
Teaching with Dynamic Documents
Web Applications and Local Resources

Jerzy Karczmarczuk
Dept. of Computer Science, University of Caen, Caen, France

Keywords: HTML5, Javascript, SVG, Servers, Python, Tornado, AJAX, LaTeX, Mathematical Tools, Moodle, Nodejs,
Websockets.

Abstract: One of the bottlenecks in the application of computer methods in teaching is the limited effort in the develop-
ment of tools for the creation of pedagogical material (documents, presentations, software). These tools exist,
but they are often dispersed, and sometimes not well known.
Some methodological work would be very useful. Our talk concentrates on the usage of Web-oriented infor-
mation processing techniques, from the perspective of an individual: making presentations, scripting them,
adding dynamical content from specialized servers, enhancing the interaction between different sources, etc.
We give some simple examples belonging to the domain of teaching of sciences. The usage of servers help to
modularize the teaching software support, avoiding big, monolithic applications.

1 PEDAGOGICAL CREATION
AND WEB TECHNOLOGIES

This talk is addressed mainly, not exclusively, to
teachers of mathematically oriented sciences, who
want to prepare visually rich, dynamic, and inter-
active teaching documents, and who feel that the
methodology of construction of such materials is un-
derdeveloped. Our target reader need not be a Web
developer, but she should be acquainted with the basic
notions, such as the structure of Web pages, scripting,
the concept of server, etc.

We share here our experience with teaching var-
ious elements of computer science at the university
level, and cooperating with some secondary school
teachers. We taught computer-assisted cartography,
scientific visualizations, multimedia documents (im-
ages and sound), simulation of dynamical systems,
etc., which also needed visualization, and interac-
tive experiments during the lectures: animations, ex-
ecutable code snippets, and sound samples, etc. We
feel that the progress in this domain is chaotic. The
ever growing database of pedagogical software is not
always sufficient for making other applications.

We recommend the usage of tools usually associ-
ated with the Web programming (HTML5, Javascript,
applicative servers), considered as the building bricks
of local environments, autonomous, and installable on
the teachers’ and students’ computers, with browsers

used as the main interfaces.
The world-wide success of collaborative

computer-assisted teaching platforms such as Moodle
((Dougiamas and Taylor, 2003; Moodle, 2015)),
Chamilo, etc., is established. Course databases,
cohort assembly, management of timed examinations
– all this frees the teachers’ time. As a course
creation environment, they seem to be less useful.
Davidson and Waddington observe ((Davidson and
Waddington, 2010)) that teaching matter they saw on
Moodle, are mainly static pages: PDF, Powerpoint
slideshows, frozen video-tutorials, etc., manufactured
independently of the system. We observed this as
well, at our university, and elsewhere. As authoring
systems, the LMS, LCMS etc. will evolve, but
the progress is slow. Creating under Moodle a
course with shared scripts or communicating with
some server-side applications, is difficult because
of many constraints to fulfil. All this requires some
competence in software engineering, while the effort
of a teacher should be, and usually is concentrated on
the taught matter, and on the teaching itself, they are
not Web developers.

1.1 Reasons to Choose “Web-based”
Tools

The possibility to deploy the documents on a Web
site, enabling thus the distant access is an impor-

315Karczmarczuk J..
Teaching with Dynamic Documents - Web Applications and Local Resources.
DOI: 10.5220/0005447803150322
In Proceedings of the 7th International Conference on Computer Supported Education (CSEDU-2015), pages 315-322
ISBN: 978-989-758-107-6
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)

tant, but secondary issue, since the teaching operates
mostly in direct contact between teachers and stu-
dents. Our “target context” is the classical teaching
with lectures, home assignments, and practical com-
puter work, rather than some MOOC.

The main reason, mentioned already, is the stan-
dard possibility to enrich the documents with dynamic
elements: animation scripts, linked video sequences,
inclusion of other documents (iframes), style modifi-
cations, internationalization, pop-up windows, etc.
We didn’t use any other presentation platforms for
many years. Difficulties for creators who are not Web
specialists persist, but it is easier to control the details
in an autonomous environment, than within the LMS
such as Moodle, which for rational reasons insist on
the coherent usage of built-in tools, and which respect
several security constraints, which make experiment-
ing difficult. But there are other reasons for replac-
ing the Powerpoint/ImPress slideshows, or PDFs by
HTML, and to use the “Web-based” tools.

