
Towards a 3D Virtual Game for Learning Object-Oriented Programming
Fundamentals and C++ Language

Theoretical Considerations and Empirical Results

Fahima Djelil1, Benjamin Albouy-Kissi1, Adélaı̈de Albouy-Kissi1, Eric Sanchez2 and Jean-Marc
Lavest1

1 Laboratoire Institut Pascal CNRS-UMR 6602, Université Blaise Pascal, Clermont-Ferrand, France
2EducTice, Institut Français de l’Education, Ecole Normale Supérieure, Lyon, France

Keywords: Object-Oriented Programming, Game Based Learning.

Abstract: Object-Oriented Programming (OOP) paradigm is one of the most common paradigm in introductory pro-
gramming courses. However, novices often have difficulties to understand the basic concepts which are of a
high level of abstraction. Either tangible and virtual constructive games provide the students with a more fa-
miliar way for learning programming. This paper applies a construction game metaphor approach for learning
OOP concepts and C++ syntax. After introducing some tangible and virtual constructive games for learning
programming, we present an experimental prototype of a new 3D virtual game for learning OOP called PrOgO
as well as the results of an experiment conducted with beginner student using PrOgO.

1 INTRODUCTION

Learning programming can be perceived difficult
from novices (Yan, 2009; Overmars, 2004). A novice
student has to face a primary challenge which is
problem solving, he has to understand how a com-
puter program runs and has to learn a specific syn-
tax in which his program will be transcribed. Ab-
stract concepts understanding is another challenge.
The basic Object-Oriented Programming (OOP) con-
cepts which are on a higher level of abstraction have
become the most common programming concepts for
introductory programming courses, and the transition
to the OOP paradigm has proven to be more difficult
than expected (Börstler et al., 2008). Therefore, a
lot of systems have been designed to support the ac-
quisition and development of programming concepts.
They aim to take abstract programming concepts to
the real world for learners. They are based either
on tangible interfaces or on virtual simulations and
games that connect with the learners interest. This
has proven to be very engaging and empowering for
novices (Cooper et al., 2000; Kölling, 2010).

In this work, we apply a construction game
metaphor approach for learning OOP. Our ultimate
goal is to provide novice students with realistic and
relevant representations that will help them in learn-

ing OOP concepts and C++ programming syntax in an
entertaining way. For this purpose, we present an ex-
perimental prototype of a new three-dimensional (3D)
virtual game for basic OOP concepts such as class,
object, object creation, method invocation, parame-
ter passing and object destruction. First we present
a literature review on tangible interfaces and virtual
environments for learning programming (section 2),
then we describe our first prototype of the game we
called PrOgO (section 3) and finally, we describe an
experiment we conducted with beginner students us-
ing this prototype, we will proceed to interpret the re-
sults (section 4) and to extract the corresponding con-
clusions (section 5).

2 THEORETICAL BACKGROUND

There have been several tangible interfaces for learn-
ing programming which aim to bring the abstract con-
cepts of programming closer to the real world, to be
more easily graspable (Jetsu, 2008). These interfaces
consist of tangible components i.e. physical and me-
chanical that the user can assemble to construct pro-
gram’s sequences. One of the first tangible program-
ming interfaces was Radia Perlman’s Slot Machine
(Perlman, 1976) which was based on the LOGO pro-

289
Djelil F., Albouy-Kissi B., Albouy-Kissi A., Sanchez E. and Lavest J..
Towards a 3D Virtual Game for Learning Object-Oriented Programming Fundamentals and C++ Language - Theoretical Considerations and Empirical
Results.
DOI: 10.5220/0005475802890294
In Proceedings of the 7th International Conference on Computer Supported Education (CSEDU-2015), pages 289-294
ISBN: 978-989-758-108-3
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)

gramming language. LOGO was one of the most
widely used programming languages for beginners
(Jetsu, 2008), allowing students to use the computer
to control a robotic turtle to follow their instructions
(Papert, 1980). Slot Machine allowed students to con-
trol either a real mechanical robot or a screen based
simulation of such a robot (Perlman, 1976). Algo-
Block is another interface that is somewhat similar to
Slot Machine. It consists of a set of physical blocks
that connect to one another to form a program (Suzuki
and Kato, 1993). Each block corresponds to a single
command in the LOGO programming language. The
term tangible programming language was invented by
Suziki and Kato in order to describe the AlgoBlock
collaborative programming environment (Suzuki and
Kato, 1993). Topobo is another example of this kind
of interfaces that was designed to learn programming
thinking (Raffle, 2004), it consists of a set of active
and passive blocks which can be combined together to
assemble and animate robotic structures. The active
blocks are embedded with a kinetic memory which
allows recording and playback of physical motion of
the constructed assembly. This constructed assembly
is animated by moving passive blocks that are con-
nected to the active ones. After the animation has
been created, it can be played back by pressing a but-
ton (Raffle, 2004).

