
A Language for Transforming the RDF Data on the Basis of Ontologies

Pavel Shapkin and Leonid Shumsky
Department of Cybernetics and Information Security,

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute),
31 Kashirskoe Shosse, Moscow, Russian Federation

Keywords: RDF, OWL, Transformations, Ontology.

Abstract: Languages such as XSLT are used to transform XML documents based on their syntactical structure. The
emergence of Semantic Web technologies brings new languages such as RDF and OWL which are able to
represent the semantics of data. Currently there is no data transformation language which is capable of using
this semantic information. In this paper a language is described which is aimed at transforming the RDF data.
Like XSLT, it is based on templates. The transformation is driven by ontologies. Among the features of this
language is the ability to check the validity of template systems, which guarantees that the transformation
will terminate successfully without raising any errors. In order to prove this property the formal model of the
language is studied.

1 INTRODUCTION

The development of web technologies resulted in the
appearance of new languages, such as RDF and OWL,
which are aimed at representing the semantics of data
(Lassila et al., 1998; Smith et al., 2004). These lan-
guages form the basis of the Semantic Web — a Web
of “Linked Data” accompanied with ontologies which
enable to capture the meaning of data and expose it in
machine-readable form.

As a universal data representation language RDF
is suitable for solving data integration tasks. An inter-
esting use case for RDF occurs with the proliferation
of cloud computing and SaaS (Software as a Service)
applications. Being an open Web standard RDF suits
very well for integrating SaaS applications, which op-
erate in the Web environment. Since RDF is not used
in every system it is often needed to generate the RDF
representation from other formats and to transform
RDF graphs to different representations.

Among the systems that are suitable for RDF data
transformations we should mention the systems de-
scribed in (Furche et al., 2004). There also exist
a number of systems which adopt an XSLT-like ap-
proach to the RDF transformations (Kawamoto et al.,
2006; Davis, 2003). A major drawback of existing
systems is inability of inference on ontologies. More
to say, most of these systems do not even use OWL
documents as knowledge bases. There exist ontology
manipulation languages such as OPPL (Egana et al.,

2008) which is designed to automate routine knowl-
edge engineering tasks but is not suitable to develop
end-user ontology-based applications. Another ap-
proach to RDF transformation is to rely on SPARQL
CONSTRUCT statements (Corby et al., 2014; Alkha-
teeb and Laborie, 2008), but since SPARQL is origi-
nally a general-purpose query rather than data manip-
ulation language these transformations are not struc-
tured very well comparing to our approach that orga-
nizes transformations around ontology classes.

Our main idea is to structure transformation tem-
plates around ontology classes the same way as
methods for object manipulation in object-oriented
languages are structured around classes of objects.
Thereby the whole transformation process could be
modularized and driven by the structure of corre-
sponding ontologies. At the same time we gain pos-
sibilities to check templates for well-formedness and
validate them: these features prevent run-time errors
in the transformation process.

The paper is organized as follows: in section 2 we
give an example to illustrate the problems that can be
solved using the described language; section 3 defines
semantic templates — a formalism used for process-
ing the RDF data using ontologies; section 4 describes
the resulting language; in section 5 we give and dis-
cuss a series of template systems; the last section dis-
cusses some additional features of the template lan-
guage.

504 Shapkin P. and Shumsky L..
A Language for Transforming the RDF Data on the Basis of Ontologies.
DOI: 10.5220/0005479505040511
In Proceedings of the 11th International Conference on Web Information Systems and Technologies (WEBIST-2015), pages 504-511
ISBN: 978-989-758-106-9
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)

Figure 1: Train ontology.

2 MOTIVATING EXAMPLE

First we would like to introduce an example which
will be used later to illustrate how the language works.

Consider the task of generating a train timetable.
The source data is represented in the form of an RDF
document which corresponds to the ontology illus-
trated on figure 1. The ontology is presented in OWL.