� According to the philosophy that learning tools
should be freely and widely available, the readabil-
ity and facility to copy and edit a document is a
major point. If the author wants to protect the doc-
ument, it is easy to export a frozen slideshow, but
this should not be frequent.

� A Web page is a distributed document, with images
and other fragments kept separately. This makes
it easier to share them, and the transfer process of
fragments may be parallelized, and/or delayed us-
ing AJAX.

We recommend the installation, and active mainte-
nance of local resources, including servers. This
means more initial work, but less problems after-
wards. It should then be easy (for the teachers and
for the students) to work with or without Web access,
to profit from the learning sites if accessible, but to
use more often their own local copies of documents
and programs, it is cheaper, safer, and controlled.

In building our teaching environment, we insisted
that only free, legally clonable, and easily installable
software (apart from the platforms themselves, such
as Windows, or Mac OS), should be used; several
third parties packages, scripts, and images, could thus
be shared. We avoided “experimental” or unknown
packages, pedagogical environments should be rea-
sonably stable.

For the dynamically generated documents, the
server-based communication is a necessity, even if
one works in situ. Server installation is an easy task,
web servers, locals and remote, begin to be included
by default in every operating system and every pro-
gramming language support, this tendency is mani-

fest. Installing Apache is straightforward, but one of
the harmful, persisting myths among the casual users
of Internet, is that the users are just clients, and the
servers, heavy “monsters”, reside in some mythical,
“professional” domain.

2 HTML5 FOR PEDAGOGICAL
DOCUMENTS

A good course may be prepared and delivered us-
ing Powerpoint, or chalk, since good tools are well-
mastered tools. Old HTML pages were badly format-
ted. But the typesetting quality of Web documents
becomes very good, current browsers recognize also
the hyphenation, it suffices to declare the style for an
element class, say:
p {hyphens:auto; -moz-hyphens:auto;

-webkit-hyphens:auto;}

and to specify the language, e.g., <p lang="pt">,
and if it is insufficient, it suffices to load and acti-
vate the script Hyphenator of Mathias Nater ((Nater,
2015)); it inserts automatically the conditional hy-
phen ­ where due, and uses the same multilin-
gual hyphenation patterns as TEX and OpenOffice1.
There are other reasons to use HTML documents:

� It is considerably easier than with other formats, to
provide different styles permitting to show the doc-
ument on a large screen, on a computer, or printed,
to dynamically change the background colour, etc.
HTML5 with CSS3, address specifically this prob-
lem, with such attributes as media="print" (or
"projection" or "aural", etc.), which can be
queried and steer the formatting.

� Pedagogical texts profit from many sources. While
the “copy and paste” techniques are easier for
HTML, since this is a plain text, without hidden
style elements (as in Word), it is much easier than
elsewhere to assembly compound documents by
linking, to construct mashups, and other hybrids.

� The responsive, adaptive design of Web-oriented
documents, requires the scale neutral, dynamically
rasterized “vector” graphics. The SVG (Scalable
Vector Graphics) standard (with animations and
scripting ((Eidenberger, 2003)) is there, easy to
generate, easy to transform and render, but not di-
rectly usable for the TEX or XXX-Office writers.

1A local polling has shown that almost nobody uses the
hyphenation in the Web documents, people are not aware
of these facilities. There are many other formatting stylisa-
tions, such as word-wrap:break-word, unknown by a
majority of Web users. . .

CSEDU�2015�-�7th�International�Conference�on�Computer�Supported�Education

316

But, being an ordinary (XML) text, a SVG docu-
ment is easy to transmit through the network, or to
paste into an HTML page.

� The audio and visual (canvas+SVG+CSS3, video
and WebGL) facilities in HTML5 offer more than
just the possibility to render multimedia docu-
ments. New browsers are tightly integrated with
the underlying operating system, and became uni-
versal programming platforms/interfaces, which
may control local and remote cameras, synthe-
size sounds, and display realistically textured and
animated 3D objects through WebGL ((Khronos,
2015)), which involves the control of the GPU
(Graphics Processing Unit). New high-level inter-
mediate packages targeted at non-specialists, e.g.,
Three.js ((Three.js, 2015)), or X3DOM ((X3DOM,
2015)) are born every month. For teaching this is
much more important, than adding colourful deco-
rations to course materials.

