
Database Evolution for Software Product Lines

Kai Herrmann1, Jan Reimann2, Hannes Voigt1, Birgit Demuth2, Stefan Fromm3, Robert Stelzmann4

and Wolfgang Lehner1

1Database Technology Group, Technische Universität Dresden, Germany
2Software Technology Group, Technische Universität Dresden, Germany

3Dresden-Informatik GmbH, Dresden, Germany
4iSAX GmbH & Co. KG, Dresden, Germany

Keywords: Database, Software Product Lines, Evolution.

Abstract: Software product lines (SPLs) allow creating a multitude of individual but similar products based on one
common software model. Software components can be developed independently and new products can be
generated easily. Inevitably, software evolves, a new version has to be deployed, and the data already existing
in the database has to be transformed accordingly. As independently developed components are compiled
into an individual SPL product, the local evolution script of every involved component has to be weaved into
a single global database evolution script for the product. In this paper, we report on the database evolution
toolkit DAVE in the context of an industry project. DAVE solves the weaving problem and provides a feasible
solution for database evolution in SPLs.

1 INTRODUCTION

With the directives 2008/43/EG and 2012/4/EU, the
European Commission made the tracking of explo-
sives mandatory in the European Union (EU) from 5th

April 2015 on. All explosives for civil use, including
detonators, primers, boosters, cords, etc., have to be
tracked during their whole life cycle in the EU. This
has to be applied from the manufacturing location or
import into the EU towards the end user. For instance,
a company producing black powder has to attach a
unique identifier to every unit it produces. A freight
shipping company transfers such units of black pow-
der to distributors. Another manufacturer buys a unit
of black powder to make primers, each getting a new
identifier. The life cycle of the primer and the black
powder continues to include further dealers and carri-
ers until they are eventually put in use in e.g. a small
stone quarry. All participants in the life cycle of ex-
plosives are required to store the tracking information
of each item as it passes their domain. The track-
ing information includes the identifier of each item
together with the time stamp and partner of the in-
coming and outgoing events. In the research-oriented
industry project euroTRACKex (http://www.tt-e.eu)
(eTe), we develop a demonstrator of a tracking soft-
ware for explosives that will help companies to fulfill

their obligations.
Independent of the application field, life cycle

tracking confronts the involved parties with liabilities,
which can only be handled feasibly with IT support.
All participants need basically the same software to
track specific goods. However, their detailed require-
ments vary considerably. Participants (small business
to large enterprise, producer to dealer to carrier to
consumer) significantly differ regarding their finan-
cial constraints, followed processes, implemented IT
landscapes, and national legislations.

With such a diverse customer base, it is econom-
ically infeasible to try designing and implementing
one software product that satisfies the requirements
of all potential customers. Likewise, it is uncompeti-
tive to implement a specialized solution for each cus-
tomer. Software product line engineering is a long
studied but rarely implemented technique to gain the
necessary flexibility in software development for han-
dling a very diverse customer base. An SPL is defined
by a common software model, which decouples the
development from the deployment. That allows dis-
tributing the development of the software components
among multiple parties. Ultimately, concrete software
products can be generated from the SPL according to
an individual configuration for each customer. Soft-
ware technology research provides tooling and meth-

125Herrmann K., Reimann J., Voigt H., Demuth B., Fromm S., Stelzmann R. and Lehner W..
Database Evolution for Software Product Lines.
DOI: 10.5220/0005484101250133
In Proceedings of 4th International Conference on Data Management Technologies and Applications (DATA-2015), pages 125-133
ISBN: 978-989-758-103-8
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)



ods to realize SPLs. Hence, SPLs are the technologies
of choice in the eTe project.

The problem of economic feasibility in the de-
velopment process aggravates as software evolves in-
evitably (Lehman, 1980). SPL components are en-
hanced, fixed, and updated. While evolution is an
important aspect of SPL research, the database layer
is typically not considered and vice versa. However,
in evolving SPLs the evolution of the database layer
becomes a central problem (Terwilliger et al., 2012;
Roddick, 1995). With every deployed new product
version, the database schema may change and the ex-
isting data has to be transformed accordingly. The
problem aggravates if the SPL components are imple-
mented by independent parties, each having a local
view. The database has to evolve globally, in one step,
as the product evolves. The decoupling of develop-
ment and deployment in SPLs poses a new challenge
to database evolution: When a customer’s product
evolves, many locally specified evolution steps have
to be weaved into a single global database evolution
script. This is called theweaving problem.

