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Abstract: In this paper a new fault detection architecture will be presented. Inspired by multi-model data fusion 
algorithms and fuzzy logic decisions, it consists in the comparison between the estimation of a dynamic mode 
using each sensor independently. This method is used to deal with important non-linearity and strong 
interaction with the environment usually encountered in the domain of the intelligent vehicles localization. 
The concept of analytic redundancy is also used to ignore model uncertainties. 

1 INTRODUCTION 

More and more, our society is evolving to be partially 
automatized. In this context, the automotive industry 
is contributing by focusing on autonomous vehicles. 
As a step between this technology and the previous 
one, vehicular companies are developing a large 
series of tools helping drivers and improving both 
safety and comfort. These tools, when used to 
improve driving safety, are generally named ADAS 
(Advance Driver Assistance System) (Andreas 
Riener, 2009). ADAS are generally composed of a 
large amount of tools permitting, for example, to 
reduce stopping distance, or improve the car position 
determination. In that case precisely, a large set of 
exteroceptive and proprioceptive sensors are used to 
obtain a better knowledge of the vehicle environment 
and attitude, in order to reduce the localization 
uncertainties via data fusion algorithms. Some of 
them are using only proprioceptive sensors (Cai Bai-
gen et al., 2009), others are using both (Kim, S.-B et 
al., 2011 and Adrien Bak et al., 2012). 
Communication and map matching can also be used 
to reinforce the precision of the measurement (Rohani 
et al., 2013 and Rohani et al., 2014). 

In both cases, a faulty data source can lead to a 
catastrophic error in the position determination. 
That’s why, in order to properly improve safety, we 
need to detect faults and identify the associated 
sources before using faulty data in the fusion 
algorithm. One of the most used detection method is 

based on the comparison between the normal 
behavior model and the recording of the real behavior 
from the sensors. This method supposed that the 
system behavior is perfectly known and can be 
modeled (Patton, R. J. et al., 1989).  
But, the important non-linearity of our system (The 
vehicle) behavior and the strong impact of 
environmental perturbation will improve the 
complexity of our task. Others methods based on 
analytical redundancy are also used to avoid the 
model issues, as described in (Sun and Cannon, 
1998), where a Kalman filter is used to obtain 
estimations of a same metric in order to compare the 
values obtained from different sensors. 
 In this paper an alternative approach based on the 
determination of the dynamic comportment of the 
vehicle using analytical redundancy is developed in 
order to treat with the non-linearity of the system. The 
nominal comportment was divided in 4 sub-systems 
defined by the direction changes and longitudinal 
accelerations as describe in table 1.  

Table 1: Dynamic modes definition. 

Straight line H1 H3 
Speed change H2 H4 

Based on the sensors information, we will use fuzzy 
logic and calculate the weight corresponding to the 
membership degree of each dynamic mode in every 
time, and use these values from each sensor to 
determine the presence of a faulty data source. 
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In part 2 a traditional approach for the fault detection 
will be studied and our context will be presented. 
Then, in part 3, the proposed method based on the 
dynamic mode determination will be presented.  
Section four will then present some simulation results 
and a performance analysis before treating in the fifth 
section of the ongoing developments and conclude in 
section six. 

2 CONTEXT AND TRADITIONAL 
APPROACH 

2.1 Context 

As we focused on the ego-localization of an 
intelligent vehicle, we decided to focus on 
proprioceptive sensors related to the vehicle 
comportment determination. 

2.1.1 Odometer 

The odometer is based on an electric sensor detecting 
marks equally disposed on a wheel. As the odometer 
is a counting device, the output will be a discrete 
value representing both the integrated travelled 
distance and the speed during a sampling time.  

2.1.2 INS 

The INS is usually composed with 3 accelerometers 
and 3 gyroscopes which respectively provide 
information about linear accelerations and angular 
speed on the 3 axes. 

2.1.3 Compass 

The compass, usually integrated on the INS chip, will 
inform us about the absolute orientation of our 
mobile. 

2.1.4 GNSS 

This device provide the absolute position of the 
vehicle on the earth.  

2.2 Traditional Approach 

Traditionally, a system and the associated FDI (Fault 
Detector and Identification) are represented as 
followed. In this representation, we can distinguish 
three parts which can present faults. The actuators, 
the system itself and the sensors which give 
information about the system comportment. 

  

Figure 1: Classical structure of an FDI model based. 