We taught image processing with live examples,
without specialized libraries, and (usually) without
having to launch external applications. The Web
Audio layer ((WebAudio, 2015)) gave us the oppor-
tunity to show within the browser, the implementa-
tion of simulated musical instruments. Javascript
turned out to be a usable language for dynamical
simulations and graphics. The main problem was
the lack of good development tools. This is not a
critical issue for experienced programmers, but be-
ginners need more user-friendly interfaces.

� Mathematically-oriented elements were, and will
remain very important for us. Programs which
render TEX mathematics in HTML pages are nu-
merous, actually the most comprehensive, config-
urable, and well documented is MathJax ((Math-
Jax, 2015)), included in several Moodle sites as a
filter. The quality of rendered formulae is almost
equivalent to standard LATEX. Since there are sev-
eral transfers of auxiliary elements (scripts, fonts,
etc.), its remote usage involves some overhead, but
the entire package is easily storable locally.

2.1 Compound Documents

All text processing software permits to assemble doc-
uments from parts, forming a static, bigger whole.
Also, everybody knows how to link together differ-
ent pages, loaded separately into the browser. Less is
known about assembling a Web page from different,
shared fragments during the rendering, but as a one
loading process (this is a simplified view of the mash-
up concept). The inclusion of images is a known
standard, but the aggregation of text fragments re-

mains rare among non-professionals. The inclusion
of HTML in HTML is still not standard. However,
the existing tools are easy to use.

� Many Javascript libraries offer calls to
XMLHttpRequest(), a function which ac-
cesses a distant document, or a local file by its
name, and writes its content. E.g., a user not
interested in technical details, who is aware of a
popular package jQuery, simply provides in his
document an identifiable placeholder:

<div id="pageHere">
This part will appear when ready
</div>

and after loading the library, executes:
$("#pageHere").load("otherDoc.html").
The other document appears where it should, and
if it is not available, the document shows the warn-
ing. This may be used, e.g., to prepare exercices
with solutions, but to postpone the deployment
of these solutions. This is an example of AJAX
(Asynchronous Javascript and XML) call. The
loading may be automatic, during the rendering of
the document, or triggered by a click on a button,
using the same library.

In some circumstances this will work only if the
pages are loaded from a server, via HTTP:; using
a local file might not work. This is one of many
reasons to install a local server on a teacher’s com-
puter; many dynamic behaviours need an active en-
tity within the document provider.

� Chrome users might use the directive
<link rel="import" href="other.html">,
and it is quite probable that similar contraptions
will be implemented in other browsers. (They need
some scripting which we will not discuss. The
situation is evolving.)

2.2 Another Dynamic Inclusion

This example will use an external application server,
i.e., a server which takes some data from the client,
and generates another page or an included fragment,
as above. Suppose that a physics teacher wants to plot
some programmed, changing formulae, which would
demand the installation of a programming language
with a good scientific and visual support (say, Ana-
conda Python ((Continuum, 2015)) with Matplotlib
((Hunter, 2007))).

If during the course the teacher toggles between
the descriptive layer (slides) and the Python interface,
in order to generate and show the plots, it may show
some potentially useful coding details, but normally

Teaching�with�Dynamic�Documents�-�Web�Applications�and�Local�Resources

317

will be too disruptive. The idea is to have the pro-
gram working aside, and communicating directly with
the displayed document. Python distributions may
include a small universal server, Tornado ((Tornado,
2015)) (if not, it is installable). This is the applica-
tion server, which can read some parameters from the
page, execute any code, and answer by sending back
the plot structure formatted as an SVG document or
some other format. The user doesn’t need to know
much about it, it suffices to load and launch it from
his program, adding a small boiler-plate code chunk.

