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Abstract: In this paper, we propose an approach that can improve the quality of pedagogies based on Bloom's Taxonomy 
(BT) cognitive theory. Theoretically, any domain knowledge can be learned and taught at multiple cognitive 
domain levels. Moreover, other cognitive domain levels might be called, for learn specific domain knowledge. 
If we know the dependencies between the domain knowledge, many interesting pedagogical applications are 
possible. However, until now, the relationship levels between domain knowledge are highly sophisticated and 
required tedious human judgment to be deduced. BT theory has been explored in the psychological sciences 
paradigm, but has not been examined automatically. No comprehensive computer science map is currently 
available. This paper, explores how the BT- relationships between various domain knowledge is automatically 
extracted. A Bloom Topic Graph (BTG) that encodes concept space is extracted. BTG provides concept space 
connected as BT cognitive relationships. Our approach utilizes verbs to discover the BT cognitive 
relationships between computer sciences, domain knowledge. We evaluate the BT cognitive relationships 
using ground truth, and our approach achieves an accuracy of average 65-75%, which is significantly high.  

1 INTRODUCTION 

One of the most apparent problems that the common 
faculty member must focus on includes which domain 
concepts to teach, and how to rank each domain 
concept or teaching method for the level of thinking 
in terms of cognitive skills of those being taught 
(Bloom and Krathwohl, 1956). One way to express 
domain concepts, compatible with real thinking skills 
of the learner, is Bloom Taxonomy cognitive skills. 
Mechanisms for categorizing knowledge space into 
Bloom Taxonomy cognitive skills will improve the 
quality of curriculum structure, allowing appropriate 
course and teaching plan development. Bloom 
Taxonomy (BT), introduced in 1956 by Benjamin 
Bloom, is an idea of classifying the learning 
objectives in order to distinguish the fundamental 
questions within the education system (Bloom and 
Krathwohl, 1956). BT identifies three domains of 
educational activities: Cognitive domain (mental 
skills), Affective domain (growth in feelings or 
emotional areas), and Psychomotor domain (physical 
skills). Cognitive domain has come to our attention as 
it closely relates to the real understanding of thinking. 
The Cognitive domain is defined by Bloom into six 
levels: 1) knowledge, 2) comprehension, 3) 

application, 4) analysis, 5) synthesis, and 6) 
evaluation. 

In 2001, Anderson and a team of cognitive 
psychologists made a significant change to Bloom's 
Taxonomy, calling it the Revised Bloom’s Taxonomy 
(Anderson et al. 2001). This change, in the Cognitive 
domain’s levels, occurred by adding, ordering, 
combining, and change level’s names, but keeping the 
same number of six levels. The revised Cognitive 
domain’s levels from simplest to most complex are: 
1) remembering, 2) understanding, 3) applying, 4) 
analyzing, 5) evaluating, and 6) creating. Despite the 
significant changes made by Anderson, which may 
work with some theoretical majors such as 
psychology, scientific majors such as computer 
science need specific Cognitive domain levels. 
Therefore, we introduce a new Cognitive domain 
named Computer-Science based Cognitive Domain 
(CSCD), by modifying Anderson’s revised Cognitive 
domain. 

Based on CSCD, we built a model, called Bloom 
Taxonomy Relational Model (BTRM), to facilitate 
the classification of computer science, domain 
concepts. Then, based on the BTRM model, we 
design and develop a technique to generate the 
relationships between computer sciences, domain 
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concepts automatically. Our technique is based on the 
use of Latent Semantic Analysis (LSA) theory to find 
verbs that use Singular Value Decomposition (SVD) 
(Landauer et al. 1998). A number of works have 
explored how a range of taxonomies can be applied 
in Computer Science (CS) to educate students more 
effectively. In particular, there are three ways in 
which such taxonomies have been applied to 
Computer Science: 1) to design the courses at various 
levels of granularity in time, 2) to design the teaching, 
learning, and assessment materials, and 3) the 
analysis of student responses to exercises in order to 
validate the effectiveness of items 1 and 2 above. In 
order to evaluate our model and technique, we used 
an electronic book titled “Introduction to Algorithm” 
to generate a knowledge map (a graph) which consists 
of algorithmic concepts as nodes, and the 
relationships between them as weighted directed 
edges. The weights on the edges are names of the 
relationships (BL1:1, BL2:2, BL3:3, BL4:4). To the 
best of our knowledge, this is the best accurate 
algorithmic map that reflects most algorithmic 
concepts and their relationships. This map can be 
used in Computer Science Departments by professors 
who teach algorithm courses to better understand a 
student’s educational needs.  