The actual extent of the weaving problem signif-
icantly depends on the chosen database system. Re-
lational systems ensure a strictly structured schema,
hence, the weaving of evolving components becomes
very complex. On the contrary, NoSQL systems keep
the data in a more flexible structure, which simplifies
the weaving problem by design. However, NoSQL
stores are still subject to the weaving problem. We
use a relational database, since many of its well estab-
lished features are indispensable for our project and
worth the effort to solve the weaving problem for re-
lational databases. Another requirement posed by our
industry partners is a lean architecture at runtime. The
products generated by the SPL are normal database
applications without any additional layers.

In this paper, we report on the eTe database evolu-
tion toolkit DAVE (DAtabase eVolution for tracking
of Explosives). DAVE solves the logical level of the
weaving problem, hence, performance optimization
and evaluations are out of scope. We introduce SPLs
as known in the software technology community in
Section 2. In Section 3, we describe the evolution of
SPLs and the resulting weaving problem. We present
DAVE in Section 4. Finally, we discuss related work
in Section 5 and conclude the paper in Section 6.

2 SPL ENGINEERING

As explained in the previous section, the initial situ-
ation of the eTe project was, that the software ven-
dor has many different customers each requiring sim-

eTe System

Centralized Decentralized Customer Data Stock Mgmt. Data

Master Data Mgmt.Stock Mgmt.Reporting System

constraint: Stock Mgmt. Data implies Stock Mgmt.

Feature optional mandatoryLegend: alternative group or group

Figure 1: Subset of the eTe feature tree.

ilar software systems. All of them contain the same
functional core but may differ in quantity or pres-
ence of other functional components. All customers
can decide independently which components to se-
lect for their business. Such related software sys-
tems are called asoftware family. Obviously, this
scenario contains a dimension of variability which is
necessary to be controlled and managed. It has to be
avoided that, for a new customer, an existing product
is replicated and then customized because of the sin-
gle source principle. It is hardly possible to consis-
tently fix potential bugs in each and every customer
product which may differ only slightly. This un-
managed redundancy results in huge maintenance ef-
fort (Murer et al., 2010). As a consequence, the tech-
niques and methodologies of SPL engineering (Pohl
et al., 2005) are applied in software development.

Software product line engineering defines a fam-
ily of closely related software systems consisting of
common and variable functionality in order to man-
age variability. It aims at separating configuration
knowledge, regarding what functionalities belong to
a concrete product, from the actual realization of that
product. Thus, one main benefit of SPL engineering is
that configuration knowledge is captured on a concep-
tual non-technical level, and hence can be accessed by
non-programmers easily. Therefore,problem space
andsolution spaceare distinguished. The former con-
sists of the conceptual configuration knowledge and
the latter contains the artifacts realizing desired func-
tions (Czarnecki and Eisenecker, 2000).

The variability in the problem space is commonly
described withfeature models(Kang et al., 1990)
whereinfeaturesare arranged in afeature tree(Chen
et al., 2005). Selecting one feature in the tree auto-
matically selects its parent feature. To determine if
a feature ismandatoryor optional it can be marked
as such. Furthermore, features can be combined into
or groupsor alternative groups. The former allows
selecting at least one child feature, whereas exactly
one feature must be selected (in terms of anxor se-
lection among the child features) from the latter. Be-
yond that,cross-tree constraintscan be specified over
the features to express relations not being able to be
reflected in the tree structure (Batory, 2005).

In Figure 1, a small subset of the eTe feature

DATA�2015�-�4th�International�Conference�on�Data�Management�Technologies�and�Applications

126



Component

Developer

Configuration

Partner

Deployment

Partner

D
e

v
e

lo
p

m
e

n
t

T
im

e

G
e

n
e

ra
ti

o
n

 

T
im

e

D
e

p
lo

y
m

e
n

t

T
im

e

Components

SPL

Feature Model

Products

Customer

C
o
m
p
o
n
e
n
t

E
v
o
lu
tio

n

P
ro
d
u
ct

E
v
o
lu
tio

n

D
a
ta
b
a
se

E
v
o
lu
tio

n

Figure 2: SPL engineering process.

tree is illustrated. It contains the root featureeTe
System having the mandatory child featureMaster
Data Mgmt. Its children (Customer Data andStock
Mgmt.Data) reside in anor group, thus at least one of
them must be selected. The two featuresReporting
System and Stock Mgmt are optional. If the for-
mer is selected, then either acentralized or a
decentralized reporting system needs to be se-
lected, since both features are contained within an
alternative group. Furthermore, the cross-tree con-
straint ensures that if theStock Mgmt.Data feature
is selected, theStock Mgmt feature must be selected,
too. A feature tree represents all possible configura-
tions whereas aconfigurationis a valid subset of all
features satisfying all constraints and selection rules.
Thus, a feature model is a compact and concise nota-
tion of a large number of possible configurations.

