
Compatibility Modeling and Testing of REST API based on REST
Chart

Li Li and Wu Chou
Huawei Shannon IT Lab, Huawei, Bridgewater, New Jersey, U.S.A.

Keywords: REST API, Petri-Net, REST Chart, REST Compatibility, Client Oracle, and Client Agent.

Abstract: Compatibility of REST API has become an acute issue in many large scale distributed software systems
where many REST APIs evolve rabidly with new services and service updates. To address this problem in a
generic fashion independent of the REST API implementations, this paper presents an approach based on
REST Chart, a Petri-Net based XML language and modelling framework to describe and track down the
variations among REST APIs. In addition, an efficient algorithm is developed that can perform the fast
model checking to determine the compatibility between two REST APIs from their REST Chart
representations. Unlike conventional monolithic client architecture based backward compatibility testing
approaches, REST Chart compatibility modelling is defined formally in terms of a client operational model
that decomposes the client side service infrastructure into two reusable functional modules: a client oracle
that selects hyperlinks to follow for a given goal, and a client agent that carries out the interaction as
instructed by the oracle. A prototype system has been implemented and the preliminary experimental results
show that the approach is feasible and promising.

1 INTRODUCTION

In recent years, the REST architectural style
(Fielding 2000) has been widely applied in API
design for multiple areas, including Real-Time
Communications (GSMA OneAPI 2013), Cloud
Computing (OpenStack REST API v2.0), and
Software-Defined Networking (SDN) (Floodlight
REST API 2014). It is an efficient and flexible way
to access and integrate large-scale complex systems
which may have many interacting REST APIs to
provide their resources as service for applications.
However, in large scale distributed systems, these
interacting REST APIs are evolving rapidly and
under frequent updates. An acute problem in REST
based system is how to efficiently migrate REST
clients to keep up with the rapid updates and service
variations that are frequently made to numerous
REST APIs - a situation may cause the backward
compatibilities to break.

For example, OpenStack is an open source IaaS
platform that currently supports 14 REST APIs
(OpenStack API Complete Reference 2014),
implemented by over 30 components - managing
compute, storage, network, VM image, and identity
services. To maintain backward compatibility,

OpenStack simultaneously support different versions
of the same API - for example, there are 3 versions
of Compute API, 2 versions of Block Storage API, 2
versions of Identity API, and 2 versions of Image
API. But the actual number of REST APIs in an
OpenStack installation can be much more if we
count the third party REST APIs.

On the other hand, OpenStack development
follows a very rapid release cycle, and the
development cycle of different versions of
OpenStack often overlap in time (OpenStack
Releases 2014). For example, the Grizzly and
Havana versions of OpenStack overlap each other by
6 months, and each has 6 releases within 11 months
respectively. The Havana and IceHouse versions of
OpenStack overlap each other by 6 months, and the
IceHouse version of OpenStack has 4 releases within
6 months. Each new release may introduce the
following changes to REST APIs that can break the
REST clients programmed for the previous release
versions:

 schemas: add, delete, modify, or relocate
schema elements in the media types;

 hyperlinks: add, delete, modify, or relocate
hyperlinks in the schemas.

For example, Floodlight REST API, which is

194 Li L. and Chou W..
Compatibility Modeling and Testing of REST API based on REST Chart.
DOI: 10.5220/0005441301940202
In Proceedings of the 11th International Conference on Web Information Systems and Technologies (WEBIST-2015), pages 194-202
ISBN: 978-989-758-106-9
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)

adopted by OpenStack for network control, has these
changes between its versions v1.0 and v2.0. Both
versions allow a client to navigate to a port resource
by the path: initial→networks→ports
→port. In addition, version v2.0 adds an
equivalent but shorter path: initial→ports
→port. In both cases, a v1.0 client looking for a
port resource can still find it, although it may take a
different path in version v2.0. However, version v2.0
also introduces changes that break the clients, such
as renaming the attachment resource in v1.0 to
device resource. A v1.0 client looking for an
attachment resource will not find it in v2.0, unless it
is told that attachment is equivalent to device.