The rest of the paper is structured as follows: 
Section 2 provides an overview of the related work 
for BT. Section 3 explains the Computer-Science 
based Cognitive Domain (CSCD). Section 4 presents 
the key model used. Section 5 contains a detailed 
experiment that demonstrates a dramatic 
improvement in observed accuracy of analyzing CS 
domain knowledge. 

2 RELATED WORK 

Let us give an overview of various works that have 
investigated how Bloom’s Taxonomy can pertain to 
the field of Computer Science. Specifically, such 
taxonomies have been used in four different ways: 1) 
course design, 2) teaching methodology, 3) the 
creation of learning and evaluative materials, and 4) 
student responses to learning activity (Machanick, 
2000). In this section, we appraise the work of a 
number of research projects that applied Bloom’s 
Taxonomy in the field of computer science by 
Machanick. Machanick presents the idea of ordering 
material according to the required cognitive skills 
taught within three computer science courses 
(Machanick, 2000). Bloom’s Taxonomy was used to 
assign grades in an introductory programming course, 
based on Bloom-level mastery of tiered curricular 

components rather than grading on a curve by (Lister 
and Leaney, 2003). In review of their work, the 
taxonomy for computer science was questioned 
(Johnson and Fuller, 2006). The problem is that 
exams regularly fail to test the knowledge of students 
for each level of mastery in Bloom’s Taxonomy 
(Scott, 2003). Because of this, teachers cannot 
accurately assess the depth of mastery for individual 
students. A solution was to use Bloom’s Taxonomy 
to assess the cognitive difficulty of computing 
courses in an IT program by formulating and 
calculating a Bloom Rating (Oliver et al 2004). A 
Bloom level was assigned to each test question 
according to the level of cognitive behaviour required 
to properly answer it. Using a Bloom Rating, based 
on the above work, a Bloom-based course assessment 
tool could be constructed and deployed in a second-
level programming course (Burgess, 2005). The 
result is the assignment of a grade, based on objective 
measurements of learning outcomes. The paper 
describes the cognitive tasks required at each of the 
three grade tiers. Finally, Manaris et al. (Lister and 
Leaney, 2003) applied BT within CS to specify 
learning objectives of human-computer interaction 
courses. They presented a collection of courses for 
various target audiences, including freshman non-
majors, junior/senior majors, and graduate students. 
For each course, they provided an outline containing 
learning objectives using BT, the amount of time to 
be spent on each topic, and related in-class activities. 
A closely related research was also done by 
Thompson et al. They focused on computer science 
assessment (Thompson, 2007). Their main goal was 
to use Bloom’s Taxonomy to assist in designing 
introductory programming examinations. Research 
that is more recent was done by Starr et al., which 
focused on specifying assessable learning objectives 
in computer science (Starr et al., 2008). They believed 
that their idea of integrating Bloom’s Taxonomy with 
computer science curriculum had made their faculty 
communicate more effectively, and the department’s 
assessment program stronger. Other research work 
that was completed for specific computer science 
areas of education using Bloom’s Taxonomy includes 
a test-driven automatic grading approach for 
programming (Hernán-Losada et al., 2008), Bloom’s 
Taxonomy levels for three software engineer profiles 
(Borque et al. 2004), and Bloom’s Taxonomy for 
system analysis workshops (Yadin,2007). 

In addition, the use of existing taxonomies is not 
as efficient for computer science. We address a novel 
aspect of the problem. From Kolb (Kolb, 2005) we 
know that different people can enter the learning 
cycle at different points. We modify revised BT to 
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show how BT-cognitive thinking would be more 
applicable for computer science than the existing 
generic ones. 

Let us explain an overview from “Conceptual 
Knowledge Space,” Javed I. Khan, Yongbin Ma, 
Manas Hardas (Khan, Ma, and Hardas, 2010). They 
demonstrate how courses can be composed, based on 
knowledge ontology.(Hardas,2011) present a novel 
methodology to evaluate the bottom up technique for 
teaching programming concepts, based on theory of 
constructivism from educational psychology. 
Educators in teaching employed their technique; 
students do not employ or are not able to employ the 
bottom up technique of constructing concepts in 
learning. Most of the previous work does not focus on 
building automatic models to assist in analyzing 
domain concepts in level of cognitive skills. Our 
automatic model builds the domain concepts as graph 
and classifies cognitive skills between domain 
concepts. The next section will explain Computer-
Science based Cognitive Domain (CSCD) by more 
details.  

