstore, 2014) is a data area exported 
from dom0 to domUs, the interface of which is a 
pseudo file system which can be mounted on 
/proc/xen within a guest. This is analogous to the 
/proc and /sys pseudo file systems in Linux which 
provide an interface for user space processes to the 
Linux kernel. Under a standard Xen system, a 
domain can extract information such as the domids 
of all the running domains and the CPU weightings 
assigned to them. As one would expect, on EC2 the 
data exported to the instances via Xenstore is 
restricted, and does not allow a domain to obtain any 
information other than about itself. However, it is 
particularly useful, for our purposes that a domain 
can obtain its own domid.  

In the next section we present the results of 
domids collected on EC2 via Xenstore from some 
120 instances. 

4 COLLECTING DOMIDS 

We can initially collect domids from instances 
launched on EC2, and examine the extent to which 
these hint at co-location. Using an Ubuntu precise 
12.04 AMI, we can readily launch 20 m1.small 
instances as a single request in the Region US-East-
1, in AZ us-east-1b. Each instance gets xenstore-
utils installed, and has the exported Xen store file 
system mounted on /proc/xen. In this setup, it is then 
possible to obtain an instance’s domid, uuid and 
cpuid. 

In Table 1, below, we list 20 domids obtained 
from just such a setup (on 07/10/2014), which are 
readily organised into three sequences of 
consecutive domids. For all instances, the CPU 
model was an E5-2651. 

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

62



Table 1: Consecutive Domids. 

Seq Domids 
1 563, 564, 565, 566, 567 and 568 
2 723, 724, 725, 726, 727, 728 and 729 
3 752, 753, 754, 755, 756, 757 and 758 

The simplest explanation for these consecutive 
domids is that the 20 instances are allocated to just 
three hosts. It may also be possible that these 
sequences are obtained simply by chance across a 
large number of hosts that are churning VMs at 
similar rates, and we discuss this possibility in 
section 5. 

The AZ us-east-1b appears homogeneous (just 
one CPU model) for the account we were using. To 
simplify concerns further, we instead examine 
domids in us-east-1a as this provides heterogeneous 
hosts. This helps to improve clarity over co-location 
since instances with consecutive domids on different 
CPU models are clearly not co-located, and so here 
the consecutive domids are more likely to indicate 
co-locating instances – unless, of course, cpuid and 
domid values are spoofed. 

We ran 5 requests, with 20 instances per request, 
on Amazon’s spot market for us-east-1b. Of the 100 
instances started, 3 were reclaimed and so we have 
results for just 97 instances. As before, we determine 
the domid, uuid and cupid. After this information 
was obtained, the instances were released. Each 
request was made at a different time over a 2 day 
period, from 07/10/2014 to 08/10/2014. In Table 2, 
below, we list only the sequences with consecutive 
domids found in each request, together with the 
instance CPU models – one of E5645, E5507 or E5-
2650. 

Table 2: Domids from Multiple Time-Separated Requests. 

Request, Date 
& Time 

Consecutive Domids and CPU Model 

1 
07/10/2014 
17:05 

242,243,244 –  E6545 
469,470 – E5645 
1499,1500 –  E5645 
1671, 1672 –  E5645 + E5-2650 
2627, 2628, 2629 – E5-2650 

2 
07/10/2014 
17:58 

None 

3 
07/10/2014 
21:57 

250, 251, 252, 253, 254, 255 ,256 –  E5645
732, 733 –  E5507 
1501, 1502 –  E5645 
2630, 2631, 2632 –  E5-2650 

4 
08/10/2014 
10:25 

263, 264, 265, 266 –  E5645 
501,502 –  E5645 
1505, 1506 – E5645 
2637, 2638, 2639, 2640 –  E5-2650 

5 
08/10/2014 
21:50 

None 

3 out of 5 of the requests evidence consecutive 
domids with E5645 CPUs, and all three contain at 
least 2 such sequences. The most common pattern is 
of two consecutive domids, and the longest sequence 
is 7. We note consecutive domids in request 1 of 
1671 and 1672, with different CPU models – E5645 
and E5-2650 respectively – which clearly cannot be 
co-located (unless, again, the cpuid is spoofed). In 
request 1, it would appear that 10 of 20 instances are 
not host separated, in request 3 this is 14, and in 
request 4 it is 12.  