(Qi et al., 2013) present a description of the different 
eligible faults on the actuators, the system and the 
sensors. According to these description, we can 
elaborate tests to detect every kind of fault, for every 
part of the complete data flow (Actuators, System, in 
our case, the vehicle and Sensors) as describe in 
figure 1. Here, as we focus in this publication on the 
sensors faults, actuators and system failures and 
uncertainties will not described. 
Four types of faults are depicted by Qi et al. for the 
sensors. 
- Total failure  
- Constant bias failure 
- Constant gain failure 
- Outlier failure 
Knowing these failures nature, we can elaborate tests 
to detect the presence of each kind of failure. Usually, 
model-based fault detector assume that at least one 
part of the global system (representing the system 
with its actuators and sensors) is working efficiently. 
In this paper we will discuss about new techniques to 
detect and identify faults without any assumptions on 
any part of the global system. In that purpose, we 
developed a detection method based on the 
information redundancy and determination of the 
system comportment. 

3 DYNAMIC MODE 
DETERMINATION 

Inspired by the IMM fusion algorithm presented in 
(Gruyer et al., 2010), we developed a multi-model 
approach to detect faulty behavior on sensors used in 
the determination of a mobile position. The multi-
model implementation consists in separating the 
operating space into linear sub-spaces where we can 
identify some simple maneuvers. This sub-space, also 
called dynamic mode, has then to be determined only 
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using the sensors data. The determinations from 
different sensors will so diverges if one of them 
present a faulty comportment. 
The global structure of our fault detection and 
identification architecture is depicted in figure 2. 

 

Figure 2: Proposed FDI structure. 

The dynamic modes are defined by the longitudinal 
acceleration and the angular velocity of the mobile 
(representing the two possible maneuvers for the 
user), and we so can separate the operating space into 
four principle dynamic modes as seen in Table 1. 

 

Figure 3: Acceleration and angular speed distribution for 
the four dynamic modes. 

According to the dynamic mode description, the two 
needed metrics are the acceleration and the angular 
speed of the vehicle. 

3.1 Metrics Determination 

So we need to determine these two characteristics 
using each sensor independently. Concerning the 
INS, these two values will be directly given by the 
sensor. Concerning the odometer, it is necessary to 
recalculate the value according to the nature of the 
information given by the sensor. As we have the 
speed of each wheel from the odometer, we can 
approximate the speed of the vehicle (VE_S) by 
computing the mean value of the right and left wheels 
speed. 

 
(1)

Where RW_S and LW_S are the right and left 
wheel speeds respectively. It is now possible to 

determine the acceleration by deriving the speed 
value. 

(2)

Having the acceleration, we need now to 
determine the angular speed of the vehicle. In order 
to determine if we are in a straight line or in a curve, 
we analyze the differential speed between the 2 
wheels given by (3). 

 (3)

Concerning the compass, it can only inform us 
about the angular speed, by derivation of the 
orientation θ(t). 

 
(4)

3.2 Weight and Residual 
Determination 

Knowing acceleration and angular speed values, it is 
now possible to determine the dynamic mode. Let’s 
call Acc the presence of an acceleration, and Vθ the 
presence of a rotation, so the 4 dynamic modes will 
be defined as follow. 

 

(5)

Instead of a classic determination using a simple 
threshold, a fuzzy logic decisions permit to determine 
a weight corresponding to the presence of an 
acceleration/rotation, as represented in figure 4 for an 
acceleration. The event probability is currently 
determine using a Gaussian threshold as depicted in 
equation 6 for the presence of an acceleration, where 
the σ coefficient value permit adjust the sensitivity if 
the detector. 

(6)
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Then, the dynamic mode membership degree can 
be determined as followed, where Px is the weight 
corresponding to the event x.  

 

Figure 4: Acc Weight’s determination according to the 
acceleration value. 

Using these weights from each sensor, it is 
possible to determine an instantaneous mean value of 
the corresponding metric weight by using equation 
(8) taking into account every sensors independently. 
Instead of calculating dynamic mode weights, we 
dissociate the 2 metrics weights (Po(Acc) and 
Po(Vθ)) which will be more useful. 

(8)

 
Where   is the mean value 

taking all the sensors,   is 
the acceleration weight for the sensor 
i, and Ci corresponding to the decision of the fault 
detection device.  

Using both the mean weight value and individual 
ones, we can calculate a residual value for each sensor 
equal to the difference between the two of them (9). 
A residual variable will then be calculated for each 
sensor and each metric used (acceleration and angular 
speed). 

(9)

The calculated residual has to be stationary to 
make the detection easier. In our case, for a normal 
behavior, the residual variable will have a zero mean

value. In order to illustrate it, we simulate the drive of 
a vehicle with the appearance of the 4 dynamic 
modes, with only the use of four odometers (one on 
each wheel, simulated by the recording of the wheel 
speed), and an inertial system with accelerometers 
and gyroscopes on the three axes. The figure 5 
represents the mean weight calculated with 
information of all the sensors, and figure 6 is the 
residual variable for both acceleration and angular 
speed for the inertial sensor. 