Transforming a conceptual configuration into an
executable software system poses two prerequisites.
First, amappingfrom problem space to solution space
must be specified to define the semantics of the par-
ticular features. Within the eTe project, we decided
to establish a 1:1 mapping of feature (problem space)
to software component (solution space) for the sake
of simplicity. Second, avariability realization mech-
anismis needed producing the final product w.r.t the
configuration. The final product is called avariant.

3 EVOLUTION OF SPLs

SPLs allow generating new products whenever the
customer’s requirements change or new versions of
chosen features are published. This flexibility hits the
wall at the database layer. Typically, customers want
to keep their data when updating their products. In-
evitably, evolution in SPLs includes the evolution of
databases, which is still a major headache in practice.
SPLs involve three major program life cycle phases:
development time, generation time, anddeployment

time, as illustrated in Figure 2. All three phases are
decoupled regarding when they happen (time) and in
whose domain they are performed (space).

At development time, acomponent developerim-
plements a component that realizes a specific feature
in the SPL. Components are purely additive and do
not alter the other components, but they may extend
others. If a component requires persistence, the de-
veloper defines the corresponding data model for the
component. To make a component available, the de-
veloper submits the code and a formal component de-
scription (name and its dependencies to other compo-
nents) to a central component repository.

At generation time, aconfiguration partnerselects
a specific set of features required by a customer. A
configurator tool provides a convenient UI for this
task. Once a variant of the SPL is configured, the
configurator compiles the product desired by the in-
dividual customer by resolving the selected features
to software components w.r.t. the mapping between
problem and solution space. The database schema
for the product results from the union of the database
schemas of the selected components.

At deployment time, adeployment partnerde-
ploys an individual product on its runtime platform
and makes it available to the customer. Since prod-
uct deployment is decoupled from component devel-
opment, many individual products can be deployed
easily for very different customers. During product
deployment, the database is set up and tables are cre-
ated according to the product’s database schema.

Evolution can occur in all three phases. At de-
velopment time, developers improve, update, refactor,
and debug their components including the underlying
data model. We call thiscomponent evolution. At
generation time, customers request reconfiguration of
their products, because they want to add/remove com-
ponents or update to a new component version, re-
sulting inproduct evolution. At deployment time, we
have to consistently evolve an existing database, in-
cluding schema and data, according to the new prod-
uct version. This isdatabase evolution. Database
evolution is necessary if the data model of a product
changes in component or product evolution and these
changes are actually rolled out to the customer.

Consider the small example in Figure 3. It shows
the component evolution of the componentsC1 andC2
with their respective data models. The data model of
C1 consists of a tableArticle with three columns.
C2 builds on that data model and adds the column
weight to Article. Say a customer runs a product
with configuration{C1} and wants to change to con-
figuration{C1,C2}. In case of this product evolution,
the database has to evolve, too. After adding the col-

Database�Evolution�for�Software�Product�Lines

127



Article
(…, weight)

Article
(id, name, description)

Article
(…, value, measure)

General_Cargo
(…, value, measure)

General_Cargo
(id, name, description)

Bulk_Cargo
(id, name, description)

C
o

m
p

o
n

e
n

t E
v

o
lu

tio
n

Software Product Line

Component Evolution DependencyLegend: {

{C1}→ {C1,C2}

{C1}→
{

C1,C
′
2
}

{C1}→
{

C′
1
}

{C1}→
{

C′
1,C

′′
2
}

{C1,C2}→ {C1}

{C1,C2}→
{

C′
1
}

{C1,C2}→
{

C1,C
′
2
}

{C1,C2}→
{

C′
1,C

′′
2
}

{

C1,C
′
2
}

→{C1}
{

C1,C
′
2
}

→
{

C′
1
}

{

C1,C
′
2
}

→
{

C′
1,C

′′
2
}

{

C′
1
}

→
{

C′
1,C

′′
2
}

{

C′
1,C

′′
2
}

→
{

C′
1
}

Figure 3: Example for evolution in SPLs.

umnweight, the evolution has to addweight values
for all existing articles, e.g., by inferringweight val-
ues from the product description.

