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Abstract: Compatibility of REST API has become an acute issue in many large scale distributed software systems 
where many REST APIs evolve rabidly with new services and service updates. To address this problem in a 
generic fashion independent of the REST API implementations, this paper presents an approach based on 
REST Chart, a Petri-Net based XML language and modelling framework to describe and track down the 
variations among REST APIs. In addition, an efficient algorithm is developed that can perform the fast 
model checking to determine the compatibility between two REST APIs from their REST Chart 
representations. Unlike conventional monolithic client architecture based backward compatibility testing 
approaches, REST Chart compatibility modelling is defined formally in terms of a client operational model 
that decomposes the client side service infrastructure into two reusable functional modules: a client oracle 
that selects hyperlinks to follow for a given goal, and a client agent that carries out the interaction as 
instructed by the oracle. A prototype system has been implemented and the preliminary experimental results 
show that the approach is feasible and promising.  

1 INTRODUCTION 

In recent years, the REST architectural style 
(Fielding 2000) has been widely applied in API 
design for multiple areas, including Real-Time 
Communications (GSMA OneAPI 2013), Cloud 
Computing (OpenStack REST API v2.0), and 
Software-Defined Networking (SDN) (Floodlight 
REST API 2014). It is an efficient and flexible way 
to access and integrate large-scale complex systems 
which may have many interacting REST APIs to 
provide their resources as service for applications. 
However, in large scale distributed systems, these 
interacting REST APIs are evolving rapidly and 
under frequent updates. An acute problem in REST 
based system is how to efficiently migrate REST 
clients to keep up with the rapid updates and service 
variations that are frequently made to numerous 
REST APIs - a situation may cause the backward 
compatibilities to break. 

For example, OpenStack is an open source IaaS 
platform that currently supports 14 REST APIs 
(OpenStack API Complete Reference 2014), 
implemented by over 30 components - managing 
compute, storage, network, VM image, and identity 
services. To maintain backward compatibility, 

OpenStack simultaneously support different versions 
of the same API - for example, there are 3 versions 
of Compute API, 2 versions of Block Storage API, 2 
versions of Identity API, and 2 versions of Image 
API. But the actual number of REST APIs in an 
OpenStack installation can be much more if we 
count the third party REST APIs.   

On the other hand, OpenStack development 
follows a very rapid release cycle, and the 
development cycle of different versions of 
OpenStack often overlap in time (OpenStack 
Releases 2014). For example, the Grizzly and 
Havana versions of OpenStack overlap each other by 
6 months, and each has 6 releases within 11 months 
respectively. The Havana and IceHouse versions of 
OpenStack overlap each other by 6 months, and the 
IceHouse version of OpenStack has 4 releases within 
6 months. Each new release may introduce the 
following changes to REST APIs that can break the 
REST clients programmed for the previous release 
versions: 

 schemas: add, delete, modify, or relocate 
schema elements in the media types; 

 hyperlinks: add, delete, modify, or relocate 
hyperlinks in the schemas. 

For example, Floodlight REST API, which is 
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adopted by OpenStack for network control, has these 
changes between its versions v1.0 and v2.0. Both 
versions allow a client to navigate to a port resource 
by the path: initial→networks→ports 
→port.  In addition,  version v2.0 adds an 
equivalent but shorter path: initial→ports 
→port. In both cases, a v1.0 client looking for a 
port resource can still find it, although it may take a 
different path in version v2.0. However, version v2.0 
also introduces changes that break the clients, such 
as renaming the attachment resource in v1.0 to 
device resource. A v1.0 client looking for an 
attachment resource will not find it in v2.0, unless it 
is told that attachment is equivalent to device. 

To find incompatibilities within REST APIs is 
difficult for two reasons. First, many REST APIs are 
not described by a machine-readable language which 
is needed to lend themselves to an automated 
analysis. Second, the available service description 
languages do not come with automated methods for 
compatibility analysis.  

To address the compatibility problems in such 
rapid development cycles as in the large scale open 
source development, this paper adopts REST Chart 
as the service description language and modelling 
framework for REST API – it transforms the 
problem of compatibility between REST APIs to 
compatibility between two REST Charts. Since 
REST Chart is based on Petri-Net, the compatibility 
of two REST Charts can be formally defined and 
resolved based on a Petri-Net behaviour model, 
making it feasible for a systematic and automated 
compatibility checking of REST APIs.   