The main function of a server is to wait (listen)
for a request, and to write an answer. We need only to
write the Handler object, which deals with the “pay-
load”. The example below was coded by 1-st year
students (knowing some Python, but nothing about
servers) in less than 20 minutes.

result = ... construct it with "plot(...)"

from tornado.httpserver import *
from tornado.ioloop import *

class MyHandler(
tornado.web.RequestHandler):
def get(self):
self.set_header("Content-Type",

"image/svg+xml")
self.write(result)

application = tornado.web.Application(
[("/myplot", MyHandler)])

HTTPServer(application).listen(8000)
IOLoop.instance().start()

It suffices to open a browser, and to point it to
http://localhost:8000/myplot in order to get
the image loaded and rendered by the browser. The
command set_header informs the communication
system that the sent string is a drawing, and this must
be known, but this is all. The teacher never quits the
course pages. We can also insert dynamically gener-
ated images. We declare a frame for the plot, say

<div id="plot"></div>

and the script:

$("#plot").load(
"http://localhost:8000/myplot");

loads the image asynchronously, in real time. Such
experiences usually need more work, some data might
easily be passed to the server, change the plotted func-
tion, or colours, etc. A full-fledged code example
is available upon request. Javascript/SVG librairies
which cooperate with AJAX protocols are now stan-
dard in most modern commercial sites, but several
free solutions, such as Snap ((Baranovskiy, 2015)),
merit our attention. This library is used among oth-
ers by PBS Kids site (Public Broadcasting Service)

((PBS, 2015)) for children, but with some educational
resources for their parents.

2.3 More on Mathematics on the Web

The inclusion of high-quality formulae within the
Web documents through the translation of LATEX, be-
came standard. But many other tools for the dynami-
cal visualization of mathematics are available. Math-
ematics teachers usually know GeoGebra ((Geoge-
bra, 2015; Hohenwarter, 2002)), but we found out
that several didn’t know that it is possible to work
with Geogebra structures within a browser. The ap-
plication includes its own scripting engine. Other
Web-oriented mathematical tools are less known that
they deserve. Some are online, but for the auton-
omy and speed, downloadable libraries are better. Our
favourite is the JSXGraph project from the University
of Bayreuth ((?)), a cross-browser, programmable in
Javascript, and interactive.

Figure 1: Plot generated by a script.

The essential for such plots (and this applies also
for a server-based example) is the facility to com-
pile dynamically a string, say, "2*sin(x)+z" into
an internal expression which can be evaluated. The
processors for interactive languages as Javascript, or
Python, include the compiler, which translates the
program source into its internal structures, and the
virtual machine which executes it. The user may call
the compiler from inside his program, and generate
some code; in such a way a HTML page may transmit
not only static data, but also dynamical expressions
and statements into a script, or send them to a distant
server, to compile them. The Web pages become true,
“live” applications.

The development tools for Javascript are hardly
adapted to beginners (students and teachers). Can
we teach it as one of first programming languages,
in order to encourage the Web programming after-
wards? Marijn Haverbeke, the author of “Eloquent
JavaScript” ((Haverbeke, 2014)) thinks that yes, that
it became a kind of modern “Basic”. People willing

CSEDU�2015�-�7th�International�Conference�on�Computer�Supported�Education

318

to write and test their programs may use the browser-
based development tools, or some stand-alone inter-
preters, such asRhino ((Mozilla, 2015)), the Mozilla
machine, or the Google V8 Javascript processor. Edi-
tors, or IDE packages are also available, our preferred
is WebStorm ((Jet Brains, 2015)) of JetBrains, who
offer it freely to students and educators.

2.4 IPython Notebook Server, and the
Jupyter Project

The Tornado example in the section above is an in-
stance of a home-brewed application server, a sep-
arate application which performs some client-driven
actions, and communicates with the user interface. In
such a way we can integrate the pedagogical content:
descriptions, analyses, static illustrations, etc., with
on-line experiments, and ad hoc generated visuals,
thanks to the Python interpreter behind. But our ex-
ample is weak, we could parametrize the output style,
or the plotted function, but some substantial modifi-
cations would require again the direct access to the
plotting program.

But since programming languages, such as
Python, are adaptable to many user interfaces, why
not use a browser as a graphic console for the com-
plete computing system? In such a way the teacher of
a programming language has a simultaneous access
to the static layer of the course and to the full com-
puting power of the language processor. We began
to teach programming in Python in such a way. The
Tornado server launched from a terminal as ipython
notebook ((Pérez et al., 2015)) sends pages permit-
ting to write and execute all Python programs, and
display all results on the browser surface.