Later on, a new version ofC2, calledC′
2, is re-

leased. Instead ofweight, C′
2 uses the two columns

value and measure to represent the weight of an
article. This component evolution does not cause a
database evolution as long as no product is evolved to
includeC′

2. If a product evolves to includeC′
2, the new

columnsvalue andmeasure of already existing arti-
cles must be populated, e.g., splitting existingweight
values (e.g. 5 kg, 500 g) intovalue andmeasure.

In another component evolution,C1 is updated
to C′

1. For C′
1, the component developer decides to

change the data model. Because general cargo and
bulk cargo are often handled separately, the devel-
oper horizontally partitions theArticle table into the
tablesGeneral_Cargo and Bulk_Cargo. C′

2 is not
compatible with this new versionC′

1. The developer
of C′

2 reacts and updates the component toC′′
2 . In C′′

2 ,
the additional columns only extendGeneral_Cargo
since bulk cargo does not have any fixed weight.

As shown in the example, the data transformation
for an evolution step, e.g., inferring new values or
splitting existing values, depends on the application
logic that uses the data. In the context of SPLs, only
the component developer knows the specifics of the
application logic and is able to specify the data trans-
formation necessary for the component’s evolution.

The example in Figure 3 already involves five pos-
sible configurations of a product and thirteen possible
product evolutions, in total. The large – in the ex-
treme case exponential – number of possible config-
urations and product evolutions in SPLs is intended
by design. The combinatorial explosion is the true
power of SPLs and allows providing highly individual
products to customers. Nevertheless, it is absolutely
infeasible for a component developer to consider all
product evolutions a component may be involved in.
In SPLs, database evolution can be specified only lo-

cally at development time with a scope limited to the
new component, its predecessor, and all components
the new component depends on.

At deployment time, when database evolution ac-
tually happens, the locally defined evolution scripts
form one global evolution script. The global evolu-
tion script carries out the database evolution for one
specific product evolution. The key challenge to im-
plement database evolution for SPLs is to weave all
relevant local evolution scripts to one global evolu-
tion script. We call this the weaving problem.

Consider an evolution from{C1,C′
2} to {C′

1,C
′′
2}

from Figure 3. The local script for the evolution
C1 → C′

1 creates the two new tablesGeneral_Cargo
and Bulk_Cargo, moves the data fromArticle
to the new tables, and dropsArticle. The local
script for the evolutionC′

2 →C′′
2 creates the columns

value and measure in the General_Cargo table,
moves data from theArticle table to the new tables,
and removes the columnsvalue andmeasure from
Article table. Obviously, these local evolutions have
dependencies, which prohibit sequential execution.

The weaving problem has two aspects. On the
logical level the global evolution script has to be cor-
rect. It must not result in a database different from
the component developers’ intent. For each compo-
nent of the new product the resulting database has
to provide the expected structures. On the physical
level the global evolution script has to be efficient. It
is efficient if it performs the necessary change to the
database in the shortest possible time with a minimum
amount of resources. DAVE solves the weaving prob-
lem on the logical level. The physical optimization
of a global evolution script could not be addressed
in the eTe project so far and is open for future work.
Hence, there is no evaluation containing e.g. perfor-
mance measures. We focus on the logical level and
validate the feasibility within our industry project.

4 DATABASE EVOLUTION
TOOLKIT DAVE

DAVE implements a demonstrator for the eTe SPL in-
cluding a solution for the logical level of the weaving
problem. In this section, we describe the developed
process and its tool support. Well in line with SPL
engineering, DAVE stores all required information for
data management in an abstract format locally within
each component. During the configuration and gen-
eration of a customized product, this information is
simply collected from all participating components.
Finally, DAVE generates one global database evolu-
tion script for each deployment, depending on the pre-

DATA�2015�-�4th�International�Conference�on�Data�Management�Technologies�and�Applications

128



DB 

Development 

Tool
Component

Database Folder

Configurator

DB 

Deployment

Tool

D
e

v
e

lo
p

m
e

n
t

G
e

n
e

ra
tio

n
D

e
p

lo
y

m
e

n
t

Previous version, 

Dependencies

Configuration

SPL Repository Customer Product

Database 

Folders

Database 

Folders

Database 

Folders
Component

Customer Product

Database 

Folders

Database 

Folders

Database 

Folders

Current Configuration

Figure 4: Data management process for SPL engineering.