To find incompatibilities within REST APIs is
difficult for two reasons. First, many REST APIs are
not described by a machine-readable language which
is needed to lend themselves to an automated
analysis. Second, the available service description
languages do not come with automated methods for
compatibility analysis.

To address the compatibility problems in such
rapid development cycles as in the large scale open
source development, this paper adopts REST Chart
as the service description language and modelling
framework for REST API – it transforms the
problem of compatibility between REST APIs to
compatibility between two REST Charts. Since
REST Chart is based on Petri-Net, the compatibility
of two REST Charts can be formally defined and
resolved based on a Petri-Net behaviour model,
making it feasible for a systematic and automated
compatibility checking of REST APIs.

The rest of this paper is organized as follows.
Section 2 surveys the related work. Section 3
introduces the framework of REST Chart modelling
for REST APIs. Section 4 presents the proposed
REST client operational model which provides a
theoretical basis for the REST Chart based
compatibility testing and verification. Section 5
derives the compatibility conditions and the REST
Chart comparison algorithm based on the proposed
operational model. Section 6 discusses the
implementation and experimental results, and we
conclude the findings of this paper in Section 7.

2 RELATED WORK

Several REST service description languages have
been developed since 2009. WADL (Hadley 2009)
is an early effort to describe REST services,
followed by RAML (RAML Version 0.8), Swagger
(Swagger 2.0), RSDL (Robie 2013), API-Blueprint

(API Blueprint Format 1A revision 7), SA-REST
(Gomadam 2010), ReLL (Alarcon 2010), REST
Chart (Li 2011), RADL (Robie 2010), and RDF-
REST (Champin 2013). All these description
languages are encoded in some machine-readable
languages, such as XML, and most of them are
standalone documents, but a few of them, such as
SA-REST, are intended to be embedded within a
host language, such as HTML. We are not aware of
any methods to compare different versions of a
REST API based on these description languages.

There are several open source Java packages and
Web tools (SOA Membrane WSDL tool 2014,
WSDL Auditor 2014, WSDL Comparator 2014) that
compare two WSDL files for WS-* based web
services – they include XML Schema (Thompson
2004) files to identify changes (addition, deletion,
modification, and reorder) to the WSDL elements,
such as port types and operations, and the XML
elements and attributes. Some tools distinguish
changes that will break interface compatibility from
those that will not. For example, adding an optional
XML element to a XML Schema of an input element
of an operation will not invalidate the interface, but
adding a required XML element, or changing the
type, name, or position of an existing required XML
element will.

However, these methods of WSDL comparison
for WS-* based web services cannot be applied to
compare REST Charts for REST APIs, because a
REST Chart is not structured as WSDL. Despite that
REST Chart is represented as a XML dialect, we
cannot use generic XML diff tools to compare REST
Charts, because REST Chart has special semantics
not understood by those tools.

There are a few open source tools (SOA
Membrane XSD tool 2014) that compare two XML
Schema definitions and identify their differences as
changes (addition, deletion, modification, and
reorder). These tools can assist the comparison of
REST Chart, as well as other service description
languages that use XML Schema to define the input
and output messages of a service. However, they fall
short to provide a generic framework for comparing
the compatibility of REST service APIs, which is
critically needed but serious lacking for large scale
distributed software systems.

3 REST CHART MODEL

REST Chart (RC) is proposed in 2011 (Li 2011) to
design and describe REST APIs without violating
the REST principles (Fielding 2000), especially the

Compatibility�Modeling�and�Testing�of�REST�API�based�on�REST�Chart

195

7 rules that codify the REST services (Li 2011).
Following these guidelines, REST Chart models a
REST API as a High-Level Petri-Net. REST Chart
uses a XML dialect to encode a Coloured Petri-Net
such that it is machine readable and extensible, and
it can be validated by XML Schemas. Each REST
Chart always has a designated entry point, from
which a REST client can reach all the connected
places. We refer readers to the original REST Chart
paper (Li 2011) for REST Chart XML syntax and
examples.

The structure and behaviour of REST Chart can
be explained informally by a basic REST Chart
illustrated in Figure 1 with one transition, two input
places, and one output place. It models a login
request-response interaction with a resource. The
REST Chart indicates that a REST client can follow
a hyperlink to transition from the login place to the
account place if it presents the correct credential.