Several environments have been designed with a
view to reduce the complexity of programming learn-
ing for novice students and increase their motivation.
These environments use graphic representations to in-
troduce abstract programming concepts and allow stu-
dents to create games and animations by manipulating
programs. Alice (Conway et al., 2000) and Green-
foot (Kölling, 2010) are examples of such environ-
ments, which strive to engage students by allowing
them to write programs about games, stories and sim-
ulations. One of the important characteristics of Al-
ice and Greenfoot is a design that explicitly visual-
izes fundamental concepts of OOP in a realistic and
a meaningful context. Students do not typically start
by manipulating source code, they rather start by cre-
ating objects by selecting graphics which represent
classes. Once an object has been created, it can be
placed into a 2D (Greenfoot) or a 3D (Alice) scene,
when the object is selected the user can see all its
methods which constitute all its available actions it
can perform. Once a method has been selected, the
user can see immediately the effect of its execution
onscreen. After the students are introduced to the fun-
damentals of OOP, scenarios that have been already
implemented are presented to them enabling easy ma-
nipulation of programs in their syntax. This charac-
teristic is very interesting for novice students, since it

has been proved (Cooper et al., 2003; Kölling, 2010)
that this helps novices to avoid syntax errors while fo-
cusing on understanding abstract concepts before ma-
nipulating source code. According to (Utting et al.,
2010), these environments’ principal harks back to
Logo’s turtle. Since they reify objects so that the re-
sult of command execution is visible as the position,
size, rotation, and other visible state and behavior of
the object changes. These environments provide high-
level commands like move and hide low-level details
such as graphics primitives.

By analogy with any construction game such as
Topobo, a screen based simulation of such a game that
allows students to manipulate 3D graphics to create
and animate robotic structures, whereas each graph-
ical elementary block represents an object, would be
relevant to introduce OOP concepts. Indeed, an object
is an active entity within a program, including a set of
attributes (knowledge) and methods (skills) that act
on its attributes to achieve some functionalities which
are the objectives of the program.

3 A 3D VIRTUAL GAME
PROTOTYPE FOR LEARNING
OOP FUNDAMENTALS AND
C++ PROGRAMMING
LANGUAGE

A constructive game dedicated to learning OOP fun-
damentals, should enable students creating objects,
visualizing their state and behavior, interacting with
them by executing their methods and make them com-
municate with one another. Direct manipulation of
graphics representing object-oriented concepts can
help students, as in real life, to think in terms of ob-
jects. The student should be able to create as many
class instances as he likes. The concept of inheritance
can be materialized by creating new objects based on
other objects having the same behavior with new at-
tributes or the same attributes with new behaviors.
The concept of composition can be represented by
objects that contain other objects. In order to enable
the student to understand more easily the implementa-
tion of the abstract concepts in a specific syntax such
as C++, all his manipulations executed directly on
the graphics should be interpreted into source code.
Since the representations are very precise, each stu-
dent’s action can be interpreted into a C++ instruc-
tion. This will constitute a complete program, that
the student can visualize and modify in order to prac-
tice programming, after the abstract concepts are well
understood.

CSEDU�2015�-�7th�International�Conference�on�Computer�Supported�Education

290

Figure 1: PrOgO main window showing a realization example.

This design principle provides students with a pri-
mary introductory step to OOP concepts, through fun
and realistic 3D graphics, before manipulating source
code. This also allows students to express their own
creativity, and provides them with an engaging learn-
ing tool.