vious and the new configuration.
The data management process of DAVE, as shown

in Figure 4, is based on the general process descrip-
tion for SPL engineering in Figure 2. The develop-
ers use the domain-specific language (DSL) HEDL to
describe the data model. When developing a com-
ponent, we create adatabase foldercontaining the
local database evolution steps, which are defined us-
ing Liquibase(http://www.liquibase.org). Liquibase
simplifies the handling of database evolution, is inde-
pendent of the concrete relational DBMS, and allows
determining the difference between given schemas.
TheDB Development Toolcreates the database folder
based on the new component and its previous version,
if existing. We discuss the DB Development Tool in
Section 4.1. Generation time requires no additional
database-related tool support. Basically, all database
folders of the selected components are collected and
included in the final customer product. At deployment
time, theDB Deployment Toolweaves the collected
information into one executable Liquibase script, as
described in Section 4.2. The DB Deployment Tool is
the heart of DAVE; this is where the weaving problem
is solved.

4.1 DB Development Tool

The single components of an SPL are developed sep-
arately. It is unforeseeable, which other components
will also be part of a deployed product. Nevertheless,
these other components may use or extend the com-
ponent’s data model. The DB Development Tool of
DAVE ensures, that all necessary information about a
component is collected locally at development time to
deploy any product globally.

Input. Developers specify a component’s
data model using Hibernate Entity Definition Lan-
guage (DevBoost, 2013) (HEDL). HEDL is a DSL
being able to generate the Java Persistence API (JPA)

layer of an application, which is responsible for per-
sisting and accessing data in a relational database.
HEDL has a concise syntax for defining the persis-
tence layer of a specific domain. A HEDL document
is transformed to Java entity classes and data access
object classes automatically. HEDL can be used for
Hibernate or any other JPA implementation. For in-
stance, the componentC1 from the example in Fig-
ure 3 is described as shown in Listing 1.

1 Article {
2 String identifier;
3 String name;
4 String description;
5 }

Listing 1: HEDL model forC1.

A major advantage of HEDL is the intuitive
and powerful mechanism for data model extensions
through composition. Thus, new persistence layers
can be generated by reusing and extending existing
domain models. Listing 2 shows the HEDL file of the
componentC′

2, which adds further attributes toC1.

1 extendModel="c1.hedl"
2 Article {
3 Int value;
4 String measure;
5 }

Listing 2: HEDL model forC2.

The developer ofC′
2 directly works with a gener-

ated Java class for theArticle, including the defined
attributes. A Hibernate mapping is generated, which
allows creating and accessing the database schema.
DAVE’s DB Development Tool takes the new schema,
the previous version of the component, and all depen-
dencies of the new version as input.

Output. The output is a representation of the
delta between the previous and the current version
of the component. The DB Development Tool adds
the database folder to the component’s source, con-
sisting of three files and two subfolders. First, the
file dependencies.xml collects the components and
their versions, which are used or extended by the com-
ponent project. Second, theini.liqui.xml file is
the Liquibase script which creates the component’s
schema from scratch or by extending existing depen-
dencies. Third, theevolve.liqui.xml file contains
Liquibase operations to transform the previous ver-
sion of the component into the new one. Fourth, the
history folder contains the database folders from
all previous versions of the component. This is nec-
essary to perform updates even on older versions
than the previous one. Fifth and finally, thesql
folder contains SQL scripts, which are linked from

Database�Evolution�for�Software�Product�Lines

129



ini.liqui.xml andevolve.liqui.xml, describing
the evolution of the data. To realize the evolution
of existing data during deployment, the DB Devel-
opment Tool generates SQL templates into thesql
folder for each new column or table. The developer
has to fill these templates manually. Nevertheless, the
generated templates guide the developer through this
task. Given the evolution toC′

2, DAVE generates an
update statement template for the new columnsvalue
andmeasure of theArticle table. The developer can
assume the old tableArticle to be still present.

Implementation. The algorithm to create the
initialization file and the evolution file uses two
databases (DBnew and DBref ) and Liquibase’s fea-
ture to compare given database schemas. To cre-
ate theini.liqui.xml file, three steps are neces-
sary: First, we use the generated Hibernate map-
ping to create the component’s database schema to
DBnew. The extension mechanism of HEDL inher-
ently initializes all dependencies. Second, we create
the schema of a customer product, containing exclu-
sively the component’s dependencies, using their ini-
tialization scripts, toDBref . Finally, we use Liquibase
to compare the two database schemas and retrieve the
ini.liqui.xml file. To enrich this schema evolution
with data evolution, we create SQL templates for ev-
ery new column or table, store them in thesql folder,
and link them from the Liquibase script. The tool gen-
erates anUPDATE statement for each table including
new columns and anINSERT statement for each new
table. The component developer has to use these tem-
plates to specify the new values depending on the old
data, provided by the existing dependencies. For in-
stance, the initialization script of componentC′

2 adds
two columns to the tableArticle and generates tem-
plates for the corresponding update statements. Af-
ter completing the SQL templates, the initialization
script is finished and ready to use for any initial de-
ployment of the component.

