
Towards Enhanced Presentation-based Teaching of Programming
An Interactive Source Code Visualisation Approach

Reinout Roels, Paul Meştereagă and Beat Signer
Web & Information Systems Engineering Lab, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium

Keywords: Slideware, Presentation-based Teaching, Programming.

Abstract: The teaching of programming concepts and algorithms very much depends on the mental models developed
by scholars when learning how to program. There is a rich body of research on how to best teach program-
ming. Nevertheless, many instructors follow a presentation-based approach where existing slideware such as
PowerPoint or Keynote is used to show a sequential series of slides with static pieces of source code. Such a
presentation-based approach based on existing slideware tools might not be optimal for the authoring as well
as the delivery of programming courses. We outline how presentation-based eduction in programming can be
improved by paying attention to existing research on how to best teach programming. We derive a number
of requirements for more efficient source code visualisation in presentation tools and present an architecture
as well as an extensible prototype for enhanced presentation-based teaching of programming. The presented
interactive source code visualisation plug-in for the MindXpres presentation tool can be seen as a step towards
enhancing existing slideware in order to achieve a more efficient and interactive teaching of programming
concepts and algorithms. The ultimate goal of the presented approach is to present source code in a way that
reinforces a user’s mental model and thereby increases the knowledge transfer of presentations delivered in
programming courses.

1 INTRODUCTION

The teaching of programming concepts and algo-
rithms is a fundamental aspect of any Computer
Science and Engineering degree. However, grasp-
ing the concepts taught in programming courses is
far from trivial and has been proven to be a chal-
lenge for both students as well as teachers (Jenkins,
2001b; Bennedsen and Caspersen, 2007; Gomes and
Mendes, 2007; Jenkins, 2002; Lahtinen et al., 2005;
McCracken et al., 2001). Research from the early
1980s highlights the importance of mental models
when learning how to program (Mayer, 1981). As
defined by Mayer (Mayer, 1981), a mental model is
“a mental representation of the components and the
operating rules of the system” and the completeness
of this representation may vary. An incomplete rep-
resentation that differs from the actual characteristics
of the system results in an incomplete understanding
of how the computer works and will cause the novice
programmer to have difficulties in writing correct pro-
grams (Ma et al., 2007). This is further confirmed
by Milne and Rowe (Milne and Rowe, 2002) who
state that students who are not able to create a mental

model of the program execution do not have the abil-
ity to comprehend what is happening to the program
in memory. Hence the importance of students being
able to retell the learned concepts in their own words
was also first brought up by Mayer (Mayer, 1981). It
is widely accepted that by having access to a more
complete mental model of the system, the learning
and practising of programming can be achieved in a
more effective way (Cañas et al., 1994).

Given the importance of such a mental model, it
is not surprising that researchers aim to develop tools
and methods in the form of visual aids for reinforcing
the mental model of students (Ma et al., 2007; Smith
and Webb, 1995). In a procedural programming lan-
guage, the program becomes a sequential process.
This process is represented by various changes of
states after an expression has been executed. There-
fore, Mayer (Mayer, 1981) states that a possible solu-
tion for providing an effective mental model is to use
visuals and show to the user the changes in state—
such as variable changes—while the program is exe-
cuted. In terms of teaching methods, Jenkins (Jenk-
ins, 2001a) argues that the main role of a teacher in
programming courses should be the one of a motiva-

98 Roels R., Meştereagǎ P. and Signer B..
Towards Enhanced Presentation-based Teaching of Programming - An Interactive Source Code Visualisation Approach.
DOI: 10.5220/0005445300980107
In Proceedings of the 7th International Conference on Computer Supported Education (CSEDU-2015), pages 98-107
ISBN: 978-989-758-107-6
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)

tor. In many other areas of computing the teacher is
mainly a communicator of information. However, the
teaching of programming based on just presenting in-
formation such as syntax and structure in a lecture is
not enough as it is not immediately clear how states
change and thus there is a lack of contribution to a
student’s mental model.

Nevertheless, the majority of programming
courses are at least partially taught via lectures ac-
companied by slide decks which is not in line with
the research in the domain of teaching how to pro-
gram that has been mentioned before. In fact, these
slide decks often form a major part of the study ma-
terial. To make matters worse, slides that have been
created by slideware such as PowerPoint or Keynote
are a particularly unsuitable medium for presenting
source code. As argued by Tufte (Tufte, 2003), slide
decks have evolved from physical counterparts such
as photographic slides or transparencies for overhead
projectors and therefore also share the limitations of
these physical media types. Content is presented in
a strictly linear way, is fairly static and spatially re-
stricted by the boundaries of the physical slides. In
addition to the consequences on knowledge transfer
during a lecture, these tools also impose a number of
issues during the authoring phase by a presenter who
would like to show some source code. In program-
ming environments, source code is usually indented
and colour coded via syntax highlighting in order to
improve the readability. However, when source code
is copy and pasted into a presentation, this formatting
is often lost and presenters are required to manually
format the code. Furthermore, even simple examples
of algorithms result in lengthy blocks of source code
and spatial restrictions make code less understand-
able. Due to these spatial restrictions, the presenter
is forced to spread their code examples over multi-
ple slides. In addition, they have to jump back and
forth as programming concepts such as methods, con-
ditional statements or loops cause the program to be
executed in an order that is different from how it is
written down.