PrOgO (Object-Oriented PrOgramming) is an ex-
perimental prototype which has been developed as a
proof of concept of such a game. This prototype gen-
erates C++ source code corresponding to direct ma-
nipulations of 3D graphics. Figure 1 shows the inter-
face of PrOgO with an example of a student’s realiza-
tion. The interface comprises 3D elementary blocks
representing classes that the student can instantiate to
obtain objects, a 3D scene to place in the objects that
have been created, and a separate tab anchored on the
right side of the 3D scene to display the C++ code that
is being generated during the direct manipulations of
the 3D graphics. Once an object is created and placed
into the 3D scene, the student can view all its meth-
ods, and invoke them. Once a method is executed, its
result on the state of the object is immediately visu-
alized, and the corresponding C++ code is automat-
ically generated. Each object has three elements of
state that are automatically visualized on screen: a po-
sition which is specified in x, y, z coordinates, a rota-
tion and a color. Separate objects can connect to one
another and assembled objects can be disassembled.
Each of these can be manipulated trough method calls

to create a robotic or a mechanic structure. Note that
the code generated is not yet editable.

4 EXPERIMENTAL RESULTS

In the Institute of Technology of le Puy-en-Velay
(University of Auvergne, France), the course Fun-
damentals of Computer Science is imparted in the
first year of the Degree in Digital Imaging. This
course consists of two main topics: Introduction to al-
gorithms and programming, and OOP fundamentals.
The first topic covers the basics about programming
on C++: data types, variables and operators, con-
trol flow statements, arrays and pointers, procedures
and functions, dynamic allocation. The students, at
this stage, are initiated to C++ procedural program-
ming and don’t have knowledge about OOP. The sec-
ond topic is an introduction to OOP in C++: classes
and objects, encapsulation, composition, inheritance,
polymorphism, etc.

We have experimented PrOgO with the first year
students in Digital Imaging Degree. This experimen-
tation aims to identify potential design, ergonomic
and pedagogical issues of the game, and intends to
provide a conceptual basis for a future evolutive pro-
totype on the basis of the students’ expectations in
terms of learning and entertaining aspects.

Towards�a�3D�Virtual�Game�for�Learning�Object-Oriented�Programming�Fundamentals�and�C++�Language�-�Theoretical
Considerations�and�Empirical�Results

291

This was conducted after the students have com-
pleted the first topic of the course, and once they
started the second one. They have been introduced
for the first time to some elementary concepts such
as class, object, encapsulation and method invoca-
tion. The participants were a total of 48. Their aver-
age age was 18.7 years and all except one reported to
play to video games very frequently (31 participants
play every day and 16 of them play several times a
week). They also mostly reported not to play to seri-
ous games (37 participants don’t play against 11 who
play regularly). We collected pictures of the graphical
realizations (Figure 2) as well as the corresponding
generated source code files, to determine whether the
students were getting involved into the game. We also
recorded all the students’ actions within logs includ-
ing objects creation and destruction and method calls
within the 3D scene, as well as code selection within
the tabs containing the code which is automatically
generated and the code which is already implemented
that includes the declaration of the available classes.
This have been made in order to know whether the
students make the effort to engage in understanding
the relationship between the 3D graphics and the gen-
erated code, rather than only manipulating the graph-
ics in the 3D scene. We also used an attitude sur-
vey which is focused on participant’s experience and
opinions about using PrOgO in the future for learning
other OOP concepts. They were asked to rate the ped-
agogical and entertaining aspects of the game, to indi-
cate whether they have improved their understanding
of the concepts of class, object, method invocation
and C++ syntax related to these concepts, and what
aspects of the game they would like to be improved.

From the collected graphical realizations (Figure
2), we can observe that some students clearly suc-
ceeded to construct complex and meaningful struc-
tures. This indicates that the students were quiet
engaged in the game and motivated to accomplish
the game’s objective. From the generated interaction
logs, we observed that the students were mostly fo-
cused on manipulating graphics in the 3D scene. The
logs have shown that the actions that have been mostly
performed are objects instantiating and objects meth-
ods calls such as assemble(), translate() and rotate().
Some students were also interested to analyse the gen-
erated code, since the logs included actions such as
”select code” and ”select tab”.