Figure 1: Example of a basic REST Chart.

The client state for this transition can be
modelled by a sequence of token markings of the
Petri-Net that underlines the REST Chart, where
each token is a resource representation defined in
(Fielding 2000). In particular, token x1 denotes a
login representation from the server, token x2 the
credential representation from the client (request),
token x3 the account representation from the server
(response), and token 0 denotes nothing. Each token
marking is a 3-vector for the three places:

(x1, 0, 0) → (x1, x2, 0) → (0, 0, x3).

To distinguish these tokens, REST Chart adopts
Coloured Petri-Net (Murata 1989) to associate each
place with a media type schema that can be used to
process the tokens in that place.

Token x1 may have many hyperlinks besides the
one for login. To select the login hyperlink h with
token in the login place, REST Chart adopts
Predicate/Transition Petri-Net (Murata 1989) and
attaches a hyperlink predicate k(h) to the arc from

the login place to the transition arc to the account.
Hyperlink predicate k(h) qualifies a hyperlink h with
two information items (Li 2008, 2009):

1) [service]: a URI (Berners-Lee 2005) that
represents the service provided by the
hyperlink;

2) [reference]: a URI Template (Gregorio 2013)
that identifies the locations of the resource.

Two hyperlink predicates k1 and k2 are deemed
equal if k1.[service]=k2.[service] and
k1.[reference]=k2.[reference].

Predicate k(h) is true if and only if the following
conditions hold:

1) k.[service] = h.[service];
2) match(k.[reference], h.[reference]) is

complete.
Function match(x, y) returns a set of v=s pairs,

for each variable v of URI template x that is
instantiated by string s from URI string y. Function
match(x,y) is complete if and only if all the variables
of x are instantiated by y. The following XML
represents a hyperlink predicate k, where
k.[service]=link/rel/@value, and
k.[reference]=link/href/@value:

<link id="k">
 <rel value="http://a.b.com/login" />
 <href
value="http://{d}/users/{u}/account" />
</link>

The following XML represents an ordinary
hyperlink h, where h.[service]=link/@rel and
h.[reference]=link/@href:

<link id="h" rel="http://a.b.com/login"
href="http://a.b.com/users/john/account"
/>

Clearly k(h) is true because the two conditions hold:
1) k.[service] = h.[service] =

http://a.b.com/login;
2) match(k.[reference], h.[reference]) =

{d=http://a.b.com, u=john}.

With hyperlink predicate, we can represent the
client state in Figure 1 as a sequence of p-k pairs,
where p denotes a place, k denotes the hyperlink
predicate selected at p, and 0 means no hyperlink is
selected:

login-k account-0

This p-k representation is equivalent to the token
marking vectors, but it highlights the two main
operations a client must perform at each step: 1) it
must selects a hyperlink at each place to move
towards the goal place, in this case the account

login
(x1)

resource

credential
(x2)

account
(x3)

input x2 output x3

k

WEBIST�2015�-�11th�International�Conference�on�Web�Information�Systems�and�Technologies

196

place; 2) it must move tokens, e.g. x2 and x3,
between the places by interacting with the selected
hyperlink. To reduce the cost of client migration, we
delegate these two distinct responsibilities to two
components: 1) client oracle responsible to select
hyperlinks; and 2) client agent responsible to
interact with the selected hyperlink.

To understand the distinction between these two
components, we can regard a REST Chart as a maze
where the transitions are the locked “doors” that
protect the places. The oracle knows which door
(hyperlink) to open at each place, but it does not
have the keys (interactions) to unlock the doors. The
agent has the keys, but does not know which doors
to open. To move through a maze towards a goal, a
REST client needs the right kind of client oracle and
client agent for that maze. Applying this analogy to
the REST Chart in Figure 1, where the client is at
the login place, the oracle selects the door (hyperlink
predicate k) to the next place, account, and the agent
produces the key (token x2) to open the door for the
client to enter the account place.