3 COMPUTER SCIENCE BASED 
COGNITIVE DOMAIN (CSCD) 

Although we are using the basic Bloom Taxonomy 
framework (CSCD) for this paper, CSCD was 
introduced that provides a more flexible structure, 
facilitating the classification of Knowledge domain. 
The main goal for creating this new framework is to 
provide an effective ordering of BT cognitive skills 
for the computer sciences. CSCD introduces useful 
specific-hierarchy to the existing Bloom Taxonomy. 
BT of the cognitive skills has had a considerable 
impact in the last fifty years. However, this does not 
mean that their use is unproblematic. We create 
CSCD to provide a more practicable framework for 
assessing the domain knowledge within the CS realm. 
Figure 1 illustrates CSCD. CSCD represents a new 
understanding the at the “Understanding and 
Remembering” level to explain the ability to 
understand. The names of the levels are taken from 
the revised version of Bloom’s, as we feel they are 
sufficiently unambiguous. It is understood that the 
learner must traverse each level in strict sequence. It 
is not practical to begin the synthesis (Create) Level 
first, because of the degree of competency required 
through the Understanding and Applying Levels. 

Before we proceed, it is useful to attempt to 
understand and define what the plausible pieces of a 
learning concept object (LeCon) are so that we can 
proceed  to   model   the   requirements   for   achieving 

 

Figure 1: Parts of a learning concept. 

various learning skill levels, as defined by BT. A 
learning concept is a unit of knowledge, which is the 
target of learning. It can be a topic such as “insertion 
sort,” “recursion”, “cache”, “disk scheduling,” etc. 
LeCon objects have their parts and special 
behaviours. A teacher would like to teach these 
concepts via teaching various parts of the concept. 
We define at least five generic parts for the LeCon 
object: 

(O) = {D, P, C, X, E } (1)

Question according to the level of cognitive 
behaviour required to properly answer it. Using a D: 
is the definition of the object O. Normally, it is a 
formal statement of the meaning of the pertinent 
concept. It is often a single sentence to a paragraph 
description of the salient aspects of the concept. 
Normally a LeCon will have a descriptive tile phrase.  

The next important set of descriptions, are the 
various properties, features, or aspects of the concept 
taught. Each reinforces the understanding of the 
learner about the core concept. We refer to these as 
P= the set of properties of O. There are various ways 
to classify the properties of a concept. We will 
distinguish between functional/expressive properties 
as ( ܲ	) and the other internal properties as ( ܲ). The 
functional or expressive properties of a concept are 
those, which are related to the use or application of 
the concept and must be understood by a learner to be 
able to apply the concept. For example, a “car” will 
have properties such as its maximum speed, color, 
weight, seating capacity, fuel consumption, brand 
name, etc. Depending on the goal of learning, certain 
types of properties are more important than others. To 
be able to use a car, it is important for the student to 
know about its functional properties, such as a car 
takes people from one place to another, it has seating 
capacity, speed etc. Certain properties such as color, 
brand, or type of break system may not be as 
important to be able to use the car. To understand a 
topic, often it is also important to understand its 
composition. C is set of sub-components of the 
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objects of O. Each member of C is also a learning 
concept in itself. Knowing an object often requires 
one to know what it is made of. The main object can 
be more than the sum or union of the sub-objects, or 
in other words, it is not necessary to have the equality: C ≥C୧୬

୧ୀଵ  (2)

X = is the set of inter-relationships between sub 
components. A deeper learning not only requires one 
to know C, but also the relationships of Ci that 
resulted in the C. We also clarify that that no 
inheritance or preservation rule applies to LeCon 
objects. Property set of the parent object O can be 
different from the union (or some of the properties of 
its components). For example, none of the 
components of an aircraft can fly individually, but 
together an airplane can fly. It is also possible that 
properties of sub objects Ci will not be present at all 
in the total object O. We further identify an 
interesting quantity I, where I represents Innovation, 
which refers to the emergent properties of an object:   							ܫ = ሺܲ −∪ 	 ܲ) (3)

Finally, to learn an object one also needs to know the 
context of its functional property. We denote this by 
E, where E is the environment in which the 
subcomponents of O as well as O interact. For 
example, for a car to transport a set of individuals 
from one location to another it is not enough to know 
that a car can transport people; you must know the 
destination, the route, the number of people, the 
capacity of the car, etc. Properties are meaningful in 
a context. The context is defined by another set of 
LeCons. 

