
Understanding Legacy Architecture Patterns 

Ricardo Pérez-Castillo1, Benedikt Mas2 and Markus Pizka2 
1Itestra GmbH, Capitán Haya 1, 15th floor, room 16, 28020 Madrid, Spain 

2Itestra GmbH, Destouchesstr. 68, 80796 München, Germany 
 

Keywords: Legacy Information Systems, Architecture Patterns, Software Maintenance, Modernization. 

Abstract: While often being the not very well liked stepchild of IT departments, legacy information systems are 
valuable assets for companies. After many years of development and maintenance, these systems often 
contain valuable business logic and implement business processes that are nowadays unknown even to the 
owner of the system. However, maintenance and further development is often costly and requires an 
increased effort compared to modern applications. Hence, developing sound strategies for gradually 
modernizing these applications and lowering the associated costs is of paramount importance. For carrying 
out such strategies, it is useful to understand why and how certain aspects of these systems are implemented. 
At itestra, we have collected architectural patterns in legacy information systems and use these to 
understand legacy information systems better and avoid mistakes in the analysis of behavior of such legacy 
systems. We present these patterns here in order to facilitate the decision-making process in modernization 
projects and increase their success probability. 

1 INTRODUCTION 

The questioned challenge lies in a contradiction. 
Major corporations usually possess a history and 
large array of so called legacy information systems 
that consume a great part of their IT budget in 
operations and maintenance. On the one hand, these 
systems have been extended over many years to 
support business processes optimally or business 
processes have been adapted over time to work 
efficiently with an existing system and the 
workforce is used to the established process. A lot of 
business knowledge is implemented in these mission 
critical systems, up to the point that certain aspects 
of processes are not documented elsewhere but in 
the source code (Paradauskas and Laurikaitis, 2006; 
Sommerville, 2006). 

On the other hand, IT departments and software 
vendors have cultivated a belief that “anything new 
is beautiful and that everything old is ugly” and we 
have become “victims of a volatile IT industry” 
(Sneed, 2008). Old legacy systems are frowned upon 
and it is very hard to find engineers that are 
interested in working with these applications, 
creating a maintenance risk. The maintenance cost 
explodes quickly (Bennett, 1996; Sneed, 2005; The 
Standish Group, 2010) and software erosion is 

visible all over the systems (Paradauskas and 
Laurikaitis, 2006): 
 Systems are implemented with obsolete 

technology which is expensive to maintain. 
 The lack of documentation leads to a lack of 

understanding, making the maintenance of 
these systems a slow and expensive process. 

 A great effort must be made to integrate a 
legacy system with other systems, since the 
interfaces and boundaries of the legacy system 
are not well defined. 

Most importantly however, in an increasingly 
globalized world with 24/7 connectivity, the 
established business processes are not adequate 
anymore and need to bring into a world where 
customers prefer mobile self-service portals over 
visiting service centers and talking to service agents 
in person.  

Engineers that are given the task to adapt the IT 
support to 21st century business processes are 
frequently shocked when they analyze the existing 
landscape, qualifying the existing applications as 
“garbage” and stating that a replacement from 
scratch, even though prohibitively expensive and 
inherently risky, is inevitable. 

 We argue that in many cases this attitude is a 
result of the not invented here syndrome or cognitive 

282 Pérez-Castillo R., Mas B. and Pizka M..
Understanding Legacy Architecture Patterns.
DOI: 10.5220/0005467302820288
In Proceedings of the 10th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2015), pages 282-288
ISBN: 978-989-758-100-7
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)



dissonance (Harmon-Jones and Harmon-Jones, 
2007) and that in many cases an attempt to try and 
modernize an existing application in small, 
controllable steps would be both economically more 
attractive and less risky than a from scratch 
replacement. 

For more than 10 years now, itestra, an IT 
service company focused on strategy consulting, 
aims at reengineering, replacing or migrating legacy 
information systems. Its project portfolio provides 
itestra with the possibility of analyzing a vast 
number of legacy information systems, treating a 
wide variety of legacy technologies and observing 
different development paradigms and architectures. 
This hands-on experience has allowed itestra to 
define a set of architectural patterns frequently 
visible in legacy information systems. 

From our experience, we observe that 
understanding a set of typical architectural patterns 
makes the analysis of existing applications easier, 
avoids the aforementioned cognitive dissonance and 
ultimately allows the development of an 
economically efficient and safer modernization 
strategy for many legacy applications. This paper 
explains patterns such as the vertical model, one 
access program per table, one screen per table, step 
by step, record based, object orientation in COBOL, 
data collector, data synchronize, and building 
blocks. We argue that if managers, architects and 
developers know and understand these architectural 
patterns (and their causes or origins as well), they 
are in a better position for understanding legacy 
information systems and making a sound choice of a 
modernization strategy. 