When a REST API is updated, the new and old
versions usually overlap in places (keys) and
transitions (doors), making it possible for us to reuse
the client oracle and client agent. The purpose of
REST Chart compatibility analysis is to determine
which part of a client can be reused when migrating
it to a new REST API. Ideally, we want to keep both
components (e.g. keys and doors) unchanged. But if
this is not possible, we hope to update only the client
oracle, since the client agent can be shared by
different clients that speak the same media types and
network protocols. Moreover, modification to a
client agent is often expensive as it consists of
several layers of media type and network protocol
stacks defined by complex rules.

To understand which component of client C
needs to be updated, we examine all 4 possible
compatible changes to the following p-k path:

path = p0-k0 p1-k1 p2-k2 p3-0

Without losing generality, we assume this path
exists in version v1.0 of the Floodlight REST API
such that p0=initial, p1=networks, p2=ports and
p3=port and we try to find compatible paths in v2.0.

Case 1: the new path is identical to the original
path. Obviously, C can reuse its client oracle and
client agent to traverse the new path.

Case 2: the new path consists of the same pairs
but different inter-pair relations. For example, new
path p0-k0 p2-k2 p3-0 removes pair p1-k1, whereas
new path p0-k0 p2-k2 p1-k1 p3-0 reorders the original
pairs. C can still keep its client oracle and client

agent, because the client oracle can select the same
hyperlink at the same place in v2.0.

Case 3: the new path consists of different pairs
combined from the same p and k. For example, new
path p0-k2 p1-k0 p3-0 changes the hyperlinks selected
at p0 and p1. For C to traverse the new path, it needs
a new client oracle that selects k2, instead of k0, at p0.
But C can reuse its client agent, since all p and k in
the new path occur in the original path.

Case 4: the new path consists of different pairs
combined from different p and k. For example, new
path p0-k3 p4-k4 p3-0 introduces new hyperlink
predicates {k3, k4} and places {p4} to reach the
original goal place p3. New hyperlink predicates
mean new services and protocols that C’s client
agent cannot fire, while new places mean new
schemas and tokens that C’s client agent cannot
process. For this reason, client C has to update both
client agent and client oracle. However, if the new
places and transitions in v2.0 are covered by some
places and transitions in v1.0, then C can update its
client oracle but keep its client agent.

4 RC OPERATIONAL MODEL

In order to find generic conditions and algorithms
that detect compatible paths between REST Charts,
this section introduces a deterministic operational
model from REST Chart based on a state-based
behaviour model (Murata 1989) of Petri-Net that
underlies REST Chart. This model leads to a formal
framework of client oracle and client agent, from
which the generic REST Chart compatibility model
for all 4 cases is derived.

4.1 RC Behaviour Model

A REST Chart is a bipartite graph RC=(P, T, F, M0,
p0, L, S, K, type, link, bind)}, where:

 P is the finite set of places;
 T is the finite set of transitions;
 F (P×T) (T×P) is the set of arcs from

places to transitions and from transitions to
places;

 M0: P→{0, 1, 2, ...} is the initial marking, a
function that maps each place in P to 0 or
more tokens;

 p0 is the initial place;
 L is a finite set of media type definition

language;
 S is the finite set of schemas in some type

definition language in L and valid(s, x)

Compatibility�Modeling�and�Testing�of�REST�API�based�on�REST�Chart

197

indicates token x is an instance of schema s;
 K is the finite set of hyperlink predicates;
 type: P×L→S maps each place and a media

type language to a schema;
 link: P→2K maps a place to a set of hyperlink

predicates;
 bind: P×K→T binds a hyperlink predicate in

a place to a transition.
We assume that RC has no isolated places or

transitions as typical. For a REST Chat RC with m
places and n transitions, let A=[aij] be the n×m
incident matrix of integers, whose entry is given by:

 ijijij aaa (1)

),(),,(ijijjiij TPwaPTwa (2)

where w(Ti,Pj) is the weight of the arc from
transition Ti to its output place Pj and w(Pj, Ti) is the
weight of the arc to transition Ti from its input place
Pj.