E=Everything-O (4)

The above parts model now provides us the 
opportunity to be more specific in defining the 
cognitive skill levels. It is possible to organize the 
skill level space in multiple ways and multiple 
hierarchies. Below Fig3.2 is one possible 
arrangement.  

Remembering (RM2): The minimum and lowest 
level of learning is RECALL. In this skill level, the 
learner is expected to know the definition (D) and the 
properties (P) of the target concepts. This is a 
minimum skill level. At the Recall level, 
understanding means that student can memorize and 
repeat the definition as well as properties and their 
values.  D+P = RM2 (O) 

Knowing (KI2): In the second level of 
understanding (which has been stated by Bloom as 
the   skill   level   UNDERSTAND   or   KNOW),  we  

 
Figure 2: Learning skill levels with model Element 
Requirements. 

require the learner to understand the meaning or 
semantics of the named properties besides knowing 
the values of the properties. For example, if a student 
knows that a car has rear disk brakes, then she/he has 
attained at least the RECALL level of understanding. 
However, if the student understands what rear disk  
brakes are, how they operate, and what the 
implication of having such brakes are, that will 
indicate the KNOW level of understanding. KI2 
requires all of RM2, plus knowing the semantics. 
Thus, K12 is a higher-level skill than RM2. 
Consequently, D*+P* = KI2 (O).   

For example if we have a car as an O at the RM2 
skill level, one must be able to know the name, 
manufacturer, model, color, shape of the car. It 
represents memorizing basic information about the 
car. One should also know the most important 
properties of car such as movement, engine type, and 
gas consumption, etc. However, at the higher KI2 
level of understanding, one should also know the 
function of each part such as the engine, which 
converts the chemical energy into rotation energy to 
move the car; or the brake system, which slows down 
the car or stops it. After mastering all sub-levels of 
Remembering and Understanding one will be able to 
move to the next level of thinking, as in Figure 2. 
There are some cases of not master all thinking skills 
at the Remembering and Understanding levels, but 
still moving to the next thinking level with a 
knowledge gap. 
Analysis level (AN2): The next higher level of skill is 
the further ability to understand the composition of a 
concept. This is the knowledge level at which one 
knows the components of O. Mental ability is to 
determine how the components relate to each other, 
what the differences are between them, as well as 
being able to distinguish between components. For 
example, one can break a car into a number of C. 
Chassis (Cଵ) which holds everything on the car, body 
(Cଶ) which has the engine, passenger compartments, 
the back seat, and transmission system (Cଷ), which is 
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responsible to control the speed, etc. One must be able 
to relate how these individual parts work together to 
give rise to the key functional properties of a car. To 
be able to attain this level he/she must master all 
knowledge needed in the KI2 level. D*+P*+C =AN2 
(O). 
Applying level (AP2): The next level of a skill applies 
the concept in various situations. To apply a concept 
one must know the functional properties of the object. 
However, it is not enough to know the functional 
properties. As a requirement, one should know the 
environment and real-world constraints (E). For 
example, to be able to apply a certain type of car to 
solve certain types of transportation problems, one 
must know the factors such as road, distance, etc. 
Depending on the object, O, E will normally require 
a specific but wider set of other concepts to be known 
at semantic depth. Thus, AP2 is a higher-level skill 
than KI2. However, one can attain AP2 level without 
learning the composition of O. Conversely, one might 
know the composition of an object without knowing 
how to apply it. Thus, AP2 is not necessarily a higher-
level skill than AN2 or vice versa. D*+P*+E*=AP2 
(O).  
Evaluating level (EV2): The next higher-level skill is 
the ability to evaluate an object. So, what is needed to 
be able to evaluate a concept? There can be at least 
two types of evaluations; functional and 
compositional. General evaluations will require all 
the knowledge skill of AP2 and AN2. In additional, it 
will require knowledge about multiple instances of 
the object. Additionally, it will require a judgment 
based on some form of measurement criteria and 
standards through checking and analyzing. Thus, 
concepts specific to the later must be known. For 
example, to evaluate a car, one must know about 
multiple instances of a car to compare their functional 
properties such as speed, fuel consumption, 
durability, etc. The learner may also be able to 
compare the composite objects such as engine type, 
break type etc. Finally, one must know associated 
mathematical concepts to measure those.  
Creating level (CR2): One of the highest levels of 
skill is creating. So what is needed to create object O 
(the subject or creation)? For most target driven 
creations (regardless if it is of an engineering nature), 
the specific application is the motivation. Thus, it is 
essential for a creator to be at the AP2 level to start 
with. In addition, the creator must also know about 
the individual components (C), and how to combine 
them. The creator must also know about the 
properties of the components (C), and how the 
properties of these components interact among 
themselves (X). The creator is able to solve the puzzle 

