
Interaction Modeling in PRACTICE
CTT Vs. SCXML - A Comparison of Two Practical Solutions Applying Interaction

Modeling Techniques for Multimodal User-System Interaction

Miroslav Sili, Matthias Gira, Markus Müllner-Rieder and Christopher Mayer
AIT Austrian Institute of Technology GmbH, Health & Environment Department, Biomedical Systems, Vienna, Austria

Keywords: Interaction Modeling, User Interaction, Concur Task Trees, CTT, Statecharts, SCXML, Multimodality,
Avatar based Systems, Adaptivity.

Abstract: Nowadays, we are surrounded by various devices to interact with digital media and services. Each device
and its in- and output modalities can support users’ abilities differently. Thus, it is important to cover a wide
range of interaction devices. Modeling user interaction instead of modeling single user interfaces
customized to the device is a starting point to do so. This work targets the comparison of two different user
interaction modeling techniques used for the design of multimodal user interfaces. Next to the general
concepts of the two interaction modeling techniques, the corresponding execution frameworks and the
practical exploration results are presented. This paper summarizes advantages and disadvantages of each
approach and the comparison clarifies that the CTT approach applied in AALuis is more applicable for large
and complex user interaction scenarios. The SCXML approach applied in the ibi project is more suitable for
lightweight and structurally simpler user interaction scenarios.

1 INTRODUCTION

Model-based user interfaces and user interaction
modeling has been a widely discussed research area
since the early 90s. Inspired by the very first
commercially available user interface builders,
interface toolkits, and user interface management
systems researchers started to design, develop and
evaluate new techniques in order to continuously
automatize different steps of the user interface
design process (Janssen et al., 1993), (Puerta et al.,
1999). Research works in this early stage formed the
foundation for model-based user interfaces and their
adaptivity, but the majority focused on single and
desktop based applications. Nowadays, we do not
use just one single point of access to interact with
digital media, but we are surrounded by computing
systems in form of mobile devices like tablets,
smartphones and wearables. A conventional
stationary computer, for example, represents just one
of many nodes in the Human Computer Interaction
(HCI) field. To cover all different kind of interaction
devices at once, we need to start modeling user
interactions instead of modeling single user
interfaces.

This work targets the comparison of two different
user interaction modeling techniques used for the
design of multimodal user interfaces. Interpretation
engines for both techniques have been implemented
in separate executions frameworks and both
techniques have been evaluated in different Ambient
Assisted Living (AAL) projects. This paper targets
the comparison of two modeling methods and their
evaluation and implementation results from the
technical point of view. User involvement results
accomplished during the project trial phases are out
of the scope for this work.

2 METHODOLOGY

In the beginning, we will provide a general overview
about the two selected interaction modeling
techniques (section 2.1). The first is based on
Concur Task Trees (CTT) (Paternò et al., 1997) and
the second is based on State Chart XML (SCXML)
(Barnett et al., 2007). To be able to evaluate these
interaction modeling techniques, we have developed
two execution frameworks (section 2.2). The first
one reflects the prototype built within the project
AALuis (Aaluis.eu, 2015) and the second one

243

Sili M., Gira M., Müllner-Rieder M. and Mayer C..
Interaction Modeling in PRACTICE - CTT Vs. SCXML - A Comparison of Two Practical Solutions Applying Interaction Modeling Techniques for
Multimodal User-System Interaction.
DOI: 10.5220/0005481502430250
In Proceedings of the 1st International Conference on Information and Communication Technologies for Ageing Well and e-Health (ICT4AgeingWell-
2015), pages 243-250
ISBN: 978-989-758-102-1
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)

reflects the prototype built within the project ibi
(ibi.or.at, 2015). By using these two prototypes, we
are able to identify and to evaluate necessary tasks
that user interaction developers need to fulfill in
order to generate interaction models, to embed and
connect these interaction models in the specific
framework and finally to interpret them by the
execution process during runtime (section 2.3).

2.1 CTTs and SCXMLs as Modeling
Methods for User Interaction

The literature relevant in this field mentions a couple
of projects using model-based user interface
generation approaches (Mori et al., 2004), (Peissner,
et al., 2012), (Popp, et al., 2013), (Brambilla et al.,
2014). Some rely on CTTs, some on Statecharts
(Harel, 1987) and some e.g. on the Business Process
Model and Notation (BPMN) (Zur Muehlen, et al.,
2008).