The paper is organized as follows. Section 2 
presents important architectural patterns recognized 
in legacy information systems. Section 3 explores 
the root causes and origin of those patterns. Section 
4 explains consequences of ignoring those patterns, 
and finally, Section 5 presents conclusions and main 
implications. 

2 ARCHITECTURAL PATTERNS 
IN LEGACY SYSTEMS 

A pre-requisite to optimal and tailored 
modernization strategies for legacy systems is the 
understanding of internal details and behaviour of 
the system under consideration. This understanding 
is often hampered by a lack of knowledge of 
architecture, technologies used and a lack of 
understanding of the environment when the design 
decisions regarding the system were made. 

One of the factors that determine the legacy 
nature of a system is the paradigms that were en 
vogue at the time these systems were built. Since the 
1980ies, the requirements and technologies have 
changed significantly (see Table 1). Obviously, these 
differences led to a design vastly different from an 
architecture that would be chosen in a from-scratch 
development today. 

Table 1: Differences between legacy systems and modern 
applications. 

 Legacy Modern 

Nature Static Dynamic 

Execution of 
system-based 
tasks 

Centralized 
batch processes 

Online 
availability. 

24/7 

Tasks 
organization  

Procedures Processes 

Delivery Data Services 

Development and 
Maintenance 
focus 

Technical/proce
dural Steps 

Business entities 

Developers and 
maintainers 
question 

How to 
automate those 
procedural 
steps? 

How to model 
business entities 
and interactions? 

Development 
challenges 

Limited 
computing 
power and 
centralized IT 

Distributed, 
connected 
processes and 
applications 

Nine architectural patterns, explained in next 
subsections, are frequently encountered in legacy 
systems: (i) vertical model, (ii) one access program 
per table, (iii) one screen per table, (iv) step by step, 
(v) record based, (vi) object orientation in COBOL, 
(vii) data collector, (viii) data synchronize, and (ix) 
building blocks. Understanding and recognizing 
these patterns makes an analysis of these 
applications easier. Each pattern is described in a 
few sentences and then its consequences are 
explained. 

2.1 Vertical Model 

For mainframe applications, transactions offer the 
possibility to implement online functionality, e.g. 
user interfaces or interfaces to other applications. In 
a vertical model, these transactions are implemented 

Understanding�Legacy�Architecture�Patterns

283



in a set of dedicated programs per transaction, 
completely avoiding sharing of code between 
transactions. The only persistent state that is 
available to these transactions is held in the 
database. Within the transactions, the programs 
show a high cohesion and no defined structure, e.g. 
layers. A legacy information system implementing 
this pattern can be regarded as a set of silos, with 
each silo being independent from all other silos. The 
coupling between the silos is usually highly 
complex, but very hard to analyze due to the lack of 
a way to exchange data other than the database. 

Internally, these applications repeat functionality 
many times and show a high rate of code 
duplication, leading to an enormous code base and 
ultimately excessive maintenance cost. Vertical 
model is one of the most recurrent architectural 
patterns we have found in COBOL-based systems. 

2.2 One Access Program per Table 

When today’s legacy systems were built, many 
engineers had experience in working with files and 
file based access patterns. Relational databases were 
new and the nowadays commonplace language SQL 
for reading and writing data was exotic and could 
only be managed by a few specialists. Additionally, 
it was still unclear if relational databases would be 
the accepted solution for many years in the future. 

In order to overcome this situation, architects 
chose to encapsulate SQL and the database in 
“access programs” per database table, similar to 
what one would do in a file based system. The 
access program is used to perform all data access 
operations concerning a single database table. 
Usually, the program implements only trivial access 
methods to this table (e.g. READ_ALL or 
READ_BY_ID), leading to inefficient access 
patterns in the business logic that has to implement 
complex selection and filtering routines. SQL 
operators such as JOIN are hardly used in this 
pattern, depriving one from powerful instruments 
offered by modern databases. 

The negative consequence of such an 
architecture are slow applications that are 
cumbersome to maintain and, due to their high CPU 
usage, very costly to operate. 

2.3 One Screen per Table 

Similarly to the previous architectural pattern, one 
screen per table refers to design solutions which 
provides a user interface (a dialog or form) 
implementing user interaction so that she or he can 

execute CRUD (create/read/update/delete) 
operations in a certain table or data file. In these 
architectures, the user is presented with a choice of 
which data to modify on a certain table or file. The 
execution of a complex use case is then restricted to 
the execution of individual operations on different 
database tables by the user. 