 

Figure 5: Dynamic modes weights evolution in time. 

These results were obtained by calculating the 
differential weight between the mean weight values 
and the INS ones. As the sensors information was 
noisy, we decided in a first time to apply a 
Butterworth low pass filter to eliminate the high 
frequencies component of signals.  

The residual value is still not perfect, and some 
adjustment are still needed, but it remains possible to 
use these results for the detection algorithm. Actually, 
what is primordial is to observe modification of the 
residual values, so, it’s possible to imagine calibration 
procedure to determinate a standard residual profile 
before beginning the analysis. 

 

Figure 6: Acceleration and angular speed residual for the 
INS sensor. 
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3.3 Fault Detection 

In this section, faulty data will be introduce in sensors 
information, according with what was described in 
section 2-c, regarding the sensors faults. We so 
simulated each kind of fault and analyzed the residual 
values in order to establish some detection rules. Just 
as we did previously in this section, we will focus on 
two kind of sensors, odometers (one on each wheel) 
and inertial system. 

As depicted in the previous section, the residual 
will be calculated by computing the difference 
between the mean weight value and the weight from 
the sensor under watching. But as a failure will induce 
some perturbation on the mean value calculation, it’s 
important to determinate how this perturbation will 
impact the failure detection. Considering a 
perturbation ΔPo on one sensor noted SF, the mean 
weight value, before the decision can be represented 
by equation 10. 

(10)

The residual of a non-faulty sensor will so be 
impacted by a failure, and this impact will depend on 
the number N of sensors used in the detection 
algorithm. Residuals for both faulty and non-faulty 
sensors can so be calculated by (11) and (12), and the 
related perturbations can so be depicted by (13) and 
(14), where N is the number of sensors used in the 
mean value calculation. 

(11)

(12)

 
(13)

 
(14)

The more sensors we use, the more important the 
difference between a non-faulty and a faulty residual 
will be. This also mean that it is important to 
distinguish by comparison, a perturbation on the 
residual due to another sensor fault. 

4 SIMULATIONS AND 
PERFORMANCE ANALYSIS 

All the simulation were realized with the help of the 
ProSivic simulator, which permit to simulate the 
dynamic behavior of a vehicle, and the real reaction 
registered by the sensors. This simulator allow us to 
determine the trajectory and the speed of a vehicle 
and will return us all the others component of the 
mobile state, like position, acceleration, angular 
speed…  

In order to illustrate the response to a faulty 
comportment, a gain on the speed measurement of the 
left front wheel has been injected to simulate a failure, 
100 seconds after the beginning of the simulation. 

 

Figure 7: Comportment of residuals with the introduction 
of a faulty comportment on one of the sensors. 

Figure 7 presents the residuals for respectively the 
INS, the front and the back odometers for the angular 
speed determination. As predicted, the amplitude of 
the residual value is increasing after the injection of a 
failure, and the most important raise coming from the 
affected sensor. It also appears that the residual of the 
faulty sensor is the opposite of the others sensors as 
prove equations (11) and (12). As the appearance of a 
failure will create an event different for each type 
(Detecting a rotation in a straight line mode, an 
acceleration in a constant speed mode) but will 
remain undetectable during some dynamic mode. It’s 
so important to go through every dynamic mode to be 
sure to detect failures. For example, a failure on an 
odometer as presented previously will introduce a 
rotation even if the real dynamic mode is descripting 
a straight line. But if the vehicle remains in a rotation, 
the detection cannot be done. A better way is to 
analyze the mean values of all the residual on a long 
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time period with the occurrence of all the dynamic 
mode in order to realize the detection.  

We can observe in figure 8 that the mean value of 
each residual is varying according to equation (13) 
and (14), but it’s necessary now to determine decision 
laws to minimize the false alarms and missed 
detections rate. The optimization will be part of the 
future work. For now, we assume that the detection is 
decided by a threshold determined analytically at 0.4. 
In that case, after the detection the faulty data source 
will not be taken into account in the mean value 
computation, just as described in equation (9) where 
the corresponding decision coefficient C will be equal 
to 0. The residual of a non-faulty and a faulty sensor 
will so be as described respectively in equation (15) 
and (16). 

1 2( ) ( ) ( , ... )NF NF NR Acc S Po Acc S Po Acc S S S   (15)

1 2( ) ( ) ( , ... )F NF NR Acc S Po Acc S Po Po Acc S S S    (16)

 

Figure 8: Residual mean value calculated every 10 seconds 
for each sensor. 

 

Figure 9: Residual mean value taking into account the 
decision procedure. 