The notebooks can be stored and shared, sent by
pupils to teachers as transcripts of their exercises,
and their potential just begins to be exploited. An
offspring of this project, Jupyter ((IPython Project,
2015)), installable as a multi-user server (e.g. in a
school computer pool), has the ambitions to include
other programming languages, e.g., specialized lan-
guages adapted to children.

3 INSTALLING ONE’S OWN WEB
SERVER

User-installable servers are more popular than usually
thought. It is even possible to make a simple server
using the shell (command line), a server is nothing
more than a program which “listens” to a socket, and
which can send some messages, usually textual. All

the rest is the protocol, the syntactic construction of
those messages, and this can be coded by everybody
who spent some hours on the documentation. The de-
tails are numerous: message parsing, parallel threads,
database access, etc., so a full-fledged server is vo-
luminous, and this gave rise to the myth that servers
are beyond the reach of a non-professional computer
user. Some reasons to install a server, in the context
of this talk, are the following:

� The display of composite, dynamical documents on
a browser, usually demands an active actor which
sends data to the client. Scripts, applets, etc. usu-
ally cannot accede to local file systems because of
security restrictions. But they can use the resources
of the server. Thus, splitting the communication
framework into the client / server domains, gives
all the power to the user, and does not violate the
established protocols.

� It is then considerably easier to test such documents
locally, before deploying them to a distant server, if
such is the ultimate goal of the creator. In particu-
lar, a local HTTP/PHP/SQL server is necessary in
order to install a local Moodle framework in order
to test what is, and what is not possible to install on
it2.

� As shown, we can install not just a static file, but
a genuine applicative server, which performs com-
plicated actions on served documents. The server,
disposing usually of more universal resources than
the client, can deal with the internationalization of
the document: switching of languages, accessing
some dictionaries, etc.

� A server can start any program on its site, which is
forbidden for a browser. In such a way, the presen-
tation interface acquires the general power of your
computer.

One doesn’t need the huge LAMP / WAMP / XAMP
packages, often recommended for individual plat-
forms. Apache alone, or the LightTPD server of Jan
Kneschke ((Kneschke, 2015)) are very light, and their
memory footprint is small. There are more solutions
which deserve a look. We teach Java Enterprise Edi-
tion (since the “market” demands it from our grad-
uates), and here the multi-layer computing, server-
client architectures, Web services, etc. constitute the
skeleton of the domain. Java-based solutions are usu-
ally popular in the enterprise world, since Java pro-
tocols enforce the protection of resources better than
many other solutions, but such light servers as Tomcat

2Some of our colleagues teachers didn’t know that they
could install Moodle on their laptops, and they structured
their documents on a distant server, which was painful.

Teaching�with�Dynamic�Documents�-�Web�Applications�and�Local�Resources

319

or Jetty, are trivially easy to install on personal plat-
forms, and they offer directly the possibility to exploit
the servlets in order to include some dynamics : simu-
lations, animations, database access, etc., to pedagog-
ical pages, with presentations and/or exercices.

For teaching, this was not our first choice, be-
cause Java is not an interactive language, but the Java
Virtual Machine is nowadays installed everywhere on
standard computers, and its variants (Dalvik) are in-
stalled on Android devices. Since by default the JVM
includes the Javascript processor, users who prefer to
program in a dynamically typed language, can do it.
The document structure may ressemble our Tornado
experience: the HTML page addresses the server,
which switches the control to your Java program (or
to a JSP page, which contains executable fragments
inside HTML), this one calls your specific pedagog-
ical library, e.g., a zoological or linguistic database,
and returns the information to the browser, perhaps in
graphical form.

3.1 Node.js

Node.js, ((Joyent, 2015)), is a world-wide known
Javascript programming framework “on the server
side” (independently of any browser, or other client;
it may be installed locally, of course). Its kernel is
based on the Google V8 engine, and it is just a simple
terminal-command based application, which executes
a sequence of scripts. We used it to process some ped-
agogical statistical physics simulations (such as the
animation of the Ising model or the percolation), and
the speed was sufficient. We could discuss the prob-
lem, while the visualization was generated dynami-
cally on-line, without disturbing the presentation.