We introduce an approach to present source code
in a way that reinforces a user’s mental model and
thus helps to increase the knowledge transfer of pre-
sentations delivered in programming courses. In addi-
tion, our solution allows presenters to include source
code in their presentations without the hassle usually
associated with existing slideware tools. We start by
discussing some related work in Section 2. Based on
the existing body of work and some of the shortcom-
ings of current solutions, we derive and formulate a
number of requirements for a more efficient source
code visualisation in presentation tools in Section 3.

We then detail our proposed solution in Section 4 and
present the technical details of our prototype which
has been implemented as a plug-in for the MindXpres
presentation tool (Roels and Signer, 2013; Roels and
Signer, 2014b) in Section 5. Some concluding re-
marks are provided in Section 6.

2 RELATED WORK

In the context of presentation tools, there exists lit-
tle to no academic work trying to improve upon the
issues associated with the presentation and visualisa-
tion of source code. At authoring time, one can see
that state-of-the-art presentation tools do not make
any attempt to support the authoring and integration
of source code. As mentioned before, the indenta-
tion and syntax highlighting of source code is lost
when copy and pasting from the programming envi-
ronment to a presentation tool such as PowerPoint.
Common workarounds include the use of command
line tools such as pygmentize1 or web-based tools like
ToHTML2 in order to convert source code to a repre-
sentation that preserves the formatting when copy and
pasted (e.g. HTML or RTF). While this approach ad-
dresses the issue of manual formatting, it remains a
tedious workaround.

When broadening our view beyond the domain
of presentations, we can find research that builds on
the principles outlined in the previous section. In
all cases these are stand-alone desktop applications
that use visualisations to help users build a mental
model of a program. One of the earliest tools is
the Bradman tool (Smith and Webb, 1995) for the
C programming language. It mainly relies on showing
state changes after the execution of each line of code
and an evaluation of the tool revealed an improved
understanding of the code by its users (Smith and
Webb, 2000). Another solution is the VIP tool (Virta-
nen et al., 2005) for a subset of the object-oriented
C++ programming language. While the VIP tool
also focusses on visualising state changes, it dis-
tinguishes itself by making the concept of pointers
and references—which is considered to be a difficult
concept to grasp for students—more understandable.
Jeliot 3 (Moreno et al., 2004) is a tool for visualising
the object-oriented Java language. Given the nature
of Java, the tool also visualises the objects and their
relationships in an UML-like notation in addition to
state changes while the program is executed. How-
ever, an evaluation of Jeliot highlighted that the ani-
mations were hard to interpret and apply for students,
1http://pygments.org/docs/cmdline/
2http://tohtml.com

Towards�Enhanced�Presentation-based�Teaching�of�Programming�-�An�Interactive�Source�Code�Visualisation�Approach

99

making the evaluation inconclusive (Moreno and Joy,
2007). Another notable feature of Jeliot is the extensi-
ble visualisations, allowing potential new third-party
visualisations to be added at a later stage.

The notional machine (Berry and Kölling, 2013)
is another recent tool for visualising Java programs
which bases itself on the work of Boulay (Boulay,
1986). While being similar to Jeliot, the notional ma-
chine intentionally limits the stepping granularity for
state changes to the level of method invocations and
method returns rather than to single statements. Ad-
ditionally, the notional machine also allows methods
to be invoked interactively (on demand) in contrast to
the other tools where the execution is only possible in
the order of the logical execution flow.

Finally, there is a category of tools that focusses
on a specific aspect of program execution. For in-
stance, RGraph (Sa and Hsin, 2010) is a solution that
generates a static visualisation of recursion graphs for
Java programs in order to help students with under-
standing recursion.

Note that we intentionally limited ourselves to the
tools built for supporting students during the learning
process. There are plenty of commercial products that
visualise code characteristics such as the amount of
lines or dependencies, performance metrics or editing
history, but these solutions serve an entirely different
purpose than the aforementioned tools.

3 REQUIREMENTS

Based on a detailed analysis of the related work
presented in the previous section, we derived a
number a requirements for more efficient source
code visualisation in presentation tools. While these
requirements overlap with the requirements for
stand-alone desktop tools, the use in the context of a
lecture requires some further thought. For instance,
the typical traditional lecture mainly consists of a
unidirectional flow of information as students are not
as involved as, for example, in lab sessions.

R1: Automatic Indentation and Syntax High-
lighting. A first step towards making source code
understandable is to make it more readable. Inden-
tation and syntax highlighting are well-established
methods to improve the readability of source code as
they help to interpret scope and syntactic structures.
Additionally, the indentation and syntax highlighting
of source code in a presentation makes the code
similar to what students are used to in their program-
ming environments. However, in contrast to existing
practices in presentation tools, the formatting of

code should not be a burden to the presenter and
should be done automatically by the presentation tool.