This ontology is a simplified one used for exam-
ple. Let’s consider its classes. Trains are listed in the
timetable. Each train is described by a number, the de-
parture time and the list of stops. Trains stop at differ-
ent places, described by their names. A place might
be a city. Trains are divided into inter-city and sub-
urban, which are disjoint classes. Inter-city trains are
those that stop at least at one city, all the other trains
are considered suburban. Moreover, an inter-city train
is called express train if it stops only in cities. We
would like to be able to render an HTML representa-
tion of the timetable, which contains a list of trains.
Each type of train has to be represented differently.
Additionally, we would like to mark trains that are
departing in an hour (Departing concept). Also, inter-
city trains have a limited number of tickets and we
would like to highlight those for which there are less
than 10 tickets left (FewTickets concept).

The natural way to describe the transformation
given is to bind the transformation rules to ontology
classes. Then the transformer has to execute atomic
transformations for the RDF resources contained in
the source document, choosing the most suitable rules
basing on the classes that correspond to these re-
sources and the subsumption relations between them.
To compute the subsumption hierarchy and do in-
stance checking an OWL reasoner might be used.

We will represent such transformation rules in
form of “templates”, and the whole transformation
will be defined by the “template system”. We will get
back to this example after introducing the language
proposed. We will start with some formal definitions,
then we will proceed to the syntax for the language,
and in the end we will show the solution of this prob-
lem.

3 A FORMAL MODEL FOR THE
TEMPLATE-BASED RDF
TRANSFORMATION
LANGUAGE

3.1 Basic Ideas

We will use an approach similar to XSL (Clark et al.,
1999). Every transformation is defined as a set of
templates — a template system . Each template is
bound to a class in the ontology and can transform
only its instances. By doing so we make the whole
transformation process ontology-driven. We involve
the hierarchy of concepts in the computational pro-
cess. Moreover, if an OWL reasoner is used, we can
leverage the decidability of subsumption. It enables
us to dynamically compute the subsumption hierar-
chy of concepts and thus to dynamically change the
transformation process in response to the changes in
the ontology.

When a template system is applied to an RDF re-
source that represents an individual this resource is
processed using the “best matching template”. The
best matching template is a template which corre-
sponds to the most specific concept for that individ-
ual. Situations might occur in which the best match-
ing template cannot be chosen unambiguously, e.g.
when there are two templates and each of them cor-
responds to a concept that has the input object as an
instance. To avoid such situations we will introduce
additional limitations on the structure of template sys-
tems. We call these limitation “well-formedness”.

3.2 Template Matching Algorithm

First, we will introduce the concept of template sys-
tem base and well-formedness. We will use conven-
tional notation for description logic terms and opera-
tions (Baader et al., 2007). Because our language is
aimed at OWL, we will mostly use the term “class”
for “concept” and “property” for “role” throughout
the paper.

A�Language�for�Transforming�the�RDF�Data�on�the�Basis�of�Ontologies

505

Definition 1. If ts is a template system then its base
base(ts) is a set of concepts which correspond to the
templates in that system.

Definition 2. The template system ts is well-formed
iff the following conditions hold:

1) ts contains at most one template for each concept;
2) the set of concepts extbase= base(ts)[f?g forms

a lower semilattice, i.e. for every C;D 2 extbase
their intersection CuD is also in extbase.

Figure 2 illustrates the semilattice conditions. As-
sume that none of the concepts involved is empty (i.e.
not equal to ?). In this case the concepts marked on
the figure 2(a) form a set that is not a lower semilat-
tice: e.g. it contains concepts A and B, but does not
contain their nonempty intersection F . On the con-
trary, the set of concepts marked on the figure 2(b) is
a lower semilattice: all intersections of its concepts
are also included in this set, as well as the empty con-
cept which is an intersection of disjoint concepts.

Well-formedness has to guarantee that if the tem-
plate system is applicable to an RDF resource, i.e.
there is a template suitable for the individual that this
resource represents, this template can be chosen un-
ambiguously. Consider an individual i which is an
instance of AuB, but is not an instance of I or E. We
cannot choose the most specific concept for i from the
concepts marked on the figure 2(a): both A and B are
candidates for it. On the other hand, concepts marked
on the figure 2(b) contain the concept F which is the
most specific concept for i.

We will call the process of checking a template
system for well-formedness the verification.

In order to construct the template matching algo-
rithm we have to introduce the notion of the template
depth.