There exist already hundreds of different, special-
ized servers based on Node. Several modules are in-
cluded in the standard distribution, or may be installed
in a few seconds. A minimalistic script needs only
to load some libraries, to execute, say, var server
= http.createServer(proc req resp);
server.listen(8080);, and to declare (before)
a function proc req resp(request,response),
a procedure which gets automatically the request
string from the user, if the browser addresses
localhost:8080. This procedure constructs the
server’s answer, which is switched back to the user.
It may also launch another server, or stop itself,
according to the request. The server may act as a
go-between the browser (the HTML pages), and all
the resources of the platform.

The reader of this paper may have the impression
that we speak about the development of Web appli-
cations, whose relations to teaching are distant and

indirect. This is almost true, only that the dynami-
cal, communicating systems, which begin to domi-
nate the professional world, should change our way
of teaching as well, and the progress here is not as fast
as it should.

4 WEBSOCKETS

This is an advanced subject, which can be barely
scratched here, but it really changed the face of dis-
tributed computing, enabling it for non-professionals,
even for children. Most users are acquainted with
the classical, HTTP interaction between servers and
clients (classical synchronous, or AJAX). The client
issues a HTTP request, the server wakes-up, answers,
and passivates. This model may be not sufficient, if
we want to organize a full duplex, persistent connec-
tion, such as chat, which may be quite useful in a
computing room, to ask questions by the students, and
broadcast the teacher’s answers. Also, a fast, persis-
tent communication channel will be useful when our
server is supposed to “push” periodically some (un-
solicited explicitly)data to the client, for some kind of
animation, or teacher forced messages, warnings, and
hints to a group of students working on some assign-
ment.

The administration of client/server channels de-
mand some special work on several computers, which
in a pedagogical or not, multi-user environment might
be heavy. But then, if the communication channels are
already open, it is possible to link together a student’s
computer and some didactic equipment (data acqui-
sition devices, robots, drones, Arduino assembly, or
another computer), and to work as if both software
layers were parts of the same application. We speak
about linking computing sites through stable, persis-
tent, full-duplex communication channels, as if they
were parts of the same system.

The professional (industry, scientific, military,
etc.) world uses it frequently, and it is the time that
the educational community profit from it more in-
tensely. The Websocket constructs are integrated into
the HTML5 specification. All serious browsers and
server frameworks are compatible with them, and use
a specific protocol: ws://xxxx.zzz. Moreover, for
several programming languages, there are dozens of
different Websocket libraries, with slightly different
functionalities ((Kaazing, 2015; ?; ?)), etc., to cite
the most relevant.

Everything is coded in very few lines of code.
When a server begins to listen to port 8080, if a
script on some remote client executes, say, sock =
new WebSocket("ws://localhost:8080");,

CSEDU�2015�-�7th�International�Conference�on�Computer�Supported�Education

320

the server awakes, and a symmetric con-
nection is established. Then, executing
sock.send(someMessage) once, or many times,
one node transmits the information, and maintains a
dialogue. The execution of on message(funct) on
any side declares that if a partner sends something
to this socket (this is this potentially unsolicited
information transfer) the appropriate function is
executed, as if the other side had called it.

This is a simplified presentation, but with a few
lines of code, we can write a simple chat system,
and this has been done by adequately instructed high-
school pupils. We tested a similar system, and this
was quite fast and transparent. The applications of
websockets are universal, far beyond such exercises,
but they show how the technology interacts with the
social behaviour.

5 FINAL REMARKS

Although teaching is a social process, its organization
is important, and teaching tools must be shared and
tested, we think that the basis of this sharing is the
individual creativity, and we need more effort to en-
hance the teachers’ capacity to use modern computing
tools to make and to structure, not only to organize
their courses.

In order to exploit efficiently such tools as
dynamic, interactive documents, multi-tier client-
server architectures, and efficient communication
contraptions plugged into personal learning environ-
ments, some small competence in “Web programming
methodology” is needed, and should be focused upon
while forming teachers. This is not easy, but became
essential. We should be also aware that the coding
standards of HTML5 are already changing, that the
next student generation will need new tools.