5 CO-LOCATION TEST 

Based on the discussion and results in section 4 we 
can state that for any pair of instances the following 
initial conditions must be satisfied if the instances 
are more likely to be co-located: 

1. Same CPU model 
2. Values of domids are sufficiently close to 

each other  

For the second condition, we do not require that 
the domids be consecutive but should be sufficiently 
close to each other. In order to understand why 
consider the following: two sibling instances are 
scheduled onto the same host, but in between them 
being launched an existing instance is rebooted. In 
this case then, they will not have consecutive domids 
but the domids will differ by (at least) 2. We discuss 
how close is ‘sufficiently close’ later in this section. 

Whilst the two conditions listed above are 
necessary for co-location, they are not sufficient. It 
is entirely possible that the instances have been 
allocated to hosts whose next available domids were 
within the domid distance simply by chance. Indeed, 
this becomes more likely if the hardware platform 
and configuration is identical, and if the churn rate 
of VMs is the same. In fact, we have already seen an 
example in batch 1 of instances with domids of 1671 
and 1672 that had different CPU models. 

For the second condition, closeness of the 
domids depends in large part on how many instances 
a host has been configured to support. If a host 
supports k instances, then any instances started 
within a short period of time on the host would 
likely have their domids within k of each other. We 
cannot state this for certain, since it’s possible that 
within that period (1) a number of instances on the 
host were rebooted (2) a number of instances were 
terminated, and a number more were started.  

We also cannot state the value of k for a host 
with certainty, since it depends on its CPU model, 
the CPU configuration, how many sockets the host 
has, and the degree of over commitment. As an 
example, we have previously shown (blind ref, no 

Addressing�Issues�of�Cloud�Resilience,�Security�and�Performance�through�Simple�Detection�of�Co-locating�Sibling�Virtual
Machine�Instances

63



date) that m1.small instances on EC2 may be backed 
by 6 different CPU models, including the AMD 
2218 and the Intel Xeon E5-2651. The former is a 
dual core CPU, so a host with dual socket can have 
at most 4 cores. The latter, however, has 10 cores 
per socket and dual socket would have 20 cores. 
Further, if hyper threading is enabled (as is common 
practice on EC2), the core count rises to 40. Finally, 
the configured ratio of vCPUs to physical cores 
determines k. As EC2 does not advertise socket 
count, and only specifies vCPU to cores for some 
instance type, as a rule of thumb we will take ‘close’ 
to be 2 times the core count of a CPU, and times 
again by 2 if the CPU supports hyper threading. 

In table 3 below we list the 6 models we have 
identified to date as backing m1.small instances 
together with a domids closeness range based on the 
above reasoning: 

Table 3: CPU model and Domid Range. 

CPU Model Domid Range
(m1.small only) 

AMD 2218 4
Intel Xeon E5430 8
Intel Xeon E5507 8
Intel Xeon E5645 24
Intel Xeon E5-2650 32
Intel Xeon E5-2651 40

We are naturally led to the question of the 
likelihood that non-co-locating instances have 
domids near to each other. This question is similar to 
the well known ‘birthday’ and ‘almost birthday’ 
problems.  The birthday problem can be stated like 
this: How many people do we need in a room in 
order for there to be a 0.5 chance that at least 2 
people will share the same birthday? In this case the 
answer is 23. As we are interested in near domids 
our problem is more akin the ‘almost birthday 
problem’: In a room of 23 people how likely is it to 
have at least one pair of consecutive birthdays? An 
analytic solution to this is presented in (Dasgupta, 
2004), with the answer 0.89.  

Monte Carlo methods can be used to tackle the 
birthday problems stated above. We can assume that 
a birthday is equally likely to fall on any day in the 
year. We then generate random samples, of size 23, 
drawn from the uniform distribution. For each 
sample we record a success if there is the matching 
(or consecutive, depending upon the problem of 
interest) birthday. The number of successes divided 
by the number of trials is then the estimate of the 
probability. 