If there is a previous version of the component,
the evolution is stored in theevolve.liqui.xml file.
The DB Development Tool creates it by executing the
following four steps: First, we create the schema of
the new component toDBnewusing its Hibernate map-
ping. Second, we initialize the previous version using
the initialization script of the predecessor and the pre-
decessor’s dependencies toDBref . Third, we adjust
the dependencies to match the new component ver-
sion. This includes three possible scenarios: adding
a dependency (ini.liqui.xml), removing a depen-
dency (inverse ofini.liqui.xml), and updating a
dependency (evolve.liqui.xml). Finally, we again
use Liquibase to diff betweenDBnewandDBref to ob-
tain the evolution scriptevolve.liqui.xml and gen-

erate the SQL templates for data evolution. When fill-
ing the generated SQL templates, the developer may
assume the previous version to be still present.

Consider the evolution fromC′
2 to C′′

2 , in the gen-
erated evolution script, we add the two attributes to
General_Cargo. We do not need to remove the pre-
vious columns added toArticle, since this whole re-
lation is dropped by the evolution ofC1 to C′

1. How-
ever, in the SQL statement templates we assumed the
Article table to be still present and transform the
data to the new version. This database evolution script
is sufficient to execute any deployment including the
database evolution between arbitrary configurations.
Please note, that DAVE does not support evolution to
predecessor versions of components.

4.2 DB Deployment Tool

After the development and the generation, a concrete
customer product is ready to being deployed. If the
customer already runs an older version of his prod-
uct, the deployment has to keep the old data and
transform it according to the new configuration. The
concrete evolution script will be derived by DAVE’s
DB Deployment Tool from the generic description in
the database folder of each component. As a conse-
quence, the deployment of products and the develop-
ment of single components are decoupled completely.

Input. The SPL contains components, including
their created database folders. After the customer
chooses the desired features from the feature model,
the corresponding components are composed to the fi-
nal product. The local database folders of these com-
ponents are simply collected and serve as input for
the deployment step. Another important input is the
previous product and its configuration (the set of pre-
viously installed components and their version num-
bers). This is necessary to determine for each compo-
nent whether it is evolved, added, removed, or stays
unchanged.

Output. The DB Deployment Tool creates a
global Liquibase script for the database evolution. It
ensures the correct evolution of both schema and data
of the currently installed product to the new one.

Implementation. To generate a correct database
evolution script for a customer’s deployment, the DB
Deployment Tool considers the currently installed
configuration and derives the necessary steps to ob-
tain the new one. Figure 3 shows possible configu-
rations according to the example in Figure 3. As an
example, let us consider the product evolution from
{C1,C′

2} to {C′
1,C

′′
2}. Given the new and the previous

configuration, DAVE determines the sets of added, re-
moved, and updated components and collects the re-

DATA�2015�-�4th�International�Conference�on�Data�Management�Technologies�and�Applications

130



quired Liquibase operations respectively. These oper-
ations originate either from the initialization script, its
inverse, or the evolution script. In case a component’s
update skips versions, the tool also includes the corre-
sponding evolution scripts from thehistory folder.

DAVE’s DB Deployment Tool interleaves the col-
lected database operations, since it is not feasible
to simply execute the whole scripts sequentially.
Evolution steps may influence each other. For in-
stance, the evolution ofC1 to C′

1 creates the tables
General_Cargo and Bulk_Cargo, inserts the data
from the tableArticle accordingly, and finally drops
Article. The evolution of the additional component
from C′

2 to the versionC′′
2 adds the two columns to

General_Cargo and inserts the data fromArticle.
It can be applied neither before nor after the evolution
of the componentC1. If the evolution toC′′

2 is ex-
ecuted first, the tableGeneral_Cargo is not created
yet and the addition of the new columns and the in-
sertion of data would fail. If the evolution toC′′

2 is
executed last, the originalArticle table is already
dropped including the data in the additional columns.
This is, in its essence, the weaving problem.