Such voices as: “I am a teacher of language / biol-
ogy / music, etc., not a programmer, I cannot afford to
learn programming languages”, will always be heard,
they are rational. However, the teachers should be
aware that young people are fascinated by gaming,
chats, visual experiments, etc., and they should not
be discouraged by a negative atmosphere around pro-
gramming. Everybody does some programming, even
if it is only GPS, kitchen equipment, or telephone con-
figuration.

Our examples strongly suggest that the skeletons
of communicating software are short, and their sense
is easy to grasp. Writing servers, chat rooms, drone
steering software (with adequate firmware libraries)
is a question of hours, rather than months.

We couldn’t treat many interesting subjects, such

as the installation and usage of small, local databases,
or local search engines, facilitating the selective re-
hearsal of the course material. We skipped the “Web
based” tools for the creation of video tutorials, which
belong to another niche of the construction of peda-
gogical documents, which should be taught. It was
not possible to discuss the internationalisation tech-
niques (scripted language switching, translations, lo-
calised software documentation, etc.)

All these tools exist, and if needed, there may be
easily found. Not depreciating the social and organi-
sational aspects of teaching platforms, we believe that
more effort should be invested to facilitate the indi-
vidual work of teachers, to give them the adequate,
modern information transfer tools.

REFERENCES

Baranovskiy, D. (2015). URL: http://snapsvg.io/.

Bayreuth, University of (2015). JSXGraph, Dynamic
Mathematics with JavaScript. URL: http://jsxgraph.
uni-bayreuth.de/wp/.

Continuum (2015). http://www.continuum.io/cshop/
anaconda/.

Davidson, A. and Waddington, D. (2010). E-learning in the
university: When will it really happen?

Dougiamas, M. and Taylor, P. (2003). Moodle: Using learn-
ing communities to create an open source course man-
agement system. In Proceedings of the EDMEDIA
2003 Conference, Honolulu, Hawaii.

Eidenberger, H. (2003). Smil and svg in teaching. In
SPIE Electronic Imaging Symposium. SPIE. ISBN:
0819448214. URL: http://www.ims.tuwien.ac.at.

Geogebra, I. I. (2015). GeoGebra 5.0. http://
www.geogebra.org.

Haverbeke, M. (2014). Eloquent Javascript, a Modern In-
troduction to Programming. No Starch Press.

Hohenwarter, M. (2002). GeoGebra: Ein Softwaresystem
für dynamische Geometrie und Algebra der Ebene.
Master’s thesis, Paris Lodron University, Salzburg,
Austria.

Hunter, J. D. (2007). Matplotlib: A 2d graphics environ-
ment. Computing In Science & Engineering, 9(3):90–
95.

IPython Project (2015). The Jupyter Project. URL: http://
jupyter.org/.

Jet Brains (2015). Webstorm. URL: https://
www.jetbrains.com/webstorm/.

Joyent (2015). Node.js on the road. URL: http://nodejs.org/.

Kaazing (2015). Websocket.org. URL: https://
www.websocket.org/index.html.

Khronos (2015). URL: https://www.khronos.org/webgl/.

Kneschke, J. (2015). URL: http://www.lighttpd.net/.

Teaching�with�Dynamic�Documents�-�Web�Applications�and�Local�Resources

321

MathJax, C. (2015). URL: http://www.mathjax.org/.

Moodle (2015). URL: https://moodle.org/.

Mozilla (2015). Rhino. URL: https://developer.
mozilla.org/en-US/docs/Mozilla/Projects/Rhino.

Nater, M. (2015). URL: https://code.google.com/p/
hyphenator/.

PBS (2015). URL: http://pbskids.org/.

Pérez, F. et al. (2015). The IPython Notebook. URL: http://
ipython.org/notebook.html.

Stangvik, Einar Otto (2015). ws. URL: http://einaros.
github.io/ws/.

Three.js (2015). URL: http://threejs.org/.

Tornado (2015). URL: http://www.tornadoweb.org/en/
stable/.

W3C (2015). The Web Sockets API. URL: http://
www.w3.org/TR/2009/WD-websockets-20091222/.

WebAudio (2015). URL: http://webaudio.github.io/
web-audio-api/.

X3DOM (2015). URL: http://www.x3dom.org/.

CSEDU�2015�-�7th�International�Conference�on�Computer�Supported�Education

322