We note that the assumption that birthdays are 
uniformly distributed is not entirely accurate and 
that seasonal variations do exist. However, the 

uniform distribution does provide a good 
approximation. 

Can we apply such methods to estimate the 
probabilities of instances having consecutive, or 
near, domids by chance – and not because they are 
necessarily co-locating? An immediate requirement 
is a reasonable approximation for the distribution of 
domids across hosts. In theory, a domid is in the 
range [1, 65536], however we have so far only 
observed domids within a restricted range. Further, 
the domid distribution is likely CPU dependent to 
some degree.  CPUs with more cores, such as the 
E5-2651, will likely increment domids at a different 
rate to the E5645, as they can run more instances.   

We could assume that the range of domids for 
hosts with the same CPU model is equally likely to 
be between the observed minimum and maximum. 
Applying this to the E5645, that would be between 
252 and 20708. Using a Monte Carlo simulation, we 
find that 20 non co-located instances, placed on 
randomly selected hosts with E5645 CPUs, will 
have at least one pair of consecutive domids with a 
probability of 0.009. That is, approximately 1 in 100 
batches of 20 instances would have at least one pair 
with consecutive domids.  

However, it is not obvious that we can model the 
problem in a manner similar to the birthday 
problems. Consider for example, a power failure in 
one portion of a data centre resulting in a large 
number of E5645 hosts being rebooted. In this case 
then, we initially have a large number of E5645 
hosts with small domids. Instances allocated to these 
hosts would have a far greater chance of 
consecutive, or near, domids then our estimate 
would imply. Whereas birth dates do not tend to 
change in such a way.    

Indeed, it is not clear that the domid range should 
be well approximated by any statistical distribution. 
Further, the VM allocation mechanisms in use, 
which are not advertised, may well produce domid 
ranges whereby near domids are more likely, and 
perhaps considerably so, than our assumptions 
would allow for. As such, developing a model to 
accurately represent domid distribution across hosts 
is beyond the scope of this paper, so we do not rely 
on purely statistical arguments and instead look for 
further evidence for co-location, which we describe 
now. 

We have already seen that when an instance is 
rebooted it acquires a new domid. This will be the 
number of new instances started on the host plus the 
number of instance reboots. This observation allows 
us to add an additional condition: 

Suppose, then, that we have two instances both 
on hosts with the same CPU model. If they have 
identical domids they are not on the same host. 
Suppose that the instances’ domids are different and   

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

64



within a host’s domid range (from Table 3). We 
denote the lower domid by m, and refer to the 
instance with this domid by A. We refer to the 
higher domid by n and the instance with this domid 
by B. Upon rebooting A, its new domid must, 
simply, be greater than the domid of B. 

We now state this as a third necessary condition 
for co-location:  

3. A and B are instances with domids (m,n) 
respectively, where m < n.  If A and B are 
co-locating, then upon rebooting B, its new 
domid, p, must satisfy p > n. 

Of course, we still do not have a sufficient 
condition – instances may satisfy the above by 
chance. However, a user is free to reboot their 
instances as often as the like. So we can strengthen 
the condition as follows:  

a. Reboot the instance A, which has  
domid p,  k times. When rebooted, 
the instance with domid n will 
obtain a new domid, q, that must 
satisfy q > p + k.  

Whilst again this may be satisfied by chance, 
further repetition should lead to greater confidence 
as co-locating instances will satisfy these conditions 

To test this, we used 2 pairs of instances, the first 
pair with domids (7635, 7638) respectively, and the 
second pair (9536, 9538). As the first pair of 
instances were on E5-2650 hosts (condition 1), and 
have close domids (condition 2) they are good 
candidates for co-location. However, upon rebooting 
instance with domid 7635, its new domid was 7636, 
and so cannot be co-locating with the instance with 
domid 7638 (due to condition 3). For the second 
pair, again both with CPU model of E5-2650 
(condition 1) when rebooting the instance with 
domid 9536, its new domid was 9539, and so greater 
than 9538 (condition 3). We rebooted this instance a 
further 5 times and after the last reboot its domid 
was 9544. We then rebooted the instance with domid 
9538, after which its domid was 9545 (condition 3a). 
This more strongly suggests co-location, and we 
note again that a user is of course free to set the 
domid distance to any value they like by rebooting 
(we set to 6), and to repeat as many times as they 
wish. 