2.1.1 The CTT Interaction Model

CTT is an XML-based formal notation to represent
task models. It is of hierarchical structure, with
graphical syntax. CTT focuses on activities to be
executed by users or systems to reach a certain goal.
CTT distinguishes between system, user, interaction,
and abstract tasks. System tasks are executed by the
(software) system alone (e.g., data processing). User
tasks represent internal cognitive or physical
activities performed by the user of the system (e.g.,
selecting a problem solving strategy). Interaction
tasks are user performed interactions with the
system. Abstract tasks are used for composition of
task groups in the hierarchical structure of the CTT.
The notation provides an exhaustive set of temporal
operators, which express the logical temporal
relationships between the tasks.

CTTE (Mori et al., 2002) is a tool for the design
and analysis of CTTs. This allows creating and
editing task trees in a graphical way. The tool also
provides a CTT simulator for runtime behavior
analysis.

2.1.2 The Statechart Interaction Model

SCXML is an event-based state machine language.
It combines concepts from Harel State Tables
(Harel, 1987) and Call Control eXtensible Markup
Language (CCXML) (W3.org, 2015a), (Romellini et
al., 2005). SCXML is widely used for user interfaces
and dialog management in many different fields
such as AAL, cloud based services or video games

(Almeida et al., 2014), (Dragert et al., 2013), (Jeong
et al., 2012). It inherits semantics and special
features like compound states and parallel states
from Harel State Tables and combines it with event
handling and the XML representation of CCXML.
SCXML is used to describe finite state machines
(FSM). A FSM is a mathematical model with a finite
number of states where only one state can be active
at any given time, which is called current state.

Basic concepts in SCXML are states and
transitions, with an event attached to each transition.
When a concrete event is fired and the
corresponding source state is active, the target state
will become active and the source state inactive. The
active state can be queried continuously. In the
context of user interactions, states represent current
dialogs or windows and their transitions concrete
user or system actions. Using these techniques a user
or system action can evoke a state change. In the ibi
prototype, this change invalidates the previously
presented user interaction dialog and activates a
newly generated user interaction dialog. The state
machine can either be created directly in XML
notation or generated by using a GUI based tool
such as scxmlgui (Code.google.com, 2015a).
SCXML interpreters are available in various
programming languages such as in Java (Team
Commons, 2015), C++ (Code.google.com, 2015b)
or Python (GitHub, 2013).

2.2 Execution Frameworks for
Interaction Models

2.2.1 AALuis Execution Framework

The AALuis execution framework is an OSGi-based
(Alliance OSGi, 2003) flexible middleware layer.
The framework dynamically generates user
interfaces for connected services that provide CTT-
modelled interactions (Mayer et al., 2014). The
framework’s architecture consists of plug-in based
components, which are described in the following:

Figure 1 illustrates modules and the
communication flow in the AALuis execution
framework. The dialog manager component
orchestrates the process from abstract service
description and data, to the concrete interface
presented for a context specific interaction step.
Service managers mediate between service
endpoints and the dialog manager. Similarly, device
managers act as brokers between the devices and the
dialog manager.

The dialog manager administers all interactions
between the users and the system. For each

ICT4AgeingWell�2015�-�International�Conference�on�Information�and�Communication�Technologies�for�Ageing�Well�and
e-Health

244

interaction session, this component repeatedly
evaluates the interaction status, generates and
presents a user interface, applies user input, and re-
evaluates the interaction status. The dialog manager
stores the execution statuses of multiple service
CTTs per session, but only one interaction can be in
the foreground. Not only the dialog manager, but
also the service itself can initiate interaction.
Through signaling of tasks of a certain type, the
interaction flow is interrupted in a first-come-last-
served manner.

Figure 1: Modules and communication flow in the AALuis
execution framework.

The task execution component handles the run-time
execution of the CTT. It (a) processes an execution
state, in the form of a tree of en/dis-abled states, (b)
updates one state, and (c) evaluates the CTT
temporal operators to reach a new execution state.
Based on these execution steps, the currently actable
interactions are used by the UI transformation
component to generate a user interface.