One of the most extended today patterns to 
decouple user interfaces and business logic is MVC 
(Model-View-Controller) (Bodhuin, Guardabascio et 
al., 2002; Ping, Kontogiannis et al., 2003). 
Following MVC pattern, each user interface is 
associated most of times with a use case rather than 
a database table. The migration of old user interfaces 
into new ones by following modern patterns like 
MVC is one important challenge in modernization 
projects. 

Again, the side effect of architectures following 
this pattern is the necessary extra effort so that to 
provide new architectures with low-coupling layers 
for persistency, business logic and user interfaces. 

2.4 Step by Step 

Step by step pattern consists of architectural 
solutions in which batch procedures are 
implemented to complete a sequence of tasks in a 
row. Complex business processes are broken down 
into many small and individual steps. Each 
implemented step reads the data to be processed 
from persistent storage, applies a (often trivial) 
transformation and saves it back into storage. The 
ultimate business process that is implemented by a 
set of steps is unclear in the individual step, making 
the implementation resilient to change. 

The weak of this architecture is that lead to 
frequent read/write operations of temporary data, 
which are slow and cumbersome, and increase 
computing cost as well. 

The challenge for this architectural pattern is 
how to model underlying business processes and 
entities related to the sequence of steps. 
Additionally, the implementation of these processes 
in modern technologies instead of individual batch 
programs can be tricky. 

2.5 Record based 

Rather than implementing operations that can 
operate on a set of records in a cross-cutting way, an 
implementation is chosen where an operation is 
executed on one isolated record at a time. An 
example would be to read a record from a database, 
update a value of that record and write it back rather 

ENASE�2015�-�10th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

284



than executing an update operation directly in the 
database. 

The main drawback of record-based architecture 
is that processing in these systems is usually 
sluggish, and the only way to improve performance 
is increasing mainframe computing costs 
dramatically through hardware solutions. 

The challenge in modernization projects 
involving this architecture pattern is how to merge 
atomic operations focused on isolated records into a 
more complex, cross-cutting ones. 

2.6 Object Orientation in COBOL 

Another pattern found in legacy information system 
lies in the fact that architects attempted to model 
everything by following Object-Oriented (OO) 
paradigm, even when the technology or 
programming language does not support it at all. 
This is the case of various COBOL-based systems in 
eighties and nineties, in which architects decided to 
pseudo-implement objects using COBOL. 

This design decision very often lead to baroque 
OO designs, which has at least two major 
drawbacks. Firstly, objects (represented by single 
compilation units in most cases) do not have the 
concept of ‘this’ to refer to the own class elements. 
As a result, each time an object operation is called, 
the respective delegating class has to be linearly 
searched among all the available objects. The second 
inconvenience lies in the fact that the OO nature in 
this way is stateless, i.e., there is no concept of state 
for objects being used in a running program. 

Although the presence of this architecture pattern 
may facilitate direct translations to OO 
programming languages, many side defects in such 
architectures as a result of forcing OO nature have to 
be considered. 

Other threat of this pattern is that the migration 
of such architectures toward today OO architectures 
is error-prone due to the pseudo-implementation of 
OO nature can lead engineers to take erroneous 
assumptions during migration like, for example, 
every object in the legacy system should be 
transformed into an object into the new one. Other 
open issues are how to model inheritance and how to 
use polymorphism in the target system by 
preserving, at the same time, business logic of 
legacy systems following this pattern. 

2.7 Data Collector 

True to its name, a data collector is usually an 
isolated batch job in a legacy information system 

that collects data and stores it in a shadow database. 
This pattern is frequently found in systems that 
require monthly batch processes. 

Data collector pattern is also challenging in 
modernization projects since those monthly batch 
processes may have to be replaced by new 
collector/backup processes in the new system. The 
main effort dealing with data collectors focuses on 
preserving all the embedded business logic of the 
data collector and integrate it in the target system.  

2.8 Data Synchronize 

In legacy information system we frequently 
encounter situations where over the long history of 
the system various data sources have been 
implemented and hold redundant data. For example, 
in an attempt to integrate a legacy information 
system that operates on files into a service-based IT 
landscape, a set of web services has been 
implemented. These web services do not operate on 
the same files, but on a database. Rather than 
migrating the entire system to the database, data is 
kept redundantly between the files and the database. 
To keep the data in sync, a set of batch jobs is 
implemented and executed recurrently. 

The main challenge in modernization projects 
involving this pattern is how to cope with all the 
different data sources. Sometimes, some data 
sources cannot be removed and batch jobs for 
synchronizing data may have to be migrated to the 
target system. 