of creating the emergent property (I) from the 
functional properties of the components. 
Creation is such a high-level skill that one more 
discussion in needed to illustrate the knowledge level 
of this skill. Once an invention is made, if a student 
knows D, P, C, X, E he has acquired the theoretical 
minimum skills needed to create. However, the first 
inventor normally would have to have much wider 
knowledge. He or she is not given the answer. The 
first inventor is required to experiment with a much 
larger set of C* (and their properties) to invent which 
specific combination of C will create the target I. 

4 BLOOM TAXONOMY 
RELATIONAL MODEL (BTRM) 

In this section, we present a method to classify 
domain knowledge into different BT-cognitive levels 
Figure 4 illustrates the overall system architecture of 
our BTRM model. Our model has two symmetrical 
parts. One part is Semantic Analysis and the other is 
BT-Relationship Extraction. Text in both stages goes 
through various steps. The objective of part one is to 
identify all the domain sentences within the text. The 
process divided into different tasks, phrases 
extraction, POS-tagging, stemming and stop-word 
filtering. Algorithm 4.1 shows the functionality of 
Semantic Analysis.  

 
Figure 3: Overview of BTRM. 

In the semantic analysis part, a pre-processing of 
text should be applied using Algorithm4.1. 
Input :( t: text as string)  
Output: A= (A: as a 3D Matrix) 
Def Extraction(S: text, alpha:  
    Integer, Type: string): 
    For each word w in text S 
       Set T=Type of w in S 
       Set p=position of w in S 
       Set Tag=Tagging of w in S 
       For w in S: 
//Check word in the sentence  
        If w [1][0]= "V"or w[1][0]= "N" 
        Then: 
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             Count=count+1 
             Check[w].Type=w[1][0]="V": 
             Vlist[].append(w[0],count) 
        Else: 
            Nlist[].append(w[0],count) 
        End If 
Def Check_Pos(Vlist,Nlist,p): 
    LNOUN=[] ,FNoun=[],VList=[] 
    For each Noun n in Nlist: 
//Check the Leader noun and the Follower 
noun for the verb in the sentence. 
     If n in Nlist < p: 
       LNOUN.append(n) 
     Else  
       FNOUN.append(n)              
     End if 
   End for 
Return LNOUN,FNOUN 
Def BuildMatrixA(LNoun,V,FNoun,W) 
// based on Nouns AND Verbs 
For each w in S: 
A=NP.ZEROS([len(LNoun),len(V),len(FNoun
)]) 
   For i in range(len(LNoun)): 
     i=LNoun.index(Pattrenlist[0]) 
      For j in range(len(V)): 
        j=V.index(Pattrenlist[2]) 
         For K in range(len(FNoun)): 
          K=FNoun.index(Pattrenlist[3]) 
         End For 
      End For 
   End For 
        A[i][j][k]=A[i][j][k]+1 
Return A 

The algorithm4.1, shows the functions, which 
includes reading the texts (textbook) to separate it 
into sentences. In order to find out the boundaries of 
the sentences. We use the period (.) in order to 
determine the end and start point as in (Johnson and 
Fuller 2006). The following is an example from the 
textbook:  
S1: {The heap sort algorithm starts by using build 
max heap to build a max heap on the input array.} S2: 
{The heap sort algorithm repeats that for the 
maxheap.}.Then, Phrase-Extraction applies to 
extract all domain-specific concepts by using N-gram 
algorithm (Cavnar and Trenkle) an n-gram is a 
sequence of n words in this paper n=1, 2, and 3 was 
used. We say that an N-gram occurs in a text if these 
domain concepts appear in the text in the same order 
immediately one after another.  

Next, the tokenization is used to tokenize each 
sentence. Once the tokenization is complete, 
PoSTagging procedure is used as a Parsing task. We 
perform this in order to gain understanding of the 
precise meaning of the sentence, using Stanford 
parsing (De Marneffe el at. 2000). 