Adoption of the standard rendering, and addition
of new kinds of interaction, can be achieved in two
ways: Either a completely new task-type is
introduced into the CTT, or the interpretation of an
existing type is refined in the transformation XSL
files.

Similarly, formerly unknown output modalities
can be added to the execution framework. This
entails using the new modality in the XSLT files
used for generating the user interface. Output
modalities and device types that are already
registered can be included and excluded on-the-fly.
The framework also provides the possibility for
developers to create media conversion plug-in
components that enable automatic conversion of one
output modality to a new one.

2.2.2 Ibi Execution Framework

The ibi execution framework is a middleware, which
connects services handling data, and modalities
handling in- and output. These services and
modalities can be exchanged and extended to create
a tailored solution for ubiquitous applications. The
framework contains multiple managers, which are

essential for the operation of the system. These are
the dialog manager, the modality manager and the
service manager.

As depicted in Figure 2, the dialog manager is
the central part of the ibi execution framework. It
reads the SCXML definitions and parses them into
SCXML objects. Dialog objects are created based on
SCXML objects. Each represents a single statechart
machine. Multiple statechart machines can be used
at the same time. The dialog manager distributes the
incoming events to all of them.

Figure 2: Modules and communication flow in the ibi
execution framework.

The dialog manager is logically placed between the
service and the modality manager. The service
manager contains a list of registered services and
sends requests from the dialog manager to the
respective services. The modality manager decides
which modalities are available and suitable for the
current situation and distributes output requests from
the service manager to them. The modality manager
is also responsible to receive user input from a
registered device and to distribute it towards the
dialog manager. Modalities are connected to the ibi
framework by a so called Connector implement-
tation. Each Connector is written for a specific in-
and output device because of different APIs,
interfaces or technologies. Therefore, for each new
modality a separate connector implementation has to
be developed.

Every service is represented by a state machine,
where each state and transition can trigger an action
in the service. Initially loaded state machines remain
in this initial state until the first trigger event. This
event can be timer triggered, user input triggered or
externally triggered (e.g., incoming event via
HTTP). Each state machine contains a priority value.
State machines with higher priority are able to
interrupt lower priority machines, which are
resumed when the high priority machine finishes.

The SCXML definitions are able to carry
additional data within every state. In the ibi
approach, this additional data fields are used for the
definition of special template-based treatments in the
UI generation process. Templates may be defined,
e.g., in form of XHTML (W3.org, 2015b) including

Interaction�Modeling�in�PRACTICE�-�CTT�Vs.�SCXML�-�A�Comparison�of�Two�Practical�Solutions�Applying�Interaction
Modeling�Techniques�for�Multimodal�User-System�Interaction

245

XForms (W3.org, 2015c). This allows customizing
the generated user interfaces if needed.

2.3 Embedding and Connecting
Interaction Models

2.3.1 Integration of CTTs into the AALuis
Execution Framework

The task description in CTT is the central document
that services have to provide to the AALuis
execution framework. It describes the interaction
between the service and the user. Additionally, a
binding definition, associating the services’ business
methods to the tasks in the task description, needs to
be submitted. These documents can be provided in
two ways, depending on the residence of the service
(external or internal).

External services are based on Web Service
technology. They are not located in the AALuis
layer itself nor deployed in the AAL middleware
AALuis is deployed in. They are dynamically
transformed and bound to an internal OSGi service
representation, making them accessible by the layer.
The CTT is provided by an URI that either points to
a web resource or a local file. Internal services are
based on OSGi technology. They have to be
embedded into the same AAL middleware, and
follow certain conventions. The OSGi bundle has to
declare the bundle as AALuis service in the manifest
and to contain at least the above mentioned
documents. Similar to external services a
representation is created and used by the dialog
manager. With these choices the service designer
can concentrate efforts on the service and the
planned interaction patterns alone. Encouraged by a
very clear separation of concerns, the service
designer does not need to think about the design of
the elements that are forming the interaction, which
is done independently by a UI designer.

New services can be integrated on-the-fly. Either
by making the layer aware of a new external service
endpoint or deployment of an internal OSGi bundle -
also during runtime.