In other cases, the main effort could be focus on 
data migration between old and new data sources. 
Data migration is an error-prone task since lead in 
most cases to data quality problems (Batini, 
Cappiello et al., 2009) in the new system. 

2.9 Building Blocks 

This pattern focuses on the identification and design 
of building blocks, which are software components 
that can be independently developed and deployed. 
Architectural building blocks (e.g., component, 
connector, or module) is native to a style. 
Identification of building blocks very often goes 
along the object dimension. However, there is no 
restriction and a building block other dimensions as 
well, e.g., aspect or concurrency dimensions 
(Müller, 2003). 

The main idea of the building blocks pattern is to 
take descriptions of application domain 
functionality, commercial product features, system 
qualities and technology choices as input and 

Understanding�Legacy�Architecture�Patterns

285



produces a number of architectural models and 
construction elements. 

This pattern is problematic in modernization 
projects because most time engineers have to 
transform an architecture based on building blocks 
into new architectures that lack those blocks. As a 
consequence, engineers and managers of 
modernization projects involving this pattern have 
first to recognize building blocks, and then decide if 
these blocks are discarded, migrated or modernized. 

3 ROOT CAUSES 

Architectural design rationale describes the 
decisions made, alternatives considered, and reasons 
for and against each alternative considered when a 
software architecture is defined (Wang and Burge, 
2010; Zimmermann, 2012). Although architectural 
design rationale is outside of the scope of this paper, 
it has to be taken into account to understand the 
harmful consequences in modernization projects 
when the mentioned patterns are overlooked. 

Many engineers literally laugh when they face 
some of the mentioned architectural patterns. Today, 
in a modern context under well-known software 
engineering principles, the application of most of 
these architectural patterns does not make sense and 
their use is considered at least problematic. 

However, these patterns were not harmful nor 
risky when these were applied, or at least, benefits of 
their application were higher than drawbacks. In 
many cases the solution that was implemented in a 
legacy system was the best solution available at the 
time. 

Today’s software engineers should take into 
account that architects had good reasons for 
applying these patterns. Most times, these reasons 
are related to the desire of architects for connecting 
business processes and hardware to fulfill with 
service provisioning constraints. For example, in the 
1980ies, enterprise applications were largely batch-
driven and centralized due to the limited amount of 
hardware available, restricted computing power and 
lack of network connections between different 
offices. 

As a result, we can conclude that the origin of 
the application of most of these patterns lied in the 
necessity of fulfill different architecture constraints 
as the following ones: 
 Software architecture and specifications that 

include language use, library use, coding 
standards, memory management, and so forth. 

 Hardware architecture that includes client and 

server configurations. 
 Communications architecture that includes 

networking protocols and devices. 
 Persistence architecture that includes 

databases and file-handling mechanisms. 
 Application security architecture that includes 

thread models and trusted system base. 
 Systems management architecture. 

4 CONSEQUENCES 

As a summary of the architectural patterns presented 
in Section 2, Table 2 provides a matrix with the 
relationship between the nine architectural patterns 
and common challenges in modernization projects. 
Although engineers and managers should pay 
attention to all the challenges, Table 2 provides the 
most important concerns for each architectural 
pattern regarding our hands-on experience.  

Table 2: Architectural patterns and common challenges. 

Common Challenges 

B
us

in
es

s 
P

ro
ce

ss
 a

nd
 E

nt
ity

 M
od

el
lin

g 

Im
pl

em
en

ta
tio

n 
in

 m
od

er
n 

te
ch

no
lo

gi
es

 

A
rc

hi
te

ct
ur

e 
m

ig
ra

tio
n 

D
at

a 
M

ig
ra

tio
n 

D
at

a 
W

ra
pp

in
g 

R
ep

la
ci

ng
/I

m
pr

ov
in

g 
S

ou
rc

e 
C

od
e 

P
er

fo
rm

an
ce

 

A
rc

h
it

ec
tu

ra
l P

at
te

rn
s 

Vertical model • • • 
One access program 
per table    

• • 
 

• 

One screen per table • • 

Step by step • • • • • 

Record based • • • 
Object orientation in 
COBOL 

• 
 

• 
  

• • 

Data collector • • • • 

Data synchronize • • • 

Building blocks • • •   •  

In our opinion, overconfidence of managers, 
architects, and/or developers who ignore these 
patterns can be related to one or more of the 

ENASE�2015�-�10th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

286



following negative concerns in modernization 
projects: 
 Lack of architecture planning and 

specification; insufficient definition of 
architecture for software, hardware, 
communications, persistence, security, and 
systems management. 