R2: Efficient Navigation of Source Code. When
explaining the working of a piece of source code,
it is necessary to display the code as part of a
presentation. However, even simple programs consist
of more lines of code than would fit on a single slide.
Additionally, programs rarely execute sequentially
and may jump back and forth between different
pieces of code, not necessarily in the order in which
they were written. This forces presenters to jump
back and forth between slides making it difficult for
both the audience as well as the presenter to follow
the program flow.

R3: Visualise the Working of the Code. From
related work we learn that the mental model of a
program can be built much easier when accompanied
by visual aids. In addition to showing the code of
the program, the tool might for instance display state
changes or illustrate concepts such as pointers or
recursion in order to make it clearer what is actually
happening when the program executes. The idea
of visualising source code in a dynamic way is
supported by recent studies showing that the use of
dynamic media brings measurable improvements
in knowledge transfer over the use of static me-
dia (Holzinger et al., 2008).

R4: Integration in Presentation Tools. As slide
decks are often used during lectures, it makes sense
to integrate the interactive visualisations directly into
our presentation rather than relying on a stand-alone
application. If the interactive source code visualisa-
tion is not integrated into the presentation tool, the
presenter is forced to switch between applications
which takes time and breaks the flow of the presenta-
tion.

R5: Extensible Support for Multiple Lan-
guages. Even though there are a few more commonly
used programming languages in the list of all existing
languages, there is no consensus on what language to
teach in introductory programming courses. While
each of the stand-alone tools presented in Section 2
only focusses on a single language, we believe that
a tool for use in presentations should be able to deal
with more than one language. By supporting only a
single language, the tool would automatically be ex-
cluded from being used in the larger share of lectures
that use other languages. Additionally, we claim that
the set of supported programming languages should
be extensible by third parties instead of limiting

CSEDU�2015�-�7th�International�Conference�on�Computer�Supported�Education

100

ourselves to a fixed set of languages.

R6: Extensible Visualisation Choices. It has been
shown that graphical representations of programming
concepts have an important role in the construction
of a mental model (George, 2000; Velázquez-Iturbide
and Pérez-Carrasco, 2010). However, different
visualisations are needed for different scenarios. Not
only do programming languages have different char-
acteristics (e.g. object-oriented versus procedural) but
also the topic may influence the type of visualisations
required for the program. Related work shows that
customised visualisations help with the teaching
of specific concepts such as memory pointers or
recursion (Dann et al., 2001). It therefore makes
sense to allow the presenter to select the desired
visualisation apart from just showing some source
code. Additionally, it should be possible that the pool
of visualisations can be extended, especially when
considering the previous requirement R5.

R7: Interactive Program Execution. Next to visu-
alising a program, the execution might also be made
more interactive and controllable by the presenter.
For instance, the presenter might want to show how
the same program reacts to different kinds of input,
or they may wish to execute different parts of the
program based on different scenarios or feedback
from the students.

4 INTERACTIVE SOURCE CODE
VISUALISATION

Based on the requirements presented in the previous
section, we now introduce our approach towards pre-
senting source code in a more accessible and efficient
way. In order to fulfil requirement R4, it is obvious
that our solution should integrate into an existing pre-
sentation tool. As the most basic feature the presenter
should be able to include any piece of source code in
a presentation and the tool should present it in a read-
able manner. From a technological standpoint there
is no reason why a presentation tool could not auto-
matically handle formatting issues such as indenta-
tion and syntax highlighting. A user can either explic-
itly specify the language or simple techniques such as
Bayesian filters can be applied to automatically detect
the programming language of a piece of source code.
Since a programming language’s syntax is formally
defined, the parsing and syntax highlighting is hardly
a challenge. Nevertheless, to the frustration of many
presenters this simple feature is not present in current

presentation tools and should therefore be provided
by our tool as demanded by requirement R1. In order
to break free of spatial restrictions, we suggest that
source code should be scrollable if it does not fit on a
single slide rather than presenting isolated chunks of
code spread across slides. This allows the presenter
to illustrate source code more coherently as it is eas-
ier for audience members to grasp the bigger picture.
Making the code scrollable contributes to the naviga-
tion of the source code and therefore also addresses
requirement R2.

While these aesthetic improvements enhance
knowledge transfer, related work indicates that the vi-
sualisation of program execution may be one of the
most important techniques to help students in build-
ing a mental model of a program. Therefore our solu-
tion should not only display the static source code but
one should also be able to step through the execution
of the program in forward or backward order. This
does not only help in illustrating the program flow,
but also state changes can be shown simultaneously
to highlight how each line of code influences the state
of the program as described in requirement R3. Since
the presenter does not always want to step through
the program execution from the very beginning to the
end, it also makes sense to provide a means of manu-
ally jumping to the relevant parts of the source code.