For a given token marking M, let M(Pj) denote
the number of tokens in place Pj. Transition Ti can
fire if and only if:

mPPMa jjij 1),((3)

In the deterministic operation model, only one
transition fires at each step. To select a transition to
fire at the k-th step, we define a n×1 column control
vector uk with exactly one 1 in the i-th position and 0
elsewhere indicating transition i fires. If g is the goal
place, then the necessary condition to reach marking
Md(g)>0 in d steps from M0 is:

k
T

kkk uAMMM 1 (4)

d

k
k

T
d uAMgM

1
0)((5)

Among the three factors of Equations (4) and (5),
AT is fixed by the REST Chart, uk is controlled by
the client oracle that selects a transition to fire, and
ΔMk is handled by the client agent that moves tokens
between the places of the fired transition. The
procedures of these two components are defined in
section 4.2.

4.2 REST Client Components

A client agent A of a REST Chart RC consists of the
following abstract procedures that operate on tokens
in a place:

 (H, d)=decode(p, l, x): decodes a token x in
type language l in place p into a set of
hyperlinks H and data d, such that:

o (hH k link(p))k(h): every
decoded hyperlink h matches a hyperlink
predicate k at place p;

o valid(type(p, l), x): is true, indicating that
token x is an instance of schema type(p, l)
at place p with language l;

 x=encode(p, l, (H, d)): encodes a set of
hyperlink H and data d into a token x in type
language l in place p, such that:
o valid(type(p, l), x) is true as described

above;
 (p, xout)=fire(t, h, xin): send token xin to the

resource identified by hyperlink h and
receives token xout in place p according to
protocol defined by transition t.

In this model, each place and language pair
defines a schema and each token in a place is
processed as an instance of the schema. To decode
in place pj a token encoded in place pi requires that
these places maintain the coverage relation denoted
by pi pj. More precisely, for any media type
definition language l and token x, pi pj if and only
if type(pi, l) type(pj, l) such that:

valid(type(pi, l), x)→valid(type(pj, l), x).
It is evident that if pi pj, then any token

encoded in pi can be decoded in pj such that:
(H, d)=decode(pj, l, encode(pi, l, (H, d))).
A client oracle Q of a REST Chart RC consists

of the following abstract procedures that operate on
the control vector:

 (k, t, pj, Hj, d)=select(pi): selects a hyperlink
predicate k, transition t for k, input place pj
for t, data d, and hyperlinks Hj for pj, based
on current place pi;

 Bool=goal(d): return true if data d satisfies
the target place.

A client oracle can be derived from a REST
Chart to select a shortest path to reach the goal
place. It could be implemented as a rule-based
system or finite-state machine that is easy to
reconfigure when RC or the goal changes.

The client operation model can be represented by
a recursive procedure by which the client agent
moves towards the goal place guided by the client
oracle. More precisely, a REST client C = (Q, A,
reach), where Q is a client oracle, A is a client agent,
and reach is a control procedure that combines Q
and A to reach the goal place, starting from the
initial place p0 and token x0 (Listing 1). Variable V
collects the traversed places and transitions with an
empty set as the initial value.

WEBIST�2015�-�11th�International�Conference�on�Web�Information�Systems�and�Technologies

198

Listing 1: REST client operational model

5 RC COMPATIBILITY

The compatibility between two REST Charts RC1
and RC2 can be defined in terms of the client
operation model introduced in Section 4. More
formally, a place p in REST Chart RC2 is compatible
with REST Chart RC1 for client C, if and only if the
following conditions hold:

1) C = (Q, A, reach) ;
2) (p, x) = reach(Q, A, M0, p0, x0);
where:
 QRC2 is a client oracle for RC2;
 ARC1 is a client agent for RC1;
 M0 is the initial state of C;
 p0 is the initial place of RC2;
 x0 is the initial token in p0.

By the maze analogy in Section 3, this definition
implies that RC2 is compatible with RC1 if client C
can reuse the keys for RC1 to open the doors in RC2,
when guided by oracle QRC2. Here a key refers to the
decode(), encode() and fire() procedures defined in
Section 4.2. The situation is illustrated in Figure 2,
where client C has a token in place p02 and its oracle
QRC2 selects door t2 to enter place p22.