Algorithm 4.1 is included three different parts: 
Def Extraction, Def Check_Pos, and Def 
BuildMatrixA for Extraction finds the type of the 
word in the text where Type [Leader-Noun, Verb, and 
Follower-Noun]. Def Check_Pos checks if the 
position of the word in the sentence verb or noun and 
if a noun check it if a leader-noun or Follower -noun 
of the verb. If so save the word and the position of the 
word in the text in checklist dictionary. 

After the pre-processing step, we identify j as the 
index of the verb in verb list, i as the index of the 
leader concept and k is the index of the follower 
concept in the concept list. We create a three 
dimensional frequency matrix A 
[LNoun][V][FNoun] = A(i,j,k) to capture the three 
way associations between each leader concept, verb, 
follower concept triple found in the text. Each cell of 
the matrix A contains binary representations of the 
noun as follows: zero (0) represents the noun 
concepts that do not connect with other nouns in the 
sentences by verb(s), and one (1) represents the noun 
concepts that connected with verb. The output from 
semantic analysis part is used as input to the next step. 
The second part of our model is BT-Relationship 
Extraction. Before starting the extraction part some 
important steps is required algorithm 4.2 explains the 
steps. 

Input:  A= [LNoun][V][FNoun]  
//from the previous step and BT= [] 
//Bloom Taxonomy verbs list 
Output: U matrix // Dimension Reduction 
Matrix 
 
A=NP.loadA (A= [LNoun] [V] [FNoun], 
delimiter=",") 
Def Calculation ( ): 
    U,S, VT = SVD(A) 
// where U, S, VT are a matrixes  
      UR=U [: 0:3] 
//The dimmintiaonl Reduction of U  
      VR=VT [0:3:]  
//The dimmintiaonl Reduction of VT 
Def verbClassify (): 
    L, V, F ← GetAll (SD)  
//L:leader-noun,V:verb,F:follower-noun 
    A [L][F][V] =0 
    A [L][V][ F] ← SD  
// SD: GenerateConceptLinkerCube. 
   For each sd ∈ SD Do 
   T<L, V, F> ← GetTuple (SD) 
// Tuple data structure  
      For each t in T: 
        If (t not in A): 
          A [t(0)] [t(1)] [t(2)]=1 
        Else 
          A [t (0)] [t(1)] [t(2)]++ 
      End For 
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   U, D, VT ← SVD (A) 
 For all v ∈ V [ ] do: 

Dicknown, dickunnown ← Checkclass       
VCS, VBT)               

   V-Class ← ComputeNearstNighbor 
(VCS)} 
Def Checkclass (VCS, U [], VBT): 
 Dic-VBT= {}  
 //DICTIONARY TO SAVE BLOOM VERBS 
    V-Dimension= []  
//Verb dimension from U matrix 
Dicknown= {} 
// LIST OF VERBS FOUND IN BLOOM LIST 
Dickunnown= {}  
//LIST OF VERBS NOT FOUND IN BLOOM  
Key, value=line. Strip ().split () 
  If key in dic-VBT.keys (): 
     Dic-VBT [key].append (value) 
  Else: 
     Dic-VBT [key] = [value] 
     V= dic-VBT 
     i=0 
While (1): 
    i=i+1 
    For item in dic-VBT: 
    If item in dic-VBT.keys (): 
      Dicknown [item] =dic-VBT [item] 
   Else: 
     Dickunnown [item] = [] 
Return Dicknown, Dickunnown 
 

In this part, verbs are classified based on Latent 
Semantic Analysis (LSA). LSA is a theory and 
method for extracting and representing the usage 
meaning of domain concepts by statistical 
computations (Landauer et al. 1998). The process is 
divided into tasks; calculating SVD to divide the 
matrix A into three matrixes, and finding verb level 
in Bloom Taxonomy applying SVD to the matrix  (A) 
will break down each dimension in the matrix using 
equation 5. 	ݔ݅ݎݐܽܯሺܣ) = ்ܷܸܵ (5)

The final sentence of a caption must end with a 
period.  

As part of applying SVD (Landauer et al. 1998), 
we utilize dimensionality reduction techniques in 
Order to reduce the high dimensionality of Verbs 
matrix (U). We consider only 2-dimensions. The 
reason SVD is useful, is that it finds a reduced 
dimensional representation of our matrix that 
emphasizes the strongest relationships and throws 
away the noise. This is the key reason for using SVD 
to transfer our problem into a mathematical-based 
article. 

Using Checkclass function we will check each verb 
in the verb list is in Bloom Taxonomy verbs or not. If  

 

Figure 4: Matrix (A). 