Definition 3. The depth of a template t with a con-
cept C in template system ts is the value of function
depth(t;T). The function is evaluated by the follow-
ing rules:

1. If there is no template in ts with a concept D such
that C @ D then

depth(t; ts) = 0.

2. If there is a number of templates tfi21::ng
i in ts

which correspond to concepts Dfi21::ng
i such that

C @ Di for any i, then

depth(t; ts) = maxi21::n(depth(ti; ts))+1.

The depth shows how deep the concept of a tem-
plate lies in the subsumption hierarchy of the template
system concepts. The following theorem is relatively
easy to prove:

Theorem 1. For a well-formed template system T
and individual i if t 2 q(T) has a maximum depth
among the templates for which i is an instance of the
corresponding concept, then

1) such t is unique in ts;
2) this template concept is most specific of concepts

from ts for i, that is there is no template in the tem-
plate system with more specific concept that has i
as an instance.

The proof of this theorem is pretty straightfor-
ward and we will omit it here. This theorem en-
ables to construct the algorithm for choosing the best
matching template for an individual. The main idea
is that templates must be traversed in the descending
order of depth. By the stated theorem the first tem-
plate whose concept has the given individual as an in-
stance is the best matching template. This algorithm
relies on the subsumption relation, therefore the cor-
responding function that chooses the matching tem-
plate for a given individual is computable as long as
the subsumption is decidable. Thus if the ontology
used in a template system is defined in OWL DL and
the system is well -formed there is a guarantee that
the transformations will be unambiguous.

4 THE RESULTING LANGUAGE

4.1 Syntax

We would like to give a detailed description only for
the “core language”, i.e. the part of our language that
is responsible for binding transformations to concepts
and leveraging the subsumption hierarchy. Besides
this part our language also includes different expres-
sions which are needed to make the transformations
useful: conditional expressions, counting and sort-
ing expressions, value processing expressions such as
string manipulating functions etc.

We will use BNF notation to describe the syntax
of our XML-based transformation language. The syn-
tax of the transformation language is shown on fig-
ure 3. Only the mandatory attributes are included,
the optional ones are omitted. The root element
(templates) contains a list of template elements.

A single template system is interpreted as a spe-
cific transformation. Often a single transformation
combines different representations of the same ob-
jects: e.g. in our example with train timetable we
might have one template to generate train informa-
tion and another template that generates “outer” ap-
pearance to mark departing trains. For these purposes
we will need two different template systems that act

WEBIST�2015�-�11th�International�Conference�on�Web�Information�Systems�and�Technologies

506

(a) Marked concepts do not
form a lower semilattice

(b) Marked concepts do
form a lower semilattice

Figure 2: Concepts semilattice example (AB denotes AuB)

templates ::= template — template templates
template ::= <template class="class-uri" mode="system-id"> individual-exprs </template>’

individual-exprs ::= individual-expr — individual-expr individual-exprs
individual-expr ::= apply-templates — for-each — common-expr

common-expr ::= content — <uri/> — annotation-value
annotation-value ::= <annotation-value prop="annotation-uri" />

for-each ::= <for-each prop="object-property-uri"> individual-exprs </for-each> —
<for-each prop="datatype-property-uri"> for-each-value-exprs </for-each>

for-each-value-exprs ::= for-each-value-expr — for-each-value-expr for-each-value-exprs
for-each-value-expr ::= <value/> — content

apply-templates ::= <apply-templates mode="system-id"/>

Figure 3: The RDF transformation language syntax.

as different “modes” of the same transformation. To
handle this situation we added a possibility to com-
bine different template systems in one transformation:
each template element has a mode attribute which con-
tains an identifier of the corresponding template sys-
tem.

The transformation process is understood as a re-
cursive application of templates. Each template ap-
plication is substituted by its result. The resource to
which the template currently applies is called the cur-
rent resource. Places where the next application has
to occur are marked with the apply-templates tag.
In its mode attribute contains the identifier of the tem-
plate system that has to be applied. Besides this ele-
ment contents of templates might include some com-
mon expressions and the for-each element.