From the attitude survey, we collected the stu-
dents’ opinions expressed upon four levels (not at all,
sparsely, quite, a lot) about the amusing and peda-
gogical aspects of PrOgO, as well as improvement of
their understanding of the presented concepts. Table
1 summarizes the obtained results. We have linked

Figure 2: Some students’ realizations.

the amusing judgement to the student’s frequency of
play to video games and the pedagogical judgement
to the student’s frequency of play to serious games
and we compared the obtained results. We concluded
that the students have mostly found PrOgO sparsely
or quite amusing and quite pedagogical, regardless
of the fact that they play every day or several times
a week to video games, and the fact that they play
or not to serious games, since the obtained results
are not very different from the separate students cate-
gories, as it is reported in table 1: 51% of the students
who play to video games everyday and 39% of those
who play several times a week stated that they have
found PrOgO ”sparsely” amusing. 39% of the stu-
dents who play everyday and 44% of those who play
several times a week found it ”quite” amusing. They
are totally 47% to find it ”sparsely” amusing and 41%
to find it ”quite” amusing. Moreover, no one of the
students who play to serious games has found it ”not
at all” pedagogical, 58% rather found it ”quite” ped-
agogical and 34% found it ”sparsely” pedagogical,
those who don’t play to serious games have mostly
found it ”quite” pedagogical (67% against 22% who
found it ”sparsely” pedagogical).

We have also concluded that the students have
mostly sparsely or quite improved their understand-
ing of the presented concepts (class, object and re-
lated C++ syntax), regardless of the fact that they
previously understood these concepts in classroom
or not. As it is shown in table 1, the students who
said that they have already understood these concepts
in classroom have though improved their understand-
ing (44% stated that they have ”sparsely” improved

CSEDU�2015�-�7th�International�Conference�on�Computer�Supported�Education

292

Table 1: Participants’ opinions about PrOgO collected in the attitude survey.

comparison item participants not at all sparsely quite a lot

how is PrOgO amusing?
students who play to video games
everyday

10% 51% 39% 0%

students who play to video games
several times a week

17% 39% 44% 0%

all 12% 47% 41% 0%

how is PrOgO pedagogical?
students who play to serious games 0% 34% 58% 8%
students who don’t play to serious
games

3% 22% 67% 8%

all 2% 25% 65% 8%
how did you improve your
understanding of the
concept of class?

students who think they have al-
ready understood in classroom

16% 44% 36% 4%

students who think they have not
understood in classroom

8% 59% 33% 0%

all 12 % 51% 35% 2%
how did you improve your
understanding of the
concept of object?

students who think they have al-
ready understood in classroom

26% 37% 26% 11%

students who think they have not
understood in classroom

3% 54% 43% 0%

all 12 % 47% 37% 4%
how did you improve your
understanding of the syntax
related to the concepts of
class and object?

students who think they have al-
ready understood in classroom

39% 33% 28% 0%

students who think they have not
understood in classroom

3% 62% 32% 3%

all 16 % 51% 31% 2%

their understanding of the concept of class, 37% have
stated the same regarding to the concept of object, and
33% regarding to the syntax of these concepts). There
are also a number of them who stated ”quite” improv-
ing their understanding (36% regarding to the con-
cept of class, 26% regarding to the concept of object,
and 28% regarding to the syntax of these concepts).
Most of the students who thought not to understand
before in classroom have also presented quite similar
percentages (59% stated improving ”sparsely” their
understanding of the concept of class, the percentages
for the concepts of object and syntax are respectively
54% and 62%). A lot of them have reported having
”quite” improved their understanding of these con-
cepts, the percentages are respectively (33% , 43%
and 32%).

We gathered some students’ statements regarding
to what they learned, during the experiment such as:
”I have learned how to declare an object and how to
make method calls”, ”I understand more about the
C++ syntax, and this tool can help me to review some
concepts at home for example”, ”I understand better
the syntax related to object instantiation and method
calls, especially about pointers”, ”I understand better
the relationship between the class and the object”.

We have also collected the students opinions about

using PrOgO in the future for learning additional con-
cepts, and linked the results to their judgements re-
garding to weather they found it amusing, pedagogi-
cal and attractive. We concluded that the students who
want to use PrOgO again are mostly those who found
it quite amusing, quite pedagogical and quite attrac-
tive, and those who don’t want to use it again are those
who found it sparsely amusing, sparsely pedagogical
and sparsely attractive (Figure 3).

Furthermore, we asked the students what aspects
of the game they would like to be improved. The an-
swers were mostly about ergonomic and learning as-
pects. Most of the students indicated that they would
like more graphical elements, and more options such
as having the possibility to construct other objects
from the available ones, in order to be able to manipu-
late groups of objects. Most of the students expressed
an interest in modifying the generated code, to inter-
act more easily with the virtual environment and to
have more freedom in their actions.