 

 

 

Figure 5: Matrix (U). 

 

 

 

Figure 6: Matrix (S). 

 

 

 

Figure 7: Matrix (V). 

the verb found in Bloom list will return the verb level 
(BL1, BL2, BL3, and BL4) as a verb class. Otherwise 
will return not found as in Table 4.1. 

Next, we classify verbs using a Nearest-Neighbour 
function, by computing the distance between each 
two verbs after the two dimensions extracted from U 
matrix. Equation 6 is used to calculate Euclidean 
distance (d) between each two verbs. ݈݊ܽ݁݀݅ܿݑܧ ݁ܿ݊ܽݐݏ݅݀ ሺd ) = ඥ∑ ሺ	V୧୬୧ୀଵమ  	 ܸାଵ	)	 (6)

Table 1: Shows the verb dominations extracted from SVD. 

Verb Returned-class Dimensions from U matrix
Use BL1 (-0.45,0.65) 

Analyze BL3 (-0.86,-0.16) 
Start BL3 (-10.-30) 
Give BL3 (-0.01,-0.05) 
Build Not found (-0.12,-0.39) 

Repeat Not found (-0.14,-0.54) 
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We need to compute distance between each two verbs 
dimensions were normalized by scaling it between 0 
and 1 as table 2 shows that and by using Equation 7. 
The dimensions are scaled to fit into a specific range. 
There are many types of normalization; we use Min-
Max Normalization. Min-Max Normalization 
transforms a value D1 and D2 which fits in the range 
[0, 1] as in Equation 7. 0,݅ܦ	ݐ 	1 = ݅ܦ − ݊݅݉ܦ ݔܽ݉ܦ								 − ݊݅݉ܦ  (7)

Table 2: Normalized Dimensions for verbs. 

Verb Dimensions from U 
matrix 

Normalized 
dimension 

Use (-0.45,0.65) (1,0.8) 
Analyze (-0.86,-0.16) (0.6,1) 

Start (-10.-30) (1,0.9) 
Give (-0.01,-0.05) (1,0.7) 
Build (-0.12,-0.39) (0.8,1) 

Repeat (-0.14,-0.54) (0.4,1) 

Table 3: Explaining the distances between verbs. 

 Use Analyze Start Give 

Build 0.09 0.30 0.14 0.77 

Repeat 1.23 0.90 1.012    0.43 

Table 3. Explaining the distances between verbs. We 
can see that closest distance for verb Build is Use, and 
closest distance for verb Repeat is Give Finally, table 
4 illustrates the BT-class for each verb with the name 
code for the BT-class explained in section 3. 

Table 4: BT-class label for verbs. 

verb Use Analyze Start Give Build Repeat

BT-
class 

REM ANE APP APP REM APP 

After all verbs classified into Bloom Taxonomy we 
will start extracting all BT- relations in the sentences 
using algorithm 3. 

Algorithm 3:  
Def Distance (LNoun: list, FNoun: list,      
Verb: list, alpha: integer): 
     Distance=999, alpha=0.5 
  If len (LNoun)>0 and len (FNoun)>0: 
      For NN1 in LNoun: 
         For NN2 in FNoun:  
              If NN1 [0]! =NN2 [0]: 
               d1=VV [1]-NN1 [1] 
               d2=VV [1]-NN2 [1] 
               D= ((d1+d2)-(2*(d1*d2))) 
 
               End If 

           If D > Alpha 
              D.remove 
           Else: 
              Pattrenlist. Append (NN1 
             [0], VV [1], NN2 [0], D)) 
           End if 
  Return Pattrenlist 
 
Three algorithms proposed to accomplish this are 
identified as Sentence Co-occurrence of the 
Collocation (SCC), Sentence Distance of the 
Collocation (SDC) Algorithm, and Reverb algorithm. 
In addition, three of them compared with Ground 
Truth. 

The Initial Algorithm (SCC) extracts all possible 
BT relationships from the sentences when Alpha > = 
zero. For example, in the triple (‘Heapsortalgorithm’, 
‘start’, ‘Buildmaxheap’), verb start indicates the 
relationship from Heapsortalgorithm to 
Buildmaxheap, but not in reverse. Two domain 
concepts, which occur together at least once in a 
sentence are considered as valid pairs.  

The Secondary Algorithm, (SCD), finds all 
possible BT-relations, after filtering all verbs below a 
specific Alpha threshold; where Alpha > = 0.5. We 
accomplish this by measuring the distance between 
the verbs and all possible nouns within the sentence 
as in equation 8.  