By common expressions we mean

� arbitrary XML elements or text content;

� special elements that are used to extract URI of
the current resource and to extract the values of
annotation properties.

The for-each element is used to traverse the
properties of the current individual. When a
for-each element is processed all the values of the
corresponding property of the current individual are

extracted; afterwards this element is substituted by
the concatenation of the results of processing each of
these values. The contents of the for-each element
differ depending on whether an object or a datatype
property is specified. When an object property is
used, the element may have the same contents as tem-
plate elements, in other cases its contents are limited
to static content or the value element that extracts the
current value.

It is possible to use the construct

<value prop="property-uri"/>

as a shortcut for

<for-each
prop="property-uri"><value/></for-each>

4.2 Validating Templates

The same way as the XML documents might be ver-
ified for well-formedness and validated against the
XML Schema, we would like to have an opportu-
nity to validate templates against a given ontology.
The validation process is pretty simple and is used to
guarantee that whenever a template is applicable to an
individual this individual will have all the properties

A�Language�for�Transforming�the�RDF�Data�on�the�Basis�of�Ontologies

507

used in this template. In turn, it guarantees that appli-
cation of valid templates to suitable individuals will
not raise any “property does not exist” errors.

Suppose that we would like to check the validity
of a template which corresponds to a class C. We have
to traverse the body of that template and check every
access to the properties of the current individual (e.g.
by means of the for-each construct). If for every
property p accessed the assumption

C v 9p:>

holds then the template is valid. This assumption
guarantees that every instance of C will have at least
one property p with a value belonging to a top concept
(Thing class) — e.g. any individual. This assumption
does not depend on the range of p, because we only
have to check the existence of this property. If the
ontology is consistent and the property exists, it will
point to an object from its range.

A special case is when we check property acces-
sors that occur inside a for-each element. In this
case we have to use a concept that corresponds to the
range of the property used in this for-each element
instead of C in the above mentioned assumption.

4.3 Executing Transformations

To execute the transformations one has to supply the
following parameters to the transformation processor

� a set of RDF documents representing the ontology
and the input data;

� the URI of a resource to start the transformation
with.

The execution of a template system should solve
an important problem of processing cycling links. In
order to avoid infinite computations we have to detect
these situations. The algorithm for solving this prob-
lem uses the notion of context:

1. The transformation starts from an empty context.

2. Whenever a template is applied to an individual
we add this individual to the context of that tem-
plate.

3. When the template finishes processing the pro-
cessed individual is removed from that templates’
context.

4. If a template is applied to an individual and this
individual is already in the context for that tem-
plate, we conclude that a cycle is encountered.

When a loop is detected the transformation stops
with an error.

<templates>

<template mode="outer" class="Timetable">
<html> ... <body>
<apply-templates prop="lists"/>

</body></html>
</template>

<template mode="outer" class="Train">
<div><apply-templates mode="header"/></div>

</template>

<template mode="header" class="Train">
<value prop="departsAt"/> -
#<value prop="hasNumber" />
<div class="info"><apply-templates

mode="info"/></div>
</template>

<template mode="info" class="Train">
<count-of prop="stopsAt" /> stops

</template>

<template mode="info" class="InterCity">
to <apply-templates prop="stopsAt" />
with <count-of prop="stopsAt"

class="NotCity"/> stops
(<value prop="ticketsLeft" /> tickets left)

</template>

<template mode="info"
class="Place"></template>

<template mode="info" class="City">
<value prop="hasName"/>,

</template>

<template mode="info" class="Express">
express to <apply-templates

prop="stopsAt" />
(<value prop="ticketsLeft"/> tickets left)

</template>

</templates>

Figure 4: Transformation example.

5 TEMPLATE SYSTEM
EXAMPLE, VERIFICATION
AND VALIDATION

Now we can construct the template systems needed to
solve our example task. These templates are shown
on figure 4. To count the number of stops of a train
a counting expression count-of is used. We omitted
the code that is used to format dateTime-typed val-
ues of departure times and the definitions of URI pre-
fixes. Using these templates to transform an input we

WEBIST�2015�-�11th�International�Conference�on�Web�Information�Systems�and�Technologies

508

(a) (b)

Figure 5: Renderings of example transformation results.