The perturbation for a non-faulty sensor will so be 
zero centered while the perturbation for a faulty one 
will correspond to the perturbation on the weight 
ΔPo. 

As predicted, incorporating the decision process 
will keep the non-faulty residuals around zero and 
increase the faulty residual value. 

A second set of simulations has been run in order 
to illustrate the detection of a failure corresponding to 
an offset appearing on the acceleration given by the 
INS. In these simulations we varied both the offset 
values and the threshold sensitivity σ to study their 
impact on the fault detection. Figure 10 present the 
results of the fault detection according to σ and the 
offset value.  

 
Figure 10: Fault detection according to sigma and offset 
value. 

The red zone correspond to a good fault detection, 
and the blue correspond to a missed detection. It’s so 
possible to see that reducing the σ value permit the 
detection of smaller faults. But, reducing this value 
will also mean that the fault detector will be more 
sensitive to noise. A simulation with different noise 
levels has also been realized in order to study this 
sensitivity. A white noise was so injected on the INS 
measurement only, with an RMS value varying from 
0.01 to 0.2 m/s2. A new set of simulation was run, 
keeping an offset of 0.5 m/s2 (100 seconds after the 
beginning of the simulation) and varying the sigma 
value from 0.1 to 1 (just like the previous simulation 
set).  

During the first part of the simulation, when the 
fault has still not appeared, the presence of noise can 
create some false alarm when the sigma value is too 
low. 

After the appearance of the offset, the algorithm 
is working efficiently. As the injected offset is set at 
0.5 m/s2, the minimum sigma value needed for the 
detection will be around 0.5 (as shown by the 
previous study, figure 10). It seems logical to expect 
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a detection for the sigma values below 0.5 while there 
will be no detection for the upper values. This is 
verified in this simulation (figure 12) where the 
detection is realized for the lower sigma values. 

 
Figure 11: false alarm due to noise when sigma value is too 
low. 

 
Figure 12: Offset detection with different sigma values 
varying noise level. 

These results verify what has been said earlier, the 
detection is well done for a sigma value lower than 
0.5, for every noise level injected.  

For now, the residuals generated permit the 
distinction of most of the default presented in the 
section 2, but not all of them. It is still necessary to 
work on the residual analysis and on others residuals 
to be able to detect and identify all kind of faults. 

5 FUTURE WORK 

As it was said in the previous section, the analysis of 
residuals will lead to the failure detection, and the 
distinction of which sensor is faulty. But, in our 

problematic, it’s also important to distinguish faults 
generated by sensors to other ones due to 
environment interferences or a system perturbation 
(flat wheel…). So, we need to develop strategies to 
establish the distinction between each kind of fault. 

To bring out this strategy, let’s discuss about a 
concrete case, and compare the results obtained for 
three different faults. 

We imagined a scenario where a fault on one of 
the odometers appears. This fault is traduced by a 
gain on the distance measured as described in (17). 

 (17)

DistMe is the measures distance, DistReal is the real 
distance and x is the number of marks originally 
presented on the encoded wheel. This kind of fault is 
generally caused by a missing mark on the coded 
wheel. It’s corresponding to a contact gain failure, as 
depicted in the second section concerning sensors 
failures. But, a flat tire could also have an equivalent 
impact, as the wheel diameter will be reduced, with a 
same angular speed, the travelled distance will be 
smaller. 

 
(18)

Where DiF and DiN are respectively the flat tire 
and the normal wheel diameter. Mathematically these 
two errors lead to the same result, but it remains 
important to be able to distinguish the two of them. In 
the future work we will focus on this distinction by 
using a three dimensional model of our system. 

6 CONCLUSIONS 

This first paper is a presentation of the architecture 
and preliminary results on the fault detection method 
proposed. 
In this paper a new fault detection architecture was 
presented, based on a multi-model approach. In a first 
time, our context was presented before introducing 
the developed method using both a multi –model 
approach and a fuzzy logic decision to generate 
residual variables allowing to distinguish faulty data. 
As explained in the section 3, the residual will permit 
to detect perturbation by computing the difference 
between weights of each sensor independently and a 
mean value computed with all the sensors. It also has 
been demonstrated that adding the decision result to 
the mean value computation will increase the 
difference between a faulty and a non-faulty residual, 
which permit a better discrimination between the two 
of them. 
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In the simulation results presented in the section 
four, two study cases have been presented. The first 
one corresponding to a gain on the odometer speed 
allowed us to illustrate the calculation proposed on 
the previous section, and so to verify the efficiency of 
the proposed FDI. Finally, a study on the sensitivity 
and robustness has been effected on the second case, 
presenting an offset on the INS acceleration. This 
study also permit to determine the importance of the 
detector parameters configuration according to the 
noise and the needed sensitivity. 
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