To now, we only considered instances started 
within a short space of time of each other. A user 
may have long running instances, and want to know 
if newly started instances are co-located with any 
long running instance. In this case, a long running 
instance’s domid is likely not representative of the 
current domids available from the host due to 
requests and reboots in the intervening period. In 
this case, rebooting the long running instance will 
update its domid, and bring the domid into range of 

new instances, allowing for further confirmatory 
tests to be run.  

We now state our test for co-location as follows: 
Two instances, A and B, chosen because they have 
domids, m and n, such that m < n are likely co-
locating if they satisfy the following: 

1. Same CPU model 
2. Values of domids are in range (by 

Table 3). That is, n –m <= k where k is 
the CPU domid range in Table 3.  

3. Upon rebooting  instance A, its new 
domid satisfies p > n. 
 

If 3 is satisfied, then we strengthen the condition as 
follows: 

   3a. Upon rebooting instance A a further k 
times, a reboot of B results in a new domid, q 
satisfying q > p + k.    

We reiterate that (3a) can be carried out as many 
times as the user wishes, for any value of k.  

6 RECYCLED RESOURCES 

In addition to some degree of co-location, we also 
observe that instances started from later requests 
appear to be scheduled onto the same hosts as earlier 
ones. This observation is also based on domids, as 
we explain now. 

In request 1 we obtain instances with domids 
1499 and 1500, and both have E5645 CPUs. In 
request 3 we obtain instances with domids of 1501 
and 1502, and in request 4 we have 1505 and 1506 – 
again all E5645. One explanation is that these 
instances were scheduled onto just one host.  As 
another example, we have the domids 2627, 2628 
and 2629 in request 1, followed by 2630, 2631 and 
2632 in request 3 and then followed by 2637, 2638, 
2639 and 2640 in request 4. All of the instances 
were running on a host with a E5-2650 CPU, so 
could again have been scheduled onto just one same 
host.  

In a follow up experiment, we launched 100 
instances and found 4 consecutive domids. We 
terminated these instances, and 5 minutes later 
started another 100 instances (5 of which were 
reclaimed). The domids in the two sets ranged 
between 759 and 7292. Comparing domids in the 
first set to the second, we found a remarkable 51 
domids in the first set with consecutive domids in 
the second set, 27 domids in the first set with a ‘plus 
2’ in the second, 7 at ‘plus three’ and 1 at ‘plus 4’.  
The likelihood of our second set of instances being 
on a completely different set of hosts to the first, but 
having domids so close to the first set would appear 
to be small. 

Addressing�Issues�of�Cloud�Resilience,�Security�and�Performance�through�Simple�Detection�of�Co-locating�Sibling�Virtual
Machine�Instances

65



Running 3 further requests, again of size 100, we 
find the same behavior of later instances appearing 
to be scheduled on to previously used hosts. This is 
also not just a feature of either on-demand or spot 
instances, as we observe this for both. Indeed, when 
running a batch of spot instances after a batch of on-
demand, we again observe such behavior, suggesting 
that requests are being satisfied from the same 
resource pool.  

It is unclear whether this might be a temporal or 
spatial issue. In the former, it may simply be the 
case that whilst there is a large amount of available 
resource, instances started shortly after earlier ones 
are scheduled back on to previously obtained hosts.  
In the latter, it may be that a user is restricted to a 
subset of the available resources. We know that EC2 
is vast in scale, with 28 AZs, most of which 
comprise at least 2 data centres - with the largest AZ 
having 6 - and each data centre houses between 
50,000 to 80,000 physical servers (Vanian, 2014). 
For each user, an AZ identifier, such as us-east-1a, 
relates to some pool of resources out of which 
requests are served. It is possible that AZ identifiers 
may map to a data centre in an AZ, or indeed to 
some rather smaller subset thereof. 