Figure 1: Source code visualisation mock-up.

In order to fulfil requirement R5, an interactive
source code visualisation solution should not limit
itself to a single programming language. The tool
should be able to handle different languages and
the resulting code visualisation and execution should
work in the same way, regardless of the language.
However, the execution and interpretation of pro-
grams is language dependant and therefore it is im-
possible to offer a generic implementation that is
guaranteed to work for all languages. We address
this challenge by offering modular language support.

Towards�Enhanced�Presentation-based�Teaching�of�Programming�-�An�Interactive�Source�Code�Visualisation�Approach

101

Language-specific functionality should be bundled to-
gether as a module with a predefined interface so that
the tool can select the corresponding module based on
the detected language. The language-specific module
is then responsible for interpreting the execution of
the program and translating it to a generic representa-
tion that is understood by the visualiser. This way, the
tool can support a wide variety of languages regard-
less of technical differences and even allows the set of
supported languages to be extended by third parties.

Finally, in addition to the visualisation of the
source code and state changes we deem it meaning-
ful to provide some further optional graphical visu-
alisation. As discussed in Section 2, visualisations
have been developed to provide a better understand-
ing of concepts such as memory pointers or recur-
sion. These extra visualisations should also be imple-
mented as interchangeable modules in order that they
can be extended. They can make use of the generic
execution representation provided by the language-
specific modules and are thus language independent.
The visualisation module gets the execution data such
as state changes and method invocations in the com-
mon format and does not have to deal with language-
specific details. Note that this also means that visual-
isation modules can be reused for different languages
since, for example, recursion is a concept available in
many languages.

A mock-up of our proposed solution is shown Fig-
ure 1. Based on the real estate available on a slide, the
left half of the slide is dedicated to the visualisation of
the source code. Note that the source code is properly
indented, syntax highlighted and scrollable if neces-
sary. The slider below the code allows the presenter
to quickly move to a particular point in the execution
and the buttons underneath allow them to go through
the code one step at a time, either forwards or back-
wards. The right-hand side is dedicated to visuali-
sations that adapt as the presenter steps through the
code. The upper right part shows the state of relevant
variables whereas the lower right part can optionally
be used for context-specific visualisations.

While the goal is that our tool should do as much
as possible automatically, there are also cases where
a presenter might want to configure the tool before-
hand. For instance, in larger programs it makes no
sense to visualise the changes of every single vari-
able. In these cases, the presenter may choose to se-
lect those variables that contribute to the understand-
ing of a program and the rest will not be displayed.
The presenter might also want the execution to start
at a specific point instead of having to manually find
the right spot they want to discuss. Furthermore, the
presenter may also choose which additional visualisa-

tion to use or decide to not show any additional visu-
alisation at all and use the full width of the slide for
displaying the source code.

5 IMPLEMENTATION

In this section, we present our implementation of the
concepts discussed in Section 4. Before describing
the implementation of the prototype, we outline the
overall architecture of our interactive source code vi-
sualisation for the MindXpres presentation tool.

5.1 Architecture

As briefly mentioned in Section 4, special measures
need to be taken in order to support multiple lan-
guages. The main reason is that in order to ful-
fil requirement R3 we need to execute the provided
source code to extract events, such as state changes
or method invocations, from its execution. Unfor-
tunately, this process is different for each program-
ming language which makes it impossible to provide
an all-in-one solution. As detailed before, we bun-
dle language-specific functionality in interchangeable
modules making it possible to add new languages.

The architecture chosen to support this functional-
ity is shown in Figure 2. When source code is given to
our tool by the presenter, the language can automati-
cally be detected. The tool then searches its collection
of language modules for the detected language. In the
case that no matching module is found, the tool limits
itself to just displaying the source code without any
interactive features. However, if a matching module
is found, it is passed the source code. The language
module is then responsible for extracting the relevant
information from the running program and translat-
ing it to a generic representation that is understood by
the visualisation engine. One of the benefits of iso-
lating language-specific features is that the modules
can make use of existing applications and libraries in-
stead of having to implement everything from scratch.
For example, we found existing debuggers to be par-
ticularly useful. A debugger is a tool that examines
a running application and offers functionality to pro-
vide insights about the program flow and for finding
unwanted behaviour in the form of bugs. Debuggers
are hard to use and they make no real effort to re-
inforce a mental model (Smith and Webb, 1995), but
their output, a so-called execution trace, can be turned
into something more meaningful by our tool. Never-
theless, debuggers are standalone applications dedi-
cated to a specific language only and different debug-
gers produce output in different formats. Therefore,

CSEDU�2015�-�7th�International�Conference�on�Computer�Supported�Education

102

Source Code

Source Code +
Generic Application

Execution Log

Source Code Plug-in

Language
Detection

Language-specific Plug-in

Debugger Debugger-specific
Execution Log Log Parser

Visualiser

CODE

EXECUTION STATE

EXTRA VISUALISATION

 << Step 3/10 >>

Source Code Language
Detection

Language Module

Debugger Debugger-specific
Execution Log Log Parser

Visualisation

Source Code
+

Generic
Execution Log

Figure 2: Architecture for extensible language support.

when the language module invokes the debugger and
gets an execution trace, it also translates the resulting
trace into a generic format ensuring that the output
of each language module has the same format. This
generic execution log is then transferred to the visual-
isation engine together with the source code so it can
display the source code and provide additional inter-
active functionality such as the visualisation of state
changes while the presenter steps through a piece of
source code.