The rest of this paper is organized as follows. 
Section 2 surveys the related work. Section 3 
introduces the framework of REST Chart modelling 
for REST APIs. Section 4 presents the proposed 
REST client operational model which provides a 
theoretical basis for the REST Chart based 
compatibility testing and verification. Section 5 
derives the compatibility conditions and the REST 
Chart comparison algorithm based on the proposed 
operational model. Section 6 discusses the 
implementation and experimental results, and we 
conclude the findings of this paper in Section 7. 

2 RELATED WORK 

Several REST service description languages have 
been developed since 2009. WADL (Hadley 2009) 
is an early effort to describe REST services, 
followed by RAML (RAML Version 0.8), Swagger 
(Swagger 2.0), RSDL (Robie 2013), API-Blueprint 

(API Blueprint Format 1A revision 7), SA-REST 
(Gomadam 2010), ReLL (Alarcon 2010), REST 
Chart (Li 2011), RADL (Robie 2010), and RDF-
REST (Champin 2013). All these description 
languages are encoded in some machine-readable 
languages, such as XML, and most of them are 
standalone documents, but a few of them, such as 
SA-REST, are intended to be embedded within a 
host language, such as HTML. We are not aware of 
any methods to compare different versions of a 
REST API based on these description languages.  

There are several open source Java packages and 
Web tools (SOA Membrane WSDL tool 2014, 
WSDL Auditor 2014, WSDL Comparator 2014) that 
compare two WSDL files for WS-* based web 
services – they include XML Schema (Thompson 
2004) files to identify changes (addition, deletion, 
modification, and reorder) to the WSDL elements, 
such as port types and operations, and the XML 
elements and attributes. Some tools distinguish 
changes that will break interface compatibility from 
those that will not. For example, adding an optional 
XML element to a XML Schema of an input element 
of an operation will not invalidate the interface, but 
adding a required XML element, or changing the 
type, name, or position of an existing required XML 
element will.  

However, these methods of WSDL comparison 
for WS-* based web services cannot be applied to 
compare REST Charts for REST APIs, because a 
REST Chart is not structured as WSDL. Despite that 
REST Chart is represented as a XML dialect, we 
cannot use generic XML diff tools to compare REST 
Charts, because REST Chart has special semantics 
not understood by those tools. 

There are a few open source tools (SOA 
Membrane XSD tool 2014) that compare two XML 
Schema definitions and identify their differences as 
changes (addition, deletion, modification, and 
reorder). These tools can assist the comparison of 
REST Chart, as well as other service description 
languages that use XML Schema to define the input 
and output messages of a service. However, they fall 
short to provide a generic framework for comparing 
the compatibility of REST service APIs, which is 
critically needed but serious lacking for large scale 
distributed software systems. 

3 REST CHART MODEL 

REST Chart (RC) is proposed in 2011 (Li 2011) to 
design and describe REST APIs without violating 
the REST principles (Fielding 2000), especially the 
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7 rules that codify the REST services (Li 2011). 
Following these guidelines, REST Chart models a 
REST API as a High-Level Petri-Net. REST Chart 
uses a XML dialect to encode a Coloured Petri-Net 
such that it is machine readable and extensible, and 
it can be validated by XML Schemas. Each REST 
Chart always has a designated entry point, from 
which a REST client can reach all the connected 
places. We refer readers to the original REST Chart 
paper (Li 2011) for REST Chart XML syntax and 
examples.  

The structure and behaviour of REST Chart can 
be explained informally by a basic REST Chart 
illustrated in Figure 1 with one transition, two input 
places, and one output place. It models a login 
request-response interaction with a resource. The 
REST Chart indicates that a REST client can follow 
a hyperlink to transition from the login place to the 
account place if it presents the correct credential.  

 

Figure 1: Example of a basic REST Chart. 

The client state for this transition can be 
modelled by a sequence of token markings of the 
Petri-Net that underlines the REST Chart, where 
each token is a resource representation defined in 
(Fielding 2000). In particular, token x1 denotes a 
login representation from the server, token x2 the 
credential representation from the client (request), 
token x3 the account representation from the server 
(response), and token 0 denotes nothing. Each token 
marking  is a 3-vector for the three places: 

(x1, 0, 0) → (x1, x2, 0) → (0, 0, x3). 

To distinguish these tokens, REST Chart adopts 
Coloured Petri-Net (Murata 1989) to associate each 
place with a media type schema that can be used to 
process the tokens in that place.  