<template mode="outer" class="Departing">
<div class="light"><apply-templates

mode="header"/></div>
</template>

<template mode="outer" class="FewTickets">
<div class="dark"><apply-templates

mode="header"/></div>
</template>

Figure 6: Example 2.

can obtain an HTML document rendering of which is
shown on figure 5(a).

By constructing the templates shown on figure 4
we have not solved our task completely. Originally,
we also needed to mark trains that are departing dur-
ing the next hour (suppose that the current time is
13:00) and trains that are running out of tickets. As-
sume that we have to mark these trains with different
colors: departing trains have to be rendered with a
light-gray background, trains that are have tickets left
— on a dark background.

We already separated “outer” templates that gen-
erate outer appearance of a train record, so we have
to include two additional outer templates for corre-
sponding classes. These templates are shown on fig-
ure 6. Now trains # 111, 114, 115, 116 will be
marked. Nevertheless there is an inconsistency in
the resulting template system: there are less than 10
tickets left for train # 115 and it is departing in an
hour, but we have no template to deal with this situa-
tion. This inconsistency is exactly the one that can be
caught using the verification.

In fact the “outer” template system in our example
is not well formed: there are templates for Departing
and FewTickets classes, but no template for their inter-
section is present. At the same time this intersection
is not empty: train # 115 is an instance of this inter-
section concept.

When we add the missing template for the inter-

<template mode="outer">
<class>
<owl:Class>
<owl:intersectionOf

rdf:parseType="Collection">
<rdf:Description

rdf:about="Departing"/>
<rdf:Description

rdf:about="FewTickets"/>
</owl:intersectionOf>

</owl:Class>
</class>
<div class="black"><apply-templates

mode="header"/></div>
</template>

Figure 7: Example 2.

section, all template systems will be well formed. The
template that we have to add is shown on figure 7, it
renders a train on a black background. The final ren-
dering is shown on figure 5(b).

In this template we do not use a predefined class,
we give its definition in the class element of the tem-
plate instead. This is a feature of the transformation
language that uses the power of OWL as an algebraic
language for class definitions: every class definition is
an algebraic expression and we can use these expres-
sions instead of predefined classes. Combined with a
reasoner we can compute subsumption relations for a
class that corresponds to an expression “on-the-fly”.

In addition to verification we can also validate
our template systems according to the procedure de-
scribed in the section 4.2. The templates are valid
and this guarantees that transformations will be car-
ried out without errors.

6 ADDITIONAL FEATURES

As it was mentioned before we described here only
the “core language” that leverages the benefits of on-
tology model in order to operate the transformations.
The language has additional constructs that improve
the expressiveness of transformations which we omit
in this article. However there are some constructs that
correspond to several features of OWL that we would
like to mention. Some of them are already imple-
mented, others are in development.

Besides the class subsumption hierarchy, OWL
supports the subsumption of properties and same-as
relationships. Currently we have support for these
features in our language.

To leverage subsumption of properties one can
write special templates for property values. These
templates apply whenever a value of the correspond-

A�Language�for�Transforming�the�RDF�Data�on�the�Basis�of�Ontologies

509

ing property or its subproperty is processed using
the value tag. Inference of property subsumption
granted by the reasoner makes it possible to select
the most suitable template in every case and to verify
property templates. Property templates can be under-
stood as reusable snippets that reduce repeatable code
for property value processing.

The same-as reasoning is used in another variant
of templates — individual templates. These templates
are bound to concrete individuals in the ontology.
Provided that there is a same-as relation between indi-
viduals i and i0 and the individual template is present
for i then this template is used whenever a template
needs to be applied to i0. We can validate an individ-
ual template using known assumptions about this in-
dividual and by computing the most specific concept
for it.

Another feature that is currently under develop-
ment are class and property templates. These tem-
plates apply directly to classes and properties in con-
trast to previously mentioned templates that apply to
class instances and property values. Class templates
can be used to render a description of a class which
can be based on the values of annotation properties.
These templates could also be used to process (i.e.
apply templates to) the set of known instances of the
corresponding class as well as the sets of its known
subclasses or superclasses.