5.2 Generic Execution Log

As explained before, the generic execution log is the
key to supporting multiple languages in an extensi-
ble manner. We have chosen the JavaScript Object
Notation (JSON), a lightweight data interchange for-
mat for representing the execution log. For each
programming language, a language module translates
the language-specific execution log into this JSON-
based representation. This means that the visualisa-
tion tool only needs to be able to process the generated
JSON format and does not need to be aware about the
specifics of a particular programming language.� �
1 int sum = 0;

2 for(int i = 0; i < 2; i++){

3 sum = add(sum, i);

4 }� �
Listing 1: A small C program.

From the language-specific execution logs the lan-
guage module needs to extract events such as variable
definitions, variable state changes as well as function
invocations. For example, Listing 2 shows the JSON
output resulting from the execution of the C program
shown in Listing 1.

The C programming language is a purely proce-
dural programming language but in order to support
object-oriented languages the details specific to ob-
jects can also be expressed in the generic log format.
This includes, for instance, method invocations and
changes in object fields. While we could have used
the same representation as for function invocations
and variable changes, there are languages such as C++
that can have both functions and methods and there-
fore a separate representation is needed.

� �
1 [f"line": 1, "type": "VarDefinition",
2 "details": f"name": "sum",
3 "value": "0"gg,
4 f"line": 2, "type": "VarDefinition",
5 "details": f"name": "i",
6 "value": "0"gg,
7 f"line": 3, "type": "FunctionCall",
8 "details": f"name": "add"gg,
9 f"line": 3, "type": "StateChange",

10 "details": f"name": "sum", "old": "0"
11 , "new": "0"gg,
12 f"line": 2, "type": "StateChange",
13 "details": f"name": "i", "old": "0"
14 , "new": "1"gg,
15 f"line": 3, "type": "FunctionCall",
16 "details": f"name": "add"gg,
17 ...� �

Listing 2: JSON execution log for Listing 1.

Listing 4 shows the JSON execution log generated
for the Java program illustrated in Listing 3.� �
1 Person person = new Person("John");

2 person.setAge(19);� �
Listing 3: A small Java program.

Note that a specific line of code may need multiple
entries in the execution log. For instance, a line of
code may define a new variable, invoke a method and
use the returned value to set its state. Even though
they all occur on the same line of code, the execution
log should contain separate entries for each of these
events. The visualisation tool may combine them into
a single step for the visualisation, but at least it has
access to the finer details in case certain visualisation
plug-ins should need them.� �
1 [
2 f"line": 1, "type": "VarDefinition",
3 "details": f"name": "person",
4 "initialValue": "null"gg,
5 f"line": 1, "type": "Constructor",
6 "details": f"class": "Person"gg,
7 f"line": 1, "type": "StateChange",
8 "details": f"name": "person",
9 "old": "null", "new": "Person"gg,

10 f"line": 2, "type": "MethodCall",
11 "details": f"name": "setAge",
12 "object": "person"gg,
13 f"line": 2, "type": "ObjStateChange",
14 "details": f"name": "person.age",
15 "old": "0", "new": "19"gg
16];� �

Listing 4: JSON execution log for Listing 3.

Towards�Enhanced�Presentation-based�Teaching�of�Programming�-�An�Interactive�Source�Code�Visualisation�Approach

103

Figure 3: A MindXpres presentation with the source code plug-in.

5.3 MindXpres Source Code Plug-in

Our interactive source code visualisation proto-
type has been implemented as a plug-in for the
MindXpres presentation tool (Roels and Signer,
2014b). MindXpres has been developed to over-
come the limited extensibility of well-known slide-
ware tools such as PowerPoint or Keynote and to
offer a rapid prototyping platform for novel presen-
tation ideas. The motivation behind this is that al-
though PowerPoint offers an API (application pro-
gramming interface) for creating extensions, it still
enforces the usage of linear sequences of slides with
relatively static content. Therefore it is often not pos-
sible to extend PowerPoint with radically new func-
tionality. The highly modular MindXpres architecture
allows any component to be replaced and new com-
ponents and functionality can easily be added. For
instance, users may choose to use a plug-in that visu-
alises content using a zoomable user interface (ZUI)
or can use a plug-in that visualises the same con-
tent in a classic linear fashion like in existing slide-
ware. The core MindXpres engine provides various
abstractions that allows plug-in creators to focus on
their ideas instead of having to reimplement the ba-
sics every time. For instance, the graphics engine
provides functionality related to the visualisation of
content which drive features such as the ZUI and in-
teractive rich media visualisation plug-ins. The com-
munication engine allows instances of a MindXpres
presentation to form networks which allows plug-
ins to communicate across devices, enabling plug-
ins for various audience-driven functionality such as
polls, quizzes or screen mirroring (Roels and Signer,
2014a). MindXpres uses HTML5 and related tech-
nologies for enhanced portability and plug-ins are
written entirely in JavaScript. Although a graphi-
cal editor is under development, MindXpres presen-
tations are currently defined in a XML-like declara-
tive language similar to the LATEX language used for
text documents. The reasoning behind this is also