Recycling of resources has the clear potential to 
impact on a user’s ability to separate co-locating 
instances. In this case, a user may be interested in 
the number of attempts needed, and so the cost, to 
ensure separation. Perhaps more intriguingly, if a 
user is restricted to a subset of resources then 
launching a targeted attack against them on EC2 
would be much harder - you would only be able to 
target users that you share the same resource 
partition with. With sufficient data, it may be 
possible to answer these questions, and also estimate 
the size of resource pool available for use. From this, 
one might also estimate a likely number of people 
with whom the resource pool is shared, and could 
use this number to suggest the risk of security and 
performance issues arising. 

Finally, given the well established problem of 
performance variation due to the heterogeneous 
(Osterman et al, 2010, Iosup, Nezih and Dick, 2011) 
nature of Public Clouds, there has been interest in 
so-called ‘instance seeking’ or ‘deploy and ditch’ 
strategies (Farley et al, 2012, Zhuang, Liu, Ou and 
Arberer, 2013). The assumption behind these 
strategies is that a poorly performing instance can be 
released and a new, better performing one, found. 
However, as the performance of an instance is 
determined by the hosts it is running on, such 
strategies are rather less likely to produce 
performance gains in the face of resource recycling.   

 
 

7 CONCLUSIONS 

Identifying when sibling instances are co-locating is 
beneficial to users in a number of situations: 

1. Co-located instances may degrade the 
performance of each other when running 
compute bound workloads. 

2. Co-located instances are all vulnerable to 
failure, or degradation, of the underlying 
host. 

3. Co-located instances are all vulnerable to 
other noisy neighbours. 

4. Co-located instances imply is a greater 
exposure to a security compromise on a 
single host.  

Determining co-location is challenging, 
particularly so on Public Clouds. The simple 
approach we have presented in this paper is based on 
information provided from Xen, which is currently 
the dominant hypervisor technology used in Public 
Infrastructure Clouds. Xenstore provides an 
interface for domains to obtain information such as 
domids and uuids. However, as would be expected, 
on EC2 the interface is restricted so a domain can 
only obtain information about itself. But the domid 
is still very useful for our purposes. On a standard 
Xen system, domids are assigned consecutively 
when starting domains and are not recycled – except 
when the range itself cycles. Instances are assigned 
the next available (new) domid when rebooted. 
Domids also do not survive host reboots, which 
resets the next available domid to 1.  

These characteristics of domids allow for the 
formulation of the simple test for co-locating sibling 
instances as described, based on the same CPU 
model and close domids (per Table 3 for the various 
CPU models we have observed backing m1.small 
instance types). It is still, as we have elaborated, 
possible that such instances have close domids 
simply by chance, and indeed we have seen such 
examples. Simulation methods could be employed to 
determine the likelihood of this, but assumptions 
regarding the distribution of domids are required, the 
validity of which is difficult to establish. Whilst 
nearness hints at co-location, further evidence is 
required. 

Further evidence is provided by the observation 
that one instance can restrict the possible range of 
values for another instance’s domid – simply via 
rebooting itself and so increasing the next available 
domid value. The second instance, upon a reboot, 
can then in turn restrict possible domid values for the 
first instances. This process can be repeated as often 
as a user chooses, and at the domid distance the user 
chooses (the reboot value), and therefore each time 
this is done the probability that this happens by 

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

66



chance decreases. Further, this is not limited to 
instances started close to each other in time, but can 
be used when any pair of instances is suspected of 
co-locating. 

We should be clear that whilst passing the tests 
described in section 5 decreases the likelihood that 
the instances are not co-locating, increasingly so 
when repeated, we cannot say for certain that the 
instances are co-locating. From a pragmatic point of 
view, a user must balance the risk of having co-
located instances with the cost of (determining and 
then ensuring) separation. 

Determining such costs may be difficult as there 
appears to be a degree of recycling of resources, as 
described in section 6. This also has an immediate 
and significant consequence for the probability of 
success in carrying out a targeted side channel attack 
on a Public Cloud. Indeed, from our work here, we 
find the chance of intentionally co-locating with 
sibling instances to be fairly small. Co-locating with 
any intended target would therefore be more 
unlikely still, if it is indeed possible at all. We also 
note the impacts for so-called ‘performance seekers’, 
whereby a user releases back underperforming 
instances in the hope of acquiring better performing 
new instances. A user may simply be paying to 
obtain resources they have already had.  