Finally, the ReVerbs algorithm takes a sentence as 
input, identifies relation phrases that satisfy lexical 
constraints, and then finds a pair of nouns from within 
the sentence, and uses the extracted to label each 
relation, without requiring any relation-specific 
training data (Anthony et at. 2011). Small changes 
modified this algorithm after the result was obtained 
from the ReVerbs extraction. This is accomplished by 
creating a two-dimension matrix just as the previous 
two algorithms for comparing the BT relations 
extraction. 

5 EVALUATION AND RESULT 

In order to evaluate the quality of the extracted BT-
relations, we are interested in two different measures. 
The first one expresses the completeness of the set of 
extracted BT-relations, that is, how many valid BT-
relations are found with respect to the total number of 
BT-relations, which should have been found; this is 
the recall rate. The second measure indicates the 
reliability of the set of BT-relations, that is, how many 
valid BT-relations are found with respect to the total 
number of BT-relations; this is the precision rate. 
These two rates were evaluated using a test sentences 
containing all this information. 
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To construct this test sentences, we have focused our 
attention on twenty-one sentences from introduction 
to algorithm book it is contains 59 important concepts 
from different topic from the book. In this 
experiment, BT-relations between concepts were 40 
relations. 
The concepts have been produced by our 
methodology. For each of these 59 concepts, and 40 
relations a ground-truth extraction of valid-BT and 
candidate-BT-relations was carried out. PhD students 
had background about the topic were asked to analyze 
the sentences and decide what kind of BT-relations 
are there. Finally, out of 136 BT-relations 52 of the 
BT-relations examined are valid and 47 are 
considered as candidate-BT- relations. 
The results for each noun are detailed in Table 5.1. 

The following table lists the statistics from our 
experiments. 

Table 5: Statistical of the sentences. 

Algorithm Sentences Nouns  Verbs  BT relations
Ground Truth 21 59 27 39 

SCC 21 59 27 15 
SDC 21 59 27 40 

Reverb 21 59 27 10 

We compared the ground-truth data result with three 
algorithms, as Figure 8 illustrates below. It is evident 
from the chart that the (SDC) Algorithm is far higher 
than the other two Algorithms over the valid and 
invalid of the extraction of BT relationships. 

 

Figure 8: Comparison of BT Relationships Estimation 
Algorithm. 

The line graph Figure 9 illustrates the behave of BT-
relations and BT-candidate-relations using an Alpha 
(α) threshold that depends on measuring the distance 
between verb and two nouns connecting by the verb . 
Alpha (α) values is between 0-1 as the Figure shows 
number of BT -candidate relations goes down and 
number of BT -relation goes higher when (α) greater 
than or equal to 0.5. Overall, the BT-relations and the 
BT-candidate relations were far higher in the number 

of extracted relations from SDC algorithm and less in 
the candidate relations throughout the entire Alpha 
threshold values. 

 

Figure 9: Alpha threshold to control the extraction for BT 
levels. 

The line graph Figure 10 below illustrates the 
false positive rate for discovering BT in different BT-
levels (REM, APP, ANE, EVA, and CRE) for three 
algorithms.  

 

Figure 10: False Positive Error Rate of BT- Relationships 
Estimation Algorithm. 

We conclude that the SDC algorithm using the 
Alpha (α) threshold is greater than or equal to 0.5. In 
reducing the false value, the false positive error rate 
changed sharply through the levels depending on the 
sentences that we have in each level. 

6 CONCLUSIONS 

This work provides various interesting aspects. First, 
we introduce a technique is based on theory of BT-
cognitive skills from educational psychology. 
Concepts are taught in an order of increasing 
complexity so that complex concepts can be learnt 
with the prior levels of simpler concepts that seems to 
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dominate knowledge concepts. We test this technique 
by students where are asked to analysis some topics 
from introduction to algorithm book using Bloom 
Taxonomy levels compared with automatic technique 
to make operational conclusions though having many 
benefits, its principal weakness is that the levels do 
not appear to be well ordered when used to assess 
practical subjects. Our recommended solution is to 
use the new framework BT cognitive skills. This 
removes the strict ordering, while retaining many of 
the concepts of Bloom’s taxonomy. This generates a 
way that can be used to identify a range of different 
learning trajectories. In addition, for discovering BT-
relations, we obtain strong results on strength 
relations; experimental results show an accuracy of 
65.5%, which is significantly high. 
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