Token x1 may have many hyperlinks besides the 
one for login. To select the login hyperlink h with 
token in the login place, REST Chart adopts 
Predicate/Transition Petri-Net (Murata 1989) and 
attaches a hyperlink predicate k(h) to the arc from 

the login place to the transition arc to the account. 
Hyperlink predicate k(h) qualifies a hyperlink h with 
two information items (Li 2008, 2009):  

1) [service]: a URI (Berners-Lee 2005) that 
represents the service provided by the 
hyperlink;  

2) [reference]: a URI Template (Gregorio 2013) 
that identifies the locations of the resource. 

Two hyperlink predicates k1 and k2 are deemed 
equal if k1.[service]=k2.[service] and 
k1.[reference]=k2.[reference]. 

Predicate k(h) is true if and only if the following 
conditions hold: 

1) k.[service] = h.[service]; 
2) match(k.[reference], h.[reference]) is 

complete. 
Function match(x, y) returns a set of v=s pairs, 

for each variable v of URI template x that is 
instantiated by string s from URI string y. Function 
match(x,y) is complete if and only if all the variables 
of x are instantiated by y. The following XML 
represents a hyperlink predicate k, where 
k.[service]=link/rel/@value, and 
k.[reference]=link/href/@value: 

<link id="k"> 
 <rel value="http://a.b.com/login" /> 
 <href 
value="http://{d}/users/{u}/account" /> 
</link> 

The following XML represents an ordinary 
hyperlink h, where h.[service]=link/@rel and 
h.[reference]=link/@href:  

<link id="h" rel="http://a.b.com/login" 
href="http://a.b.com/users/john/account" 
/> 

Clearly k(h) is true because the two conditions hold: 
1) k.[service] = h.[service] = 

http://a.b.com/login; 
2) match(k.[reference], h.[reference]) = 

{d=http://a.b.com, u=john}. 

With hyperlink predicate, we can represent the 
client state in Figure 1 as a sequence of p-k pairs, 
where p denotes a place, k denotes the hyperlink 
predicate selected at p, and 0 means no hyperlink is 
selected: 

login-k account-0 

This p-k representation is equivalent to the token 
marking vectors, but it highlights the two main 
operations a client must perform at each step: 1) it 
must selects a hyperlink at each place to move 
towards the goal place, in this case the account 

login 
(x1) 

resource 

credential 
(x2) 

account 
(x3)

input x2 output x3 

k 
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place; 2) it must move tokens, e.g. x2 and x3, 
between the places by interacting with the selected 
hyperlink. To reduce the cost of client migration, we 
delegate these two distinct responsibilities to two 
components: 1) client oracle responsible to select 
hyperlinks; and 2) client agent responsible to 
interact with the selected hyperlink.  

To understand the distinction between these two 
components, we can regard a REST Chart as a maze 
where the transitions are the locked “doors” that 
protect the places. The oracle knows which door 
(hyperlink) to open at each place, but it does not 
have the keys (interactions) to unlock the doors. The 
agent has the keys, but does not know which doors 
to open. To move through a maze towards a goal, a 
REST client needs the right kind of client oracle and 
client agent for that maze. Applying this analogy to 
the REST Chart in Figure 1, where the client is at 
the login place, the oracle selects the door (hyperlink 
predicate k) to the next place, account, and the agent 
produces the key (token x2) to open the door for the 
client to enter the account place.  

When a REST API is updated, the new and old 
versions usually overlap in places (keys) and 
transitions (doors), making it possible for us to reuse 
the client oracle and client agent. The purpose of 
REST Chart compatibility analysis is to determine 
which part of a client can be reused when migrating 
it to a new REST API. Ideally, we want to keep both 
components (e.g. keys and doors) unchanged. But if 
this is not possible, we hope to update only the client 
oracle, since the client agent can be shared by 
different clients that speak the same media types and 
network protocols. Moreover, modification to a 
client agent is often expensive as it consists of 
several layers of media type and network protocol 
stacks defined by complex rules.  

To understand which component of client C 
needs to be updated, we examine all 4 possible 
compatible changes to the following p-k path:  

path = p0-k0 p1-k1 p2-k2 p3-0 

Without losing generality, we assume this path 
exists in version v1.0 of the Floodlight REST API 
such that p0=initial, p1=networks, p2=ports and 
p3=port and we try to find compatible paths in v2.0.   

Case 1: the new path is identical to the original 
path. Obviously, C can reuse its client oracle and 
client agent to traverse the new path. 

Case 2: the new path consists of the same pairs 
but different inter-pair relations. For example, new 
path p0-k0 p2-k2 p3-0 removes pair p1-k1, whereas 
new path p0-k0 p2-k2 p1-k1 p3-0 reorders the original 
pairs. C can still keep its client oracle and client 

agent, because the client oracle can