In summary, our test is simple to implement and 
works on Linux, Windows and FreeBSD Operating 
Systems, with the appropriate Xenstore client tool. 
Future work is largely aimed at further exploration 
and confirmation of the ideas discussed in this paper.  
In particular, we would like to be able to identify 
behaviours of instances that can be detected by 
others as would confirm co-location, without 
incurring the effort involved with rewriting (for 
Linux) kernel memory management features to spot 
avoidance of shared cache use, and further ensuring 
that any such observation are not due to chance. 

REFERENCES  

Armbrust, M. et al. (2009) “Above the clouds: a Berkely 
view of cloud computing”. Technical Report EECS-
2008-28, EECS Department, University of California, 
Berkeley. 

Intel, (2014) [Online]. Available at: www.intel.com/ 
content/dam/www/public/use/en/documents/white-
papers/intel-saa-performance-white-paper.pdf. 
[Accessed on 02/01/2015] 

Zhang, X. et al. (2013) CPI^2: CPU performance isolation 
for shared compute clusters, Proc of EuroSys 2013, pp 
379-391. 

Zhang, Y. et al. (2012) Cross-VM Side Channels and their 
use to Extract Private Keys, Proc of the 2012 ACM 

Conference on Computer and communications 
Security, pp305-316.  

Ristenpart, T. Tromer, E.  Shacham, H. Savage, S. (2010) 
Hey you get off my Cloud, Proc of the 16th ACM 
Conference on Computer and communications 
Security, pp199-212. 

Bates, A. et al (2013) On Detecting Co-resident Cloud 
Instances using Network Flow Watermarking 
Techniques, International Journal of Information 
Security, Vol 13, Issue 2, pp 171-189. 

Lui, F. Ren, L. Bai, H. (2014) Mitigating Cross-VM Side 
Channel Attacks on Multiple Tenants Cloud Platform, 
Journal of Computers, Vol 9, No 4, pp1005-1013.  

Zhang, Y. Juels, A. Oprea, A. Reiter, M.K. (2011) Home 
Alone: Co residency detection in the cloud via side 
channel analysis, Proc 2011 IEEE Symposium on 
Security and Privacy, pp313-328. 

Xen, (no date) [Online]. Available at: www.xenproject.org 
[Accessed: 08/02/2015]. 

Xenstore, (2014) [Online]. Available at: 
http://wiki.xen.org/wiki/XenStoreReference 
[Accessed: 08/02/2015].  

Blind Ref, no date: 
Dasgupta, A. (2004) The Matching, Birthday and Strong 

Birthday Problem: A Contemporary Review, Journal 
of Statistical Planning and Inference 130, pp377-389, 
2004. 

Vanian, J., 2014. [Online]. Available at: https://gigaom. 
com/2014/11/12/amazon-details-how-it-does-
networking-in-its-data-centers/ [Accessed: 
08/02/2015]. 

Osterman, S., et al. (2010) A performance analysis of EC2 
cloud computing services for scientific computing, 
Cloud Computing, Lecture Notes of the Institute for 
Computer Sciences, Social-Informatics and 
Telecommunications Engineering, vol 34, pp115-131. 

Iosup, A. Nezih, Y. and Dick, E. (2011) On the 
performance variability of production cloud services. 
In Cluster, Cloud and Grid Computing (CCGrid), 
2011. 

Farley, B. et al. (2012) “More for your money: exploiting 
performance heterogeneity in Public Clouds”, in Proc. 
of the Third ACM Symposium on Cloud Computing, 
article no. 20. 

Zhuang, H.  Liu, X. Ou, Z. Arberer, A. (2013) “Impact of 
Instance Seeking Strategies on Resource Allocation in 
Cloud Data Centres”, in Proc. Of the IEEE Sixth 
International Conference on Cloud Computing, pp27-
34. 

Addressing�Issues�of�Cloud�Resilience,�Security�and�Performance�through�Simple�Detection�of�Co-locating�Sibling�Virtual
Machine�Instances

67