5 CONCLUSIONS

In this work, we have applied a construction game
metaphor for learning OOP and C++ programming

Towards�a�3D�Virtual�Game�for�Learning�Object-Oriented�Programming�Fundamentals�and�C++�Language�-�Theoretical
Considerations�and�Empirical�Results

293

(a)

(b)
Figure 3: Using PrOgO in the future according to weather
the students found it amusing, pedagogical and attractive:
a) students who want to use PrOgO again. b) students who
don’t want to use PrOgO any more.

language. We have presented a first experimental pro-
totype of a 3D virtual game called PrOgO by which
abstract OOP concepts are represented in a meaning-
ful and a visible way, and we experimented it with the
first year students in Digital Imaging Degree.

From the analysis of results presented in the pre-
vious section, we concluded that although PrOgO is
at the prototype stage, the students have mostly found
it quite pedagogical and amusing. They also mostly
sparsely improved their understanding of the concepts
of class, object, object instantiation, method calls and
C++ syntax related to these concepts. Moreover, more
than half of them stated that they want to use PrOgO
in the future for learning additional concepts, and
most of them have expressed the wish to have more
options regarding to the interaction interface and the
content of the game, such as having the possibility to
modify the generated code, which is something we
have already planned to do before. Although this
work is a preliminary study, such results are signifi-
cant. In this sense, a stable release of the game could
have a positive influence on the learning of OOP ba-
sics as well as C++ programming language.

Actually, we work on the design and the devel-
opment of an evolutive prototype dedicated to tactile
interfaces such as tangible tabletops and tablets. This

work allowed us to validate our design principal, es-
pecially the construction metaphor on which the game
is based on, and the students feedback allowed us to
confirm the extensions we have already planned for
a future evolutive prototype. A future work will also
include the study of the impact of PrOgO on the stu-
dents motivation and learning.

REFERENCES

Börstler, J., Nordström, M., Westin, L. K., Moström, J.-E.,
and Eliasson, J. (2008). Transitioning to OOP/java - a
never ending story. In Reflections on the Teaching of
Programming, pages 80–97. Springer.

Conway, M., Audia, S., Burnette, T., Cosgrove, D., and
Christiansen, K. (2000). Alice: lessons learned from
building a 3D system for novices. In Proceedings of
the SIGCHI conference on Human factors in comput-
ing systems, pages 486–493. ACM.

Cooper, S., Dann, W., and Pausch, R. (2000). Alice: a 3D
tool for introductory programming concepts. In Jour-
nal of Computing Sciences in Colleges, volume 15,
pages 107–116. Consortium for Computing Sciences
in Colleges.

Cooper, S., Dann, W., and Pausch, R. (2003). Teach-
ing objects-first in introductory computer science. In
ACM SIGCSE Bulletin, volume 35, pages 191–195.
ACM.

Jetsu, I. (2008). Tangible user interfaces and programming.
Master’s thesis, University of Joensuu- department of
computer science and statistics. page 70.

Kölling, M. (2010). The greenfoot programming environ-
ment. ACM Transactions on Computing Education
(TOCE), 10(4):14.

Overmars, M. (2004). Learning object-oriented design by
creating games. Potentials, IEEE, 23(5):11–13.

Papert, S. (1980). Mindstorms: Children, computers, and
powerful ideas. Basic Books, Inc.

Perlman, R. (1976). Using computer technology to provide
a creative learning environment for preschool chil-
dren.

Raffle, H. S. (2004). Topobo: a 3-D constructive assem-
bly system with kinetic memory. PhD thesis, Mas-
sachusetts Institute of Technology.

Suzuki, H. and Kato, H. (1993). Algoblock: a tangible
programming language, a tool for collaborative learn-
ing. In Proceedings of 4th European Logo Confer-
ence, pages 297–303.

Utting, I., Cooper, S., Kölling, M., Maloney, J., and
Resnick, M. (2010). Alice, greenfoot, and scratch -
a discussion. ACM Transactions on Computing Edu-
cation (TOCE), 10(4):1–17.

Yan, L. (2009). Teaching object-oriented programming with
games. In Sixth International Conference on Informa-
tion Technology: New Generations (ITNG’09), pages
969–974.

CSEDU�2015�-�7th�International�Conference�on�Computer�Supported�Education

294