similar; let the user focus on content and let the tool
worry about the layout and styling. While MindXpres
comes with a default set of plug-ins for basic compo-
nents such as images, bullet lists, videos or slides, it is
easy to add new plug-ins for new content types. Plug-
ins also extend the vocabulary used in the MindXpres
document format. More specifically, a plug-in can
add new XML tags for usage in the document for-
mat. A plug-in that introduces new tags then takes
responsibility for visualising content placed within
these tags.� �
1 <presentation>

2 <slide title="Fibonacci Numbers">...</slide>

3 <slide title="Fibonacci - Recursive">

4 <code>

5 int fibonacci(int n)

6 {...}

7 </code>

8 </slide>

9 <slide title="Fibonacci - Iterative">

10 <code source="fib_it.c"></code>

11 </slide>

12 </presentation>� �
Listing 5: MindXpres presentation in XML.

We have realised our approach by creating a code
visualisation plug-in for MindXpres that introduces
the code tag to the vocabulary. Source code can be
included in a presentation in two ways. Either the pre-
senter refers to an external file containing source code
via an attribute of the code tag, or the presenter just
pastes the code between code tags. Listing 5 shows
a shortened snippet of a MindXpres presentation that
uses both ways to include source code. The resulting
presentation can be seen in Figure 3.

When the MindXpres document format is com-
piled into a portable presentation, a MindXpres plug-
in can be invoked if it contains compile-time trig-
gers. In this case, the code plug-in will detect the
language and let the correct language module gener-
ate the generic execution log. The log is then bundled
in the presentation together with the code plug-in that

CSEDU�2015�-�7th�International�Conference�on�Computer�Supported�Education

104

Figure 4: MindXpres source code plug-in example.

will visualise it at run-time (when the final presen-
tation is opened for viewing). Because MindXpres
plug-ins are written in JavaScript, we are free to use
some of the powerful existing libraries offering the
corresponding functionality. For code formatting and
syntax highlighting we use Google’s prettify3 library.
Furthermore, the plug-in uses the D34 visualisation li-
brary for some of its optional visualisations. For this
prototype implementation we have implemented two
language modules, namely one for C and one for Java.
For the creation of the execution traces, the C mod-
ule uses the GDB5 debugger while the Java version
uses JDB, a debugger included with the Java Develop-
ment Kit6. Creating a language module requires some
programming but the provided abstractions make the
process fairly straightforward. The language module
itself is implemented as a folder containing at least
two files. A manifest file provides some metadata
and specifies the programming language the mod-
ule can process. The second file contains JavaScript
code that implements a single method which accepts
source code as input and returns a generic execu-
tion log. This code is executed if the compiler de-
tects that a given piece of source code was written in
the programming language mentioned in the manifest

3https://code.google.com/p/google-code-prettify/
4http://d3js.org
5http://www.gnu.org/software/gdb/
6https://www.oracle.com/java/

file. Because the compiler is based on Node.js, the
JavaScript code can make use of libraries and binaries
placed alongside the two required files. In most cases,
it is sufficient for a language module to include an ex-
isting debugger, have it create an execution log and
translate this log into the generic execution format.
Note that there are alternative ways how a language
module might obtain an execution log, such as the di-
rect interpretation of the given code via the JavaScript
code.

An example of the MindXpres source code plug-
in in use is shown in Figure 4. In this case a recur-
sive implementation of the Fibonacci function is il-
lustrated. The highlighted line indicates what line of
code is being executed in the current step. As men-
tioned before, the buttons can be used to go forwards
or backwards in the execution and the presenter may
also use the slider to jump to a particular point of in-
terest. On the right-hand side the state changes for the
variables i, j and sum are shown. This includes their
old value (Before) and the new value (After) that was
assigned to them at that point of execution. As the
Fibonacci function is a classic example for demon-
strating recursion, we included the recursion tree as
the optional extra visualisation. The tree shows a his-
tory of recursive function calls up to that point making
it clearer what has happened in the previous steps. In
this case the viewer can see that the recursion is per-
formed depth-first and has just finished the backtrack-

Towards�Enhanced�Presentation-based�Teaching�of�Programming�-�An�Interactive�Source�Code�Visualisation�Approach

105

ing phase for the calculation of the third Fibonacci
number. A new branch is about to be added under the
top node for the calculation of the second Fibonacci
number, which will be added to the result of the exist-
ing branch to form the fourth Fibonacci number.