2.3.2 Integration of SCXMLs into the Ibi
Execution Framework

The service and an accompanying SCXML file have
to be developed to integrate a new service into the
ibi execution framework. The SCXML file may also
contain XForms templates for each state. New
template types need a new interpretation on the layer
side, which means new implementations in form of

source code have to be performed. This blurs the
responsibilities because neither the service designers
(who generate SCXMLs), nor the UI designers (who
generate templates and their implementations)
should be forced to modify and extend the
framework. The ibi approach needs a new strategy to
support templates and their interpretations without
the need to extend the framework by additional
implementations.

A service can be created either as internal or
external service. Internal services are integrated into
the ibi executable, while external services interact
via Representational State Transfer (REST) calls
(Richardson et al., 2008). To accomplish this, an
external service manager is implemented as an
abstraction layer between the external service and
the service manager. This abstraction allows that
external services register as internal services. This
facilitates a consistent access to both kinds of
services.

3 RESULTS

This chapter provides a comparison of advantages
and disadvantages of the presented approaches based
on eight evaluation categories a) Generation of the
interaction model, b) UI customization and UI
extensibility, c) Concurrency, d) Separation of
concerns, e) Modality and device extensibility, f)
Integration of new services, g) Tool for the
interaction design, and finally h) Modality
conversion and alternative modalities. The
comparison focuses on applicability aspects from the
technical point of view. Concrete user evaluation
settings and user involvement results are outside of
the scope of this paper and are separately presented
on the 17th International Conference on Human-
Computer Interaction (Sili, 2015).

3.1 Detail Comparison based on Eight
Evaluation Categories

3.1.1 Generation of the Interaction Model

The interaction model in the AALuis approach
supports the generation of complex interaction
scenarios. The CTT notation allows a high degree of
flexibility using temporal operators allowing task
processing in different orders, e.g., sequential,
concurrent or interrupting. Unfortunately, this
flexibility requires additional efforts when learning
the CTT notation.

ICT4AgeingWell�2015�-�International�Conference�on�Information�and�Communication�Technologies�for�Ageing�Well�and
e-Health

246

In contrast, the SXML interaction model in the
ibi approach is easier to learn. It is composed by just
two elements, namely states and transitions. The
disadvantage of this simplicity is the limitation when
modelling complex interactions. Developers need to
define numerous transitions between single states to
compensate missing constructs for concurrency and
interruption. This makes the system impracticable
for rich interaction scenarios.

3.1.2 UI Customization and UI Extensibility

In the AALuis approach, a new UI element (e.g., a
calendar widget or captions) is created by defining a
new task type in the interaction model. The
framework transforms this new task type into an
abstract XML element which is finally rendered
using XSL rules. Both extensions, the definition of
the new task type as well as the XSL rules, can be
defined independently and outside of the AALuis
framework. This allows extensibility which does not
require to rebuild or to recompile the AALuis
framework.

In the ibi prototype, UI customization is achieved
by defining new templates within the interaction
model states. These templates are filled with
concrete data during the final rendering process. The
framework supports the interpretation of different
templates but it is limited to the generation of new
UI elements. Interpretations of new template types
require new implementations and therefore to
rebuild the ibi framework.

3.1.3 Concurrency

The AALuis framework supports concurrent
interaction models, which allow multiple user-
system interaction dialogs. The current
implementation is limited in prioritization of these
concurrent interaction models. Because each dialog
owns the same priority level, the framework is not
able to distinguish between more important dialogs
(e.g., security warning) and less important dialogs
(e.g., incoming social network message). To
overcome this ambiguity, the priority responsibility
in the AALuis approach is shifted to the service side.
The service has to decide which dialog is prioritized
higher and which dialog has to be postponed due its
low level priority.

The ibi approach supports concurrent interaction
models and different priority levels. Each interaction
model is clearly assigned to a priority level. High
priority dialogs are able to interrupt low priority
dialogs. These are resumed once the higher priority
level dialogs are finished. Dialogs with the same

priority level are served in the First In First Out
(FIFO) order.