To find a reusable key, we introduce agent B to
RC2 whose job is to search RC1 for a door
(transition) t1 equivalent to t2 so C can use the key
for t1 to open t2. This equivalent relation can be
defined with an auxiliary Petri-Net that connects
RC1 and RC2 with dashed places and transition 1, 3,
4 shown in Figure 2. Transition t1 and t2 are
equivalent if C can fire transition t2 in the following
4 steps. At step 1, agent B encodes token x0 in place
p02 and sends it to place p01 where agent ARC1
decodes x0 to extract the hyperlinks H0. At step 2,
oracle QRC2 selects from p02 hyperlink predicate k
that leads to place p22. Client C applies k to H0 to

Figure 2: C uses A to fire a transition of RC2.

choose hyperlink h to follow at place p01. At step 3,
B finds place p11 for ARC1 to encode token x1

(request). Agent ARC1 sends token x1 to place p12 for
B to decode it. At step 4, agent ARC1 fires transition
t1 which in turn fires transition t2 to produce token x2

(response) in p22. The procedures of ARC1 and B at
each step are correlated in Table 1 (for brevity, the
subscripts of Q and A are removed).

Table 1: Procedures called by client agents A and B.

 RC2: Q, B RC1: Q, A

1

x0 =
B.encode(p02,l,(H0,d0))
valid(type(p02, l), x0)

(H0, d0) =
A.decode(p01, l, x0)
valid(type(p01, l), x0)

2
(k, t, p1, H1, d1) = Q.select(p02)

h H0 k(h)

3

(H1, d1) =
B.decode(p12, l, x1)
valid(type(p12, l), x0)

x1 =
A.encode(p11,l,(H1,d1))
valid(type(p11, l), x0)

4

(p22, x2)=
B.fire(t2, h, x1)
t2 t1

(p22, x2)=
A.fire(t1, h, x1)
t1 t2

Table 2: Constraints between RC2 and RC1.

1 p02 p01

2 kRC1.link(p01)∩ RC2.link(p02)

3 p11 p12

4 RC1.bind(p01,k)= t1= t2=RC2.bind(p02, k)

For client agent ARC1 to fire the transition, all the
procedures in Table 1 must succeed in the right
order. However, these conditions rule out non-
validating client agents that do not use schemas. For

 RC1: _, ARC1

RC2: QRC2, B

p12

p02

t2 p22

p01

t1

k(h)

p11

2: QRC2 selects k

4 1 3

1. reach(l, Q, A, V, p0, x0)
2. (H0, d0) = A.decode(p0, l, x0)
3. if Q.goal(d0) then return V
4. (k, t, p1, H1, d1) = Q.select(p0)
5. if h H0 k(h) then
6. V = V {(p0, x0, t)}
7. x1 = A.encode(p1, l, H1, d1)
8. (p2, x2) = A.fire(t, h, x1)
9. return reach(l, Q, A, V, p2, x2)
10. end
11. return V
12. end

Compatibility�Modeling�and�Testing�of�REST�API�based�on�REST�Chart

199

Listing 2: REST Chart comparison algorithm.

this reason, Table 1 summarizes the necessary
conditions for finding a compatible path. Using the
hyperlink predicate equality relation defined in
Section 3 and the schema coverage relation defined
in Section 4.2, the Table 1 conditions can be reduced
to Table 2, where the dependences on the operational
procedures are removed and the conditions depend
only on the structures of RC1 and RC2. These
structural conditions allows us to compare RC1 and
RC2 with a Depth-First search algorithm to traverse
RC2 aided by RC1 as outlined in Listing 2.

Procedure RC1.cover() finds a transition t1 in RC1
equivalent to transition t2 in RC2 based on the Table
2 conditions without actually constructing the
auxiliary places and transitions in Figure 2. For each
transition in RC2, this procedure may need to search
up to |P1| places of RC1 in the worst cases, where P1
is the set of places of RC1, since hyperlink predicate
k may occur in all places of RC1. As the algorithm
traverses all transitions and places of RC2, its time
complexity is O(|P1|(|P2|+|T2|)), where P2 is the set
of places and T2 is the set of transitions of RC2.