The DB Deployment Tool solves the weaving
problem with the help of operation groups. It
groups database operations of the same kind across all
components and arranges these groups sequentially.
Mainly, there are seven phases in the resulting evolu-
tion script. First, the DB Deployment Tool executes
all database operations that add information capacity
to the schema, like (1)creating tablesor (2) adding
columns. Afterwards, (3) all obsoleteconstraints are
removedto (4) executedata evolution. At this point,
DML and DQL operations can access new schema el-
ements and also the old ones. The previously existing
data is still fully available and can be inserted into the
also existing new structures. Finally, the DB Deploy-
ment Tool executes all database operations that reduce
the information capacity, like (5)removing columns
or (6) dropping tables, to obtain the desired schema.
This also includes (7)adding new constraints.

Within an operation group, the DB Deployment
Tool orders all operations according to the topological
order of the original components regarding their de-
pendencies. Multiple operations of one component in
one group remain in the order specified by the devel-
oper. In our example, the previously installed product
uses theArticle table with the additionalvalue and
measure attributes. The final evolution script would
start by (1) creating the new tablesGeneral_Cargo
andBulk_Cargo, (2) adding thevalue andmeasure
attribute, and (4) inserting the data ofC1 into C′

1
and updating the additional attributes ofC′′

2 using the
original Article table. Afterwards, it (6) drops the

Article table and (7) adds the not-null constraints to
the new tables. This finally creates the desired schema
including the transformed data.

5 RELATED WORK

While software product lines are an exhaustively stud-
ied subject in software engineering, database man-
agement issues in SPLs are underrepresented in re-
search. According to the perception that a database
consists of its schema and its data, we distinguish
database schema evolution and accordant data evolu-
tion in SPLs. Both aspects of database evolution in
SPLs are relevant for the consistent evolution of com-
ponents and products as motivated in Section 3.

Variable database schemas in SPLs are studied
in (Khedri and Khosravi, 2013) and (Abo Zaid and
De Troyer, 2011). Modeling data variability in SPLs
is typically based on feature modeling as used in SPL
engineering. In (Abo Zaid and De Troyer, 2011), a
variable data modelis introduced. Before variability
of data conceptsin the variable data model can be de-
fined,persistency featuresin the feature model of the
SPL are specified by the extended Feature Assembly
Modeling Technique (Abo Zaid et al., 2010). How-
ever, this technique only considers the initial deriva-
tion of a product’s database schema.

The evolution of a database schema for an SPL
product is analyzed in (Khedri and Khosravi, 2013).
Delta-Oriented Programming is used to add delta
modules, defined by SQL DDL statements, to a core
module incrementally, based on the product config-
uration. Database constraints are generated for the
delta scripts to ensure a valid global database schema.

To the best of our knowledge, there is no research
on data evolution in software product lines. In our un-
derstanding of SPL evolution (cf. Figure 3), compo-
nent evolution is closely related to database refactor-
ing (Ambler and Sadalage, 2006). There is sufficient
support for database evolution of one running prod-
uct, like e.g. Liquibase or Rake. However, the SPL
evolution, hence the weaving problem, still requires
in-depth research. It requires the generation of global
evolution scripts from the component’s local scripts.
Since the management of a software product line and
the derivation of its products is mostly model-based,
results from model-driven engineering research are
relevant. In (Milovanovic and Milicev, 2013) it is re-
ported about a pragmatic and efficient solution to the
problem of schema evolution affecting existing pro-
grams, in the domain of model-driven development
of database applications using Unified Modeling Lan-
guage (The Object Management Group, 2010) (UML)

Database�Evolution�for�Software�Product�Lines

131



models. The main contribution of this paper is a semi-
automatic algorithm for differencing structural UML
models and upgrading the relational schema, as well
as a tool that has been evaluated in a large-scale e-
government human resources management system.

6 CONCLUSIONS

In the eTe project, we laid our focus on an impor-
tant but widely unstudied problem: database evolu-
tion in SPLs. SPLs decouple the development of the
components from the actual deployment of products.
The developer of a component specifies its local data
model. According to a customer’s requirements, such
components are composed to a product. The global
database schema of such a product is derived by com-
posing the local schemas of all components.

Since evolution is inevitable, the customer’s prod-
uct will evolve, including the addition, removal, or
update of components. The customer relies on a con-
sistent database, which has to be evolved accordingly.
Consequently, the database evolution during deploy-
ment requires to derive the specific global evolution
script from given local definitions within the compo-
nents. Creating a correct (logical) and efficient (phys-
ical) evolution script is called the weaving problem.