 Hidden risks caused by scale, domain 
knowledge, technology, and complexity, all of 
which emerge as the project progresses. 

 Impending project failure or unsuccessful 
system due to inadequate performance, excess 
complexity, misunderstood requirements, 
usability, and other system characteristics. 

 Absence of technical backup and contingency 
plans. 

At the contrary, we state that if managers, 
architects and developers consider the mentioned 
architectural patterns when dealing with legacy 
information systems, they may be in an 
advantageous position to successfully conduct 
modernization projects. It becomes possible to see 
trees in the forest, i.e., engineers who knows these 
patterns have guidelines to focus on certain concerns 
and dimensions of legacy information systems. 
Furthermore, the mentioned architectural patterns 
engineers are helpful for extracting embedded 
knowledge from legacy information systems in a 
more effective and efficient way. 

5 CONCLUSIONS 

Although legacy information systems and 
approaches for modernizing them have been widely 
treated in the literature, architectural patterns applied 
in legacy information systems have been studied 
superficially.  

Itestra has been involved over the last 10 years in 
modernization projects aimed at reengineering, 
replacing or migrating legacy information systems. 
This hands-on experience has allowed itestra to 
define a set of architectural patterns recurrently 
detected in legacy information systems, which may 
be helpful for achieve success in modernization 
projects. 

The main hypothesis treated in this paper is that 
engineers who know and understand these 
architectural patterns and their root causes can 
improve decision-making on modernization projects. 
In our opinion, the main conclusion of this study is 
that managers, architects and developers who 
understood and accept these architectural patterns 
can be better positioned to conduct effective 

modernization of legacy systems, and therefore, 
ensure project success. 

As a future work, we have planned to carry out 
an in-depth study about accurate architectural design 
rationale of the analyzed patterns. Additionally, an 
interesting research line to be developed in the 
future is the study of anti-patterns generated in new 
information systems after modernizing legacy 
systems. In combination with this, the relationship 
between the architectural patterns presented in this 
paper and possible anti-patterns in target systems is 
an open issue as well. 

REFERENCES 

Batini, C., C. Cappiello, C. Francalanci and A. Maurino 
(2009). "Methodologies for data quality assessment 
and improvement." ACM Comput. Surv. 41(3): 1-52. 

Bennett, K. (1996). "Software evolution: past, present and 
future." Information and software technology 38(11): 
673-680. 

Bodhuin, T., E. Guardabascio and M. Tortorella (2002). 
Migrating COBOL Systems to the WEB by Using the 
MVC Design Pattern. Proceedings of the Ninth 
Working Conference on Reverse Engineering 
(WCRE'02), IEEE Computer Society: 329. 

Harmon-Jones, E. and C. Harmon-Jones (2007). 
"Cognitive dissonance theory after 50 years of 
development." Zeitschrift für Sozialpsychologie 38(1): 
7-16. 

Müller, J. K. (2003). The Building Block Method. 
Component-Based Architectural Design for Large 
Software-Intensive Product Families. Philips Research 
Laboratories. Eindhoven. 

Paradauskas, B. and A. Laurikaitis (2006). "Business 
Knowledge Extraction from Legacy Information 
Systems." Journal of Information Technology and 
Control 35(3): 214-221. 

Ping, Y., K. Kontogiannis and T. C. Lau (2003). 
Transforming Legacy Web Applications to the MVC 
Architecture. Proceedings of the Eleventh Annual 
International Workshop on Software Technology and 
Engineering Practice, IEEE Computer Society: 133-
142. 

Sneed, H. M. (2005). Estimating the Costs of a 
Reengineering Project, IEEE Computer Society. 

Sneed, H. M. (2008). Migrating to Web Services. 
Emerging Methods, Technologies and Process 
Management in Software Engineering, Wiley-IEEE 
Computer Society: 151-176. 

Sommerville, I. (2006). Software Engineering, Addison 
Wesley. 

The Standish Group (2010). Modernization. Clearing a 
pathway to sucess, The Standish Group International, 
Inc. 

Wang, W. and J. E. Burge (2010). Using rationale to 
support pattern-based architectural design. 

Understanding�Legacy�Architecture�Patterns

287



Proceedings of the 2010 ICSE Workshop on Sharing 
and Reusing Architectural Knowledge. Cape Town, 
South Africa, ACM: 1-8. 

Zimmermann, O. (2012). Architectural decision 
identification in architectural patterns. Proceedings of 
the WICSA/ECSA 2012 Companion Volume. Helsinki, 
Finland, ACM: 96-103. 

 
 

 
 
 
 
 
 
 
 
 

 

ENASE�2015�-�10th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

288