6 PROTOTYPE AND
EXPERIMENTS

We implemented the REST Chart comparison
algorithm (Listing 2) in Java and tested it on several
REST Charts. The Java tool uses JDOM package to
parse two REST Charts, each defined by some XML
files, and outputs compatible places and schema
relations. An example output of the REST Chart
comparison is illustrated in Figure 3, where a
compatible place in the new version is marked by
arrows pointing to the old places that cover it.

Figure 3: Compatible places between version 1.0 (left) and
version 2.0 of Floodlight REST API.

The RC1.cover() procedure is based on the SOA
membrane package (SOA Membrane XSD tool
2014) that compares XML schemas and identifies
their differences. In particular, if s1 and s2 are two
XML schemas, the procedure compare(s1, s2) returns
a set of differences D, where e denotes the element
in s1 that has been changed in s2 by operation op:

D={(e, op)|op={add, remove, move, type}}.
Let B be the set of bad elements in D, where

e.min is the minimum occurrence of element e, and
t1 t2 indicates that t1 is a super type of t2:
B = {e|(e, remove)D, (e, move)D, (e, add)D
 e.min≠0, (e, type, t1, t2) D (t1 t2) }.

Let G be the set of good elements in D and s1:
G={e|es1, eB}.

 Then we have the following decision rules:
1. D={}: s1= s2;
2. B={}, G≠{}: si sj;
3. B≠{}, G≠{}: s1 is partially covered by s2.
To test the correctness of the algorithm, we took

a REST Chart and created a dozen versions of it by
changing the places, transitions and schemas in
various ways, and verified the outputs of the
algorithm against the changes.

The performance of the algorithm is summarized
in Table 3 for two REST APIs: SDN REST Chart
(rows 1 and 2) and flat Coffee REST Chart (rows 3
and 4). The results are averaged over 5 runs of the
algorithm on a Windows 7 Professional notebook
computer (Intel i5 CPU M560 Dual Core 2.67GHz
with 4GB RAM). The results show that the
algorithm spent extra (1179.4–1063.8)=115.6ms
when the complexity factors increased by
(19+21)*17/((10+11)*8)=4 times from the Coffee
REST API to the SDN REST API.

1. traverse(RC2, RC1, V, p0)
2. if p0 V then return
3. V = V {p0}
4. K = RC2.link(p0)
5. for each k K
6. t2 = RC2.bind(p0, k)
7. if t1 = RC1.cover(t2) then
8. V = V {(t2, t1)}
9. p2 = RC2.output(t2)
10. traverse(RC2, RC1, V, p2)
11. end
12. end
13. end

WEBIST�2015�-�11th�International�Conference�on�Web�Information�Systems�and�Technologies

200

Table 3: Performance summary.

Charts RC1 RC2 Time (ms)/std
place 17 19 1179.4
transition 17 21 30.3
place 8 10 1063.8
transition 10 11 55.9

7 CONCLUSIONS

The contributions of this paper are summarized
below:

 We proposed and formalized the REST Chart
structural and behaviour models based on
Petri-Net semantics.

 We introduced a formal REST client
operational model based on REST Chart,
which decomposes the client side into two
reusable functional modules: a client oracle
and a client agent.

 We proposed a formal definition for REST
Chart compatibility, and derived the
necessary conditions to test REST API
compatibility utilizing the proposed client
operational model.

 We developed an efficient algorithm to
compare REST Chart to determine the
compatible paths based on the compatibility
conditions.

Main advantages of our approach are: 1) it is a
generic method independent of the REST API
structure or messages; and 2) it promotes REST
client reusability by migrating only client oracle or
client agent. For future work, we plan to extend the
REST Chart comparison algorithm to more complex
cases and implement an automated client migration
process based on the comparison.

ACKNOWLEDGEMENTS

We would like to thank Mr. Tony Tang for
implementing the prototype system.

REFERENCES

Alarcon, R., Wilde, E. 2010. Linking Data from RESTful
Services, LDOW 2010, April 27, 2010, Raleigh, North
Carolina.

API Blueprint Format 1A revision 7. https://github.com/
apiaryio/api-blueprint/blob/master/API%20Blueprint
%20Specification.md, last access: 12/16/2014.