3.1.4 Separation of Concerns

The separation of concerns is clearly achieved in the
AALuis approach. UI designers, on the one hand,
are responsible for extending and maintaining XSL
rules for new UI elements, new branding styles and
new device types. Service designers, on the other
hand, are responsible for defining, maintaining and
connecting their services. Therefore, UI designers do
not need to be involved during the service
integration and oppositely service designers do not
need to take care about UI related topics.

The ibi approach has blurred responsibilities
between service and UI designers. Extensions on
both sides require to rebuild and to recompile the ibi
framework, respectively. Therefore, the UI designer
is not able to extend the framework without the
explicit involvement of the service designer and vice
versa.

3.1.5 Modality and Device Extensibility

Both systems are able to keep track about available
and connected devices and modalities, but the
extensibility is handled in a different manner. In the
AALuis prototype, new modalities are included by
applying new XSL transformations. In some cases,
these new modalities require also new devices (e.g.,
modality for Braille lettering). These devices can be
included and/or excluded on the fly, because
AALuis-enabled devices are able to automatically
describe their capabilities towards the AALuis
framework. Furthermore, the framework has a
complete overview about available and connected
devices. A concrete device can be addressed,
depending on the required modality.

In the ibi approach, new devices are not able to
describe themselves automatically. Each new device
requires a connection in form of a concrete source
code implementation on the framework side. Once
this work is done, the framework will be able to
address the specific connected device depending on
the required modality.

3.1.6 Integration of New Services

The AALuis prototype is able to dynamically
connect SOAP-based external and OSGi-based
internal services. Therefore, service designers do not
need to extend the framework in form of new source
code implementations.

New services in the ibi approach require a

Interaction�Modeling�in�PRACTICE�-�CTT�Vs.�SCXML�-�A�Comparison�of�Two�Practical�Solutions�Applying�Interaction
Modeling�Techniques�for�Multimodal�User-System�Interaction

247

concrete source code implementation. As a result of
this new implementation, the whole framework has
to be rebuilt. On the other hand, new
implementations are not restricted to a specific
communication method. A lightweight and easy to
deploy REST-based communication method can be
used in the ibi approach.

3.1.7 Tool for the Interaction Design

In both prototypes external graphical tools can be
used to design the interaction model. The tool used
in the AALuis approach has a built-in simulator,
which allows an early pretesting of the interaction
model.

The graphical tool used in the ibi prototype does
not provide a simulator. Considering the lightweight
complexity of SCXML elements (states and
transitions) a simulator would not be able to provide
more information than the design tool.

3.1.8 Modality Conversion and Alternative
Modalities

An avatar-based user-system interaction was one of
the main requirements in both projects. Therefore,
both approaches include a built-in text to avatar
modality conversion. Beside this, both systems

currently do not support an additional automatic
modality conversion. The AALuis prototype
supports alternative modalities (e.g., a textual
representation of an image) but these alternative
elements need to be provided by the service.

In the current implementation the ibi prototype
does not support alternative modalities.

3.2 Summary of Evaluation Results

Table 1 summarizes the evaluated advantages and
disadvantages of the presented techniques and
provides a comparison between them. Positive
aspects are marked with a ’+’ sign, neutral aspects
are marked with a ’o’ sign and negative aspects are
marked with a ’-’ sign.

3.3 Examples of Generated UIs

Figures 3 and Figure 4 illustrate examples of
generated User Interfaces for the TV device. Both
approaches use avatars as additional modality and
support for the user. The current TV device
implementations in both approaches support a
remote control based navigation and control. While
the AALuis approach supports only arrow based
navigation (up, down, left, right), the ibi approach
also supports a number based navigation.

Table 1: Comparison between the AALuis and ibi approach (legend: +..positive aspect, o..neutral aspect, -..negative aspect).