A class template is applicable to all the classes that
subsume the corresponding class. The same holds for
property templates. Class and property template sys-
tems might be verified in the same way as other tem-
plate systems.

7 CONCLUSIONS AND FUTURE
WORK

We described a language for ontology-driven trans-
formations of the RDF data. Transformations consist
of templates. Each template is bound to a class from
an ontology and is suitable to transform its instances.
Template bodies can be verified and validated against
the corresponding class definition in order to to elimi-
nate possible run-time transformation errors. We have
shown an example which illustrates the process of
verification.

The transformation syntax is based on XML but
the transformation result can be of any text-based
format; thus, one can define RDF to XML, RDF to
HTML, RDF to plain text or even RDF to RDF trans-
formations and so on. The language is currently im-
plemented on the Java platform using the Scala lan-
guage. Jena framework in conjunction with Pellet rea-

soner are used for ontology processing.
Utilization of the reasoner helps to transform doc-

uments relying upon their semantic structure:
� the transformation process will pick up the right

templates not only for individuals that state their
type explicitly but also for individuals that are im-
plicitly classified by the reasoner;

� the transformation result for different documents
which are semantically equivalent will be the
same, e.g. if the ontology states that p0 is the
inverse of property p then documents containing
a pb and b p0 a will be equally transformed.
There is a number of extensions that we plan to

implement in our future work, e.g. the possibility
to bind templates to “anonymous” classes expressed
as description logic formulas (‘married people’, ‘mar-
ried people with kids’ etc.): right now it is only pos-
sible to bind to “named” classes by their URI.

The principles of ontology-based template trans-
formations are utilized in a more general framework
for the processing of RDF data. Whereas the tem-
plate language is suitable only to generate different
representations, i.e. construct some strings, from the
RDF resources, the framework is suitable to execute
arbitrary operations. This result is achieved by sub-
stituting templates with functions whose return type
is not limited to strings. Interesting point is that this
framework might be considered as a means of object
oriented programming (OOP) on ontologies. Instance
templates correspond to instance methods and class
templates — to static methods. This enables to use
ontologies as class hierarchies in OOP programs with-
out losing reasoning capabilities.

REFERENCES

Alkhateeb, F. and Laborie, S. (2008). Towards extending
and using SPARQL for modular document generation.
In Proceedings of the eighth ACM symposium on Doc-
ument engineering, pages 164–172. ACM.

Baader, F., Calvanese, D., McGuinness, D., Nardi, D., and
Patel-Schneider, P. (2007). The Description Logic
Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press.

Clark, J. et al. (1999). XSL transformations (XSLT) ver-
sion 1.0. W3C Recommendation 16 November 1999.

Corby, O., Faron-Zucker, C., and Gandon, F. (2014).
SPARQL template: A transformation language for
RDF. report, Inria RR-8514.

Davis, I. (2003). RDF template language 1.0. Specification
Draft.

Egana, M., Antezana, E., and Stevens, R. (2008). Trans-
forming the axiomisation of ontologies: The ontology
pre-processor language. Proceedigns of OWLED.

WEBIST�2015�-�11th�International�Conference�on�Web�Information�Systems�and�Technologies

510

Furche, T., Bry, F., Schaffert, S., Orsini, R., Horroks, I.,
Kraus, M., and Bolzer, O. (2004). Survey over exist-
ing query and transformation languages. REWERSE.

Kawamoto, K., Kitamura, Y., and Tijerino, Y. (2006).
Kawawiki: A semantic wiki based on RDF templates.
In Proceedings of the 2006 IEEE/WIC/ACM interna-
tional conference on Web Intelligence and Intelligent
Agent Technology, pages 425–432.

Lassila, O., Swick, R. R., Wide, W., and Consortium,
W. (1998). Resource Description Framework (RDF)
Model and Syntax Specification. World Wide Web
Consortium.

Smith, M. K., Welty, C., and McGuinness, D. L. (2004).
OWL web ontology language guide. W3C Recommen-
dation 10 February 2004, 10.

A�Language�for�Transforming�the�RDF�Data�on�the�Basis�of�Ontologies

511