Berners-Lee, T., Fielding, R., Masinter, L. 2005. Uniform
Resource Identifier (URI): Generic Syntax, Request
for Comments: 3986, January 2005,
https://tools.ietf.org/html/rfc3986, last access:
12/16/2014.

Champin. P-A. 2013. RDF-REST: A Unifying Framework
for Web APIs and Linked Data. Services and
Applications over Linked APIs and Data (SALAD),
workshop at ESWC, May 2013, Montpellier (FR),
France. pp.10-19.

Floodlight REST API. http://www.openflowhub.org/
display/floodlightcontroller/Floodlight+REST+API,
last access: 12/16/2014.

Fielding, R. T. 2000: Architectural Styles and the Design
of Network-based Software Architectures,
DISSERTATION, UNIVERSITY OF CALIFORNIA,
IRVINE, 2000.

Gomadam, K. et al 2010. SA-REST: Semantic Annotation
of Web Resources, W3C Member Submission 05
April 2010, http://www.w3.org/Submission/SA-
REST/, last access: 12/16/2014.

Gregorio, J. et al 2012. URI Template, Request for
Comments: 6570, March 2012, https://tools.ietf.org/
html/rfc6570, last access: 12/16/2014.

GSMA OneAPI 2013. http://www.gsma.com/oneapi/
voice-call-control-restful-api/, last access: 12/16/2014.

Hadley, M. 2009: Web Application Description Language,
W3C member Submission, 31, August 2009,
http://www.w3.org/Submission/wadl/, last access:
12/16/2014.

Li, L., Chou, W. 2008. InfoParser: Infoset Driven XML
Processing for Web Services, ICWS 2008, pages 513-
520, Beijing China, September 2008.

Li, L., Chou, W. 2009. Infoset for Service Abstraction and
Lightweight Message Processing, ICWS 2009, pages
703-710, Los Angeles, July 2009.

Li, L., Chou, W. 2011. Design and Describe REST API
without Violating REST: a Petri Net Based Approach,
ICWS 2011, pages 508-515, Washington DC, USA,
July 4-9, 2011.

Murata, Tadao: Petri Nets: Properties, Analysis and
Applications (invited paper), Proceedings of the IEEE,
Vol. 77, No. 4, April 1989.

OpenStack API Complete Reference: http://developer.
openstack.org/api-ref.html, last access: 12/16/2014.

OpenStack Releases: https://wiki.openstack.org/wiki/
Releases, last access: 12/16/2014.

OpenStack REST API v2.0 references: http://
developer.openstack.org/api-ref.html, last access:
12/16/2014.

RAML Version 0.8. http://raml.org/spec.html, last access:
12/16/2014.

Robie, J. 2010. RESTful API Description Language
(RADL), https://github.com/restful-api-description-
language/RADL, 2014, last access: 12/16/2014.

Robie, J. et al 2013. RESTful Service Description
Language (RSDL), Describing RESTful Services
Without Tight Coupling, Balisage: The Markup
Conference 2013,
http://www.balisage.net/Proceedings/vol10/html/Robi

Compatibility�Modeling�and�Testing�of�REST�API�based�on�REST�Chart

201

e01/BalisageVol10-Robie01.html, last access:
12/16/2014.

SOA Membrane WSDL tool: http://www.membrane-
soa.org/soa-model-doc/1.4/cmd-tool/wsdldiff-
tool.htm, last access: 12/16/2014.

SOA Membrane XSD tool: http://www.membrane-
soa.org/soa-model-doc/1.4/cmd-tool/schemadiff-
tool.htm, last access: 12/16/2014.

Swagger 2.0. https://github.com/swagger-api/swagger-
spec, last access: 12/16/2014.

Thompson, H. S. et al 2004. XML Schema Part 1:
Structures Second Edition, W3C Recommendation, 28
October 2004, http://www.w3.org/TR/xmlschema-1/,
last access: 12/16/2014.

WSDL Auditor: http://wsdlauditor.sourceforge.net/, last
access: 12/16/2014.

WSDL Comparator: http://www.service-repository.com/
comparator/compareWSDL, last access: 12/16/2014.

WEBIST�2015�-�11th�International�Conference�on�Web�Information�Systems�and�Technologies

202