 AALuis / CTT ibi / SCXML
Generation of the
interaction model

+ Supports the generation of complex
interaction scenarios

- Efforts needed to learn the CTT notation

- Limitations in the complexity

- Easy to understand and easy to learn

UI customization and
UI extensibility

+ Supports the definition of new task types
and therefore new UI elements

+ Supports new task type interpretations by
external XSL rules

+ Supports template definitions within every
state

- Interpretations of new template types require
new implementations

Concurrency - Layer supports concurrency of multiple
CTTs without prioritization of interactions

+ Layer supports concurrency of multiple
SCXMLs and priority definitions

Separation of concerns + Clear separation between service designers
and UI designers

- Blurred responsibilities between service
designers and UI designers

Modality and device
extensibility

o New modalities require new XSL
transformation rules

+ Devices and modalities may be included
and/or excluded on the fly

- New modalities require new
implementations

- New devices require new implementations

New service
integration

+ New services can be integrated on-the-fly
+ Support of internal or external SOAP based

web service

- New services require new implementations
+ Support of internal or external REST based

web service
Tool for the
interaction design

+ GUI for the design of CTTs
+ Simulator allows an early pretesting

+ GUI for the design of SCXMLs
- Simulation and pre-testings are not possible

Multimodality
conversion and
alternative modalities

+ Built-in text to avatar modality conversion
- Support for alternative modalities

+ Built-in text to avatar modality conversion
- New modality conversions require new

implementations

ICT4AgeingWell�2015�-�International�Conference�on�Information�and�Communication�Technologies�for�Ageing�Well�and
e-Health

248

Figure 3: Sample UI generated for the TV device by the
AALuis approach.

Figure 4: Sample UI generated for the TV device by the
ibi approach.

4 CONCLUSIONS

In this paper, two different interaction modeling
techniques, the corresponding execution frameworks
and the practical exploration results have been
presented. The comparison of the exploration results
clarifies that the CTT approach applied in AALuis is
more applicable for large and complex user
interaction scenarios. The SCXML approach applied
in the ibi project is more suitable for lightweight and
structurally simpler user interaction scenarios.

Although the proposed techniques and execution
frameworks already provide beneficial and useable
results, we expect to improve both systems. In the
AALuis approach, we intend to focus on a semi-
automatic generation of CTTs. Introducing some
kind of prioritization on service or task-group level
would conceivably mitigate the shortcomings of the
concurrent execution of the interactions. In the ibi
approach, we intend to focus on a semi-automatic
binding between the SCXML states and external
services. Another improvement for ibi would be the
automatic generation of modality specific output
without the need of a concrete implementation for
the template interpretation.

ACKNOWLEDGEMENTS

The project AALuis was co-funded by the AAL
Joint Programme (REF. AAL-2010-3-070) and the
following National Authorities and R&D programs
in Austria, Germany and The Netherlands: BMVIT,
program benefit, FFG (AT), BMBF (DE) and
ZonMw (NL).
The ibi project was co-funded by the benefit
programme of the Federal Ministry for Transport,
Innovation and Technology (BMVIT) of Austria.

REFERENCES

Janssen, C., Weisbecker, A., Ziegler, J., 1993. Generating
user interfaces from data models and dialogue net
specifications. Proceedings of the INTERACT'93 and
CHI'93 conference on human factors in computing
systems, pp. 418-423.

Puerta, A., Eisenstein, J., 1999. Towards a general
computational framework for model-based interface
development systems. Knowledge-Based Systems 12.8,
pp. 433-442.

Paternò, F., Mancini, C., Meniconi, S., 1997.
ConcurTaskTrees: A diagrammatic notation for
specifying task models. Human-Computer Interaction
INTERACT’97, pp. 362-369.

Barnett, J., Akolkar, R., Auburn, R. J., Bodell, M.,
Burnett, D. C., Carter, J., Rosenthal, N. A. (2007).
State chart XML (SCXML): State machine notation
for control abstraction. W3C working draft.

Aaluis.eu, 2015. AALuis - Ambient Assisted Living user
interfaces. Available from <http://www.aaluis.eu>. [16
March 2015].

Ibi.or.at, 2015. Das Projekt. Available from
<http://www.ibi.or.at>. [16 March 2015].

Mori, G., Paterno, F., Santoro, C., 2004. Design and
development of multidevice user interfaces through
multiple logical descriptions. Software Engineering,
IEEE Transactions. pp. 507-520.

Peissner, M., Häbe, D., Janssen, D., Sellner, T., 2012.
MyUI: generating accessible user interfaces from
multimodal design patterns. Proceedings of the 4th
ACM SIGCHI symposium on Engineering interactive
computing systems. pp. 81-90.