While the example in Figure 4 shows purely pro-
cedural code, the same visualisation can be used for
object-oriented code. For instance, the execution of
the code presented in Listing 3 would first show a
state change in the variable person, from null (not ini-
tialised) to a new instance of a Person. The second
line would then result in a state change in person.age
from 0 to 19. If more details are required, the recur-
sion tree could be replaced with another optional vi-
sualisation that shows the object and relevant changes
in more detail. Similarly, state changes in arrays can
also be shown. In the current implementation the
complete array is shown in the Before and After
columns. However, if the presented code is centered
around arrays—for example in a sorting algorithm—
it makes sense to replace the recursion tree visuali-
sation with another more efficient array visualisation
making use of colours and animations to show how
array elements are moved in each step.

6 DISCUSSION &
CONCLUSIONS

The presented interactive source code visualisation
prototype provides a framework for future exten-
sion and experimentation with innovative forms of
presentation-based teaching of programming. So far
we have implemented language modules for the C and
Java programming language but the architecture al-
lows for the addition of new languages with mini-
mal effort. In its current form, our tool is suitable
for presenting code written in the major program-
ming languages but there are some languages that
will need further investigation. For instance, func-
tional programming languages such as Haskell avoid
state changes and mutable data which implies that
most of our additional visualisations will be useless
for these types of languages. Furthermore, there ex-
ist declarative programming languages based on logic
(e.g. Prolog) where programs are not constructed out
of sequentially executed instructions but rather con-
sist of rules that are queried and triggered in a differ-
ent manner. Programs in these two categories of pro-
gramming languages benefit less from the proposed
way of navigating and visualising source code. Fur-
ther investigation is therefore needed in order to also
help students in enhancing their mental model for
these types of languages.

We currently allow presenters to navigate longer
pieces of source code by scrolling. However, by
letting the visualisation plug-in reason over the pre-
sented source code, further enhancements might be
made to navigate through larger pieces of source code
in a more efficient way. For instance, the presenter
could click on a function or method call to jump to the
definition of the function or method if the tool would
be aware of these concepts. The current version of our
source code visualisation plug-in further only allows
the presenter to step through the code as it has been
included in the presentation but no modifications are
possible. As a future improvement, we would also
like to make the execution of programs more interac-
tive. For instance, the presenter might want to exe-
cute the same algorithm multiple times with different
start parameters to illustrate the resulting effect. The
possibility to modify values at any point during the
execution of an algorithm is also something to be in-
vestigated in future work.

The MindXpres presentation tool also provides
abstractions to implement features commonly found
in audience response and classroom systems (Roels
and Signer, 2014a). By involving the students through
active learning we can increase the effectiveness of
the visualisation of algorithms even more as discussed
by Hundhausen et al. (Hundhausen et al., 2002). A
first step could be to allow the students to interactively
navigate through the source code which might later be
extended to small exercises that force the students to
reason over the presented program.

So far we have only evaluated the technical side of
the proposed architecture by implementing language
modules for the C as well as Java programming lan-
guage. While parts of the presented functionality is
based on earlier research in the domain of how to
teach programming concepts that we have applied in
the domain of presentation tools, we plan to do a user
evaluation with the presented interactive source code
visualisation MindXpres plug-in. Based on available
teaching material from universities around the world,
we can infer that many teachers of programming
courses still use static source code examples spread
over multiple slides managed by traditional slideware
solutions. We see our approach as a step towards en-
hancing the omnipresent presentation-based teaching
of programming by providing better tools for the au-
thoring of source code slides as well as for the interac-
tive presentation of code examples. Last but not least,
we hope that other researchers might be inspired to
investigate new forms of presentation-based teaching
of programming concepts and algorithms that go be-
yond the presentation of a series of slides containing
static source code snippets.

CSEDU�2015�-�7th�International�Conference�on�Computer�Supported�Education

106

REFERENCES

Bennedsen, J. and Caspersen, M. E. (2007). Failure Rates
in Introductory Programming. ACM SIGCSE Bulletin,
39(2):32–36.

Berry, M. and Kölling, M. (2013). The Design and Im-
plementation of a Notional Machine for Teaching In-
troductory Programming. In WiPSE 2013, 8th Work-
shop in Primary and Secondary Computing Educa-
tion, pages 25–28. ACM.

Boulay, B. D. (1986). Some Difficulties of Learning to Pro-
gram. Journal of Educational Computing Research,
2(1):57–73.

Cañas, J. J., Bajo, M. T., and Gonzalvo, P. (1994). Mental
Models and Computer Programming. International
Journal of Human-Computer Studies, 40(5):795–811.

Dann, W., Cooper, S., and Pausch, R. (2001). Using Visual-
ization to Teach Novices Recursion. 33(3):109–112.

George, C. E. (2000). Experiences with Novices: The Im-
portance of Graphical Representations in Supporting
Mental Models. In PPIG 2012, 12th Annual Workshop
of the Psychology of Programming Interest Group,
pages 33–44.