Obviously, this is a general problem, which is not
restricted to the eTe scenario. To achieve a valuable
general solution, we first discussed the general prob-
lem of (database) evolution in SPLs and formulated
general challenges. We presented DAVE, a database
evolution toolkit for the eTe SPL. It weaves the local
evolution scripts to a global evolution script by group-
ing the single database operations into groups, which
are then executed sequentially. Within each group,
the operations follow the topological order according
to defined dependencies between components. Within
each component, the original order is kept.

DAVE solves the weaving problem on the logical
level. We successfully tested DAVE on realistic evo-
lution scenarios based on the detailed experience of
the industry partners. It emerged as being capable of
realizing database evolution for eTe. DAVE retains
a lean runtime architecture, since DAVE does not in-
troduce any additional layer at runtime for database
evolution. Developers can rely on commonly known
tools and technologies, which was an important re-
quirement of the eTe project.

The concepts of DAVE are universal and applica-
ble to SPLs in general. SPLs and their evolution are
promising trends in software and database technology
and we consider DAVE as an important contribution
particularly because of its practical background.

ACKNOWLEDGEMENTS

We thank our partners of the eTe project. This re-
search has been co-funded by the European Regional
Development Fund in the project #100135681/2804.

REFERENCES

Abo Zaid, L. and De Troyer, O. (2011). Towards Modeling
Data Variability in Software Product Lines. InEn-
terprise, Business-Process and Information Systems
Modeling, volume 81 ofLecture Notes in Business In-
formation Processing. Springer Berlin Heidelberg.

Abo Zaid, L., F., K., and De Troyer, O. (2010). Feature As-
sembly Modelling: A New Technique for Modelling
Variable Software. In5th International Conference
on Software and Data Technologies Proceedings, vol-
ume 1, pages 29 – 35. SciTePress.

Ambler, S. W. and Sadalage, P. J. (2006).Refactoring
Databases: Evolutionary Database Design. Addison-
Wesley Professional.

Batory, D. (2005). Feature Models, Grammars, and Propo-
sitional Formulas. In Obbink, H. and Pohl, K., ed-
itors, Software Product Lines, volume 3714 ofLec-
ture Notes in Computer Science, pages 7–20. Springer
Berlin Heidelberg.

Chen, K., Zhang, W., Zhao, H., and Mei, H. (2005). An
approach to constructing feature models based on re-
quirements clustering. InRequirements Engineering,
2005. Proceedings. 13th IEEE International Confer-
ence on, pages 31–40.

Czarnecki, K. and Eisenecker, U. W. (2000).Genera-
tive Programming: Methods, Tools, and Applica-
tions. ACM Press/Addison-Wesley Publishing Co.,
New York, NY, USA.

DevBoost (2013). HEDL - Hibernate Entity Definition Lan-
guage (Hibernate DSL - User Guide).

Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E., and
Peterson, A. S. (1990). Feature-oriented domain anal-
ysis (FODA) feasibility study. Technical report, DTIC
Document.

Khedri, N. and Khosravi, R. (2013). Handling Database
Schema Variability in Software Product Lines. InSoft-
ware Engineering Conference (20th APSEC.

Lehman, M. M. (1980). Programs, life cycles, and laws of
software evolution.Proceedings of the IEEE.

Milovanovic, V. and Milicev, D. (2013). An interactive tool
for UML class model evolution in database applica-
tions. Software & Systems Modeling, pages 1–23.

Murer, S., Bonati, B., and Furrer, F. J. (2010).Managed
Evolution: A Strategy for Very Large Information Sys-
tems. Springer Berlin/Heidelberg.

Pohl, K., Böckle, G., and Van Der Linden, F. (2005).Soft-
ware Product Line Engineering - Foundations, Prin-
ciples and Techniques. Springer Berlin/Heidelberg.

Roddick, J. F. (1995). A survey of schema versioning is-
sues for database systems.Information & Software
Technology, 37(7):383–393.

DATA�2015�-�4th�International�Conference�on�Data�Management�Technologies�and�Applications

132



Terwilliger, J. F., Cleve, A., and Curino, C. A. (2012). How
clean is your sandbox? InICMT, volume 7307.

The Object Management Group (2010). OMG Unified
Modeling Language TM (OMG UML), Superstruc-
ture, Version 2.3.

Database�Evolution�for�Software�Product�Lines

133