Popp, R., Raneburger, D., Hermann K., 2013. Tool
support for automated multidevice GUI generation
from discoursebased communication models.
Proceedings of the 5th ACM SIGCHI Symposium on
Engineering Interactive computing systems. pp. 145-
150.

Brambilla, M., Mauri, A., Umuhoza, E., 2014. IFML:
Building the FrontEnd of Web and Mobile
Applications with OMG’s Interaction Flow Modeling
Language. Web Engineering, Springer LNCS vol.
8640. p. 575.

Interaction�Modeling�in�PRACTICE�-�CTT�Vs.�SCXML�-�A�Comparison�of�Two�Practical�Solutions�Applying�Interaction
Modeling�Techniques�for�Multimodal�User-System�Interaction

249

Harel, D., 1987. Statecharts: A visual formalism for
complex systems. Science of computer programming
8.3. pp. 231-274.

Zur Muehlen, M., Recker, J., 2008. How much language is
enough? Theoretical and practical use of the business
process modeling notation. Advanced information
systems engineering pp. 465-479.

Mori, G., Paternò, F., Santoro C., 2002. CTTE: Support
for Developing and Analyzing Task Models for
Interactive System Design. IEEE Trans. Softw. Eng.,
28(8). pp. 797–813.

Romellini, C. Tonelli, F., 2005. CCXML: The Power of
Standardization. Loquendo.

W3.org, 2015a. Voice Browser Call Control: CCXML
Version 1.0. Available from
<http://www.w3.org/TR/ccxml/>. [18 March 2015].

Almeida, N., Silva, S., Teixeira, A., 2014. Multimodal
Multi Device Application Supported by an SCXML
State Chart Machine. Engineering Interactive
Computer Systems with SCXML. p. 12.

Dragert, C. W., 2013. ModelDriven Development of AI
for Digital Games. Doctoral dissertation, McGill
University.

Jeong, H., Kim, S., Do, H., Choi, E., Jeong, Y., Kang, Y.
2012. Multimodal Interface for Mobile Cloud
Computing. Latest Advances in Information Science
and Applications WSEAS Press. pp. 270 – 274.

Code.google.com, 2015a. scxmlgui - A graphical editor
for SCXML finite state machines. - Google Project
Hosting. Available from
<https://code.google.com/p/scxmlgui/>. [16 March
2015].

Team Commons, 2015. SCXML - Commons SCXML.
Commons.apache.org. Available from
<http://commons.apache.org/proper/commons-
scxml/>. [16 March 2015].

Code.google.com, 2015b. scxmlcc - scxml to C++
compiler - Google Project Hosting. Available from
<https://code.google.com/p/scxmlcc/>. [16 March
2015].

GitHub, 2013. jroxendal/PySCXML. Available from
<https://github.com/jroxendal/PySCXML>. [16 March
2015].

Alliance, OSGi, 2003. Osgi service platform, release 3.
IOS Press, Inc.

Mayer, C., Zimmermann, G., Grguric, A., Alexandersson
J., Sili, M., Strobbe, C., 2015. A comparative study of
systems for the design of flexible user interfaces,
Journal of Ambient Intelligence and Smart
Environments. in press. ("accepted").

W3.org, 2015b. XHTML 1.0: The Extensible HyperText
Markup Language (Second Edition). [online]
Available at: Available from <http://www.w3.org/
TR/xhtml1 [Accessed 18 Mar. 2015].

W3.org, 2015c. XHTML 1.0: The Extensible HyperText
Markup Language (Second Edition). [online]
Available at: Available from <http://www.w3.org/TR/
xhtml1 [Accessed 18 Mar. 2015].

Richardson, L., Ruby, S., 2008. RESTful web services
O'Reilly Media, Inc.

Sili, M., Bobeth, J., Sandner, E., Hanke, S., Schwarz, S.,
Mayer, C., 2014. Talking Faces in Lab and Field
Trials - A View on Evaluation Settings and User
Involvement Results of Avatar Based User Interaction
Techniques in Three Ambient Assisted Living
Projects. International Conference on Human-
Computer Interaction. in press.

ICT4AgeingWell�2015�-�International�Conference�on�Information�and�Communication�Technologies�for�Ageing�Well�and
e-Health

250