Gomes, A. and Mendes, A. J. (2007). Learning to Program
- Difficulties and Solutions. In ICEE 2007, Interna-
tional Conference on Engineering Education, pages
53–58.

Holzinger, A., Kickmeier-Rust, M. D., and Albert, D.
(2008). Dynamic Media in Computer Science Educa-
tion; Content Complexity and Learning Performance:
Is Less More? Educational Technology & Society,
11(1):279–290.

Hundhausen, C. D., Douglas, S. A., and Stasko, J. T. (2002).
A Meta-Study of Algorithm Visualization Effective-
ness. Journal of Visual Languages & Computing,
13(3):259–290.

Jenkins, T. (2001a). Teaching Programming - A Journey
From Teacher to Motivator. In 2nd Annual Confer-
ence of the LSTN Center for Information and Com-
puter Science.

Jenkins, T. (2001b). The Motivation of Students of Pro-
gramming. 33(3):53–56.

Jenkins, T. (2002). On the Difficulty of Learning to Pro-
gram. In 3rd Annual Conference of the LTSN Cen-
tre for Information and Computer Sciences, volume 4,
pages 53–58.

Lahtinen, E., Ala-Mutka, K., and Järvinen, H.-M. (2005).
A Study of the Difficulties of Novice Programmers.
37(3):14–18.

Ma, L., Ferguson, J., Roper, M., and Wood, M. (2007).
Improving the Viability of Mental Models Held by
Novice Programmers. In 11th Workshop on Pedago-
gies and Tools for the Teaching and Learning of Ob-
ject Oriented Concepts. Springer.

Mayer, R. E. (1981). The Psychology of How Novices
Learn Computer Programming. ACM Computing Sur-
veys (CSUR), 13(1):121–141.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Ha-
gan, D., Kolikant, Y. B.-D., Laxer, C., Thomas, L.,
Utting, I., and Wilusz, T. (2001). A Multi-national,

Multi-institutional Study of Assessment of Program-
ming Skills of First-year CS Students. In ITiCSE-
WGR 2001, Working Group Reports from ITiCSE on
Innovation and Technology in Computer Science Ed-
ucation, pages 125–180. ACM.

Milne, I. and Rowe, G. (2002). Difficulties in Learn-
ing and Teaching Programming - Views of Students
and Tutors. Education and Information Technologies,
7(1):55–66.

Moreno, A. and Joy, M. S. (2007). Jeliot 3 in a Demanding
Educational Setting. Electronic Notes in Theoretical
Computer Science, 178:51–59.

Moreno, A., Myller, N., Sutinen, E., and Ben-Ari, M.
(2004). Visualizing Programs With Jeliot 3. In
AVI 2014, Working Conference on Advanced Visual
Interfaces, pages 373–376. ACM.

Roels, R. and Signer, B. (2013). An Extensible Presenta-
tion Tool for Flexible Human-Information Interaction.
In Demo Proceedings of BCS HCI 2013, 27th BCS
Conference on Human Computer Interaction, page 59.
British Computer Society.

Roels, R. and Signer, B. (2014a). A Unified Communica-
tion Platform for Enriching and Enhancing Presenta-
tions with Active Learning Components. In ICALT
2014, 14th IEEE International Conference on Ad-
vanced Learning Technologies, pages 131–135. IEEE.

Roels, R. and Signer, B. (2014b). MindXpres: An Exten-
sible Content-driven Cross-Media Presentation Plat-
form. In WISE 2014, 15th International Conference
on Web Information System Engineering, pages 215–
230. Springer.

Sa, L. and Hsin, W.-J. (2010). Traceable Recursion
with Graphical Illustration for Novice Programmers.
InSight: A Journal of Scholarly Teaching, 5:54–62.

Smith, P. A. and Webb, G. I. (1995). Reinforcing a
Generic Computer Model for Novice Programmers. In
ASCILITE 1995, 7th Australian Society for Computer
in Learning in Tertiary Education.

Smith, P. A. and Webb, G. I. (2000). The Efficacy of a Low-
level Program Visualization Tool for Teaching Pro-
gramming Concepts to Novice C Programmers. Jour-
nal of Educational Computing Research, 22(2):187–
216.

Tufte, E. R. (2003). The Cognitive Style of PowerPoint:
Pitching Out Corrupts Within. Graphics Press.

Velázquez-Iturbide, J. Á. and Pérez-Carrasco, A. (2010).
InfoVis Interaction Techniques in Animation of Re-
cursive Programs. Algorithms, 3(1):76–91.

Virtanen, A. T., Lahtinen, E., and Järvinen, H.-M. (2005).
VIP, a Visual Interpreter for Learning Introductory
Programming with C++. In 5th Koli Calling Confer-
ence on Computer Science Education, pages 125–130.

Towards�Enhanced�Presentation-based�Teaching�of�Programming�-�An�Interactive�Source�Code�Visualisation�Approach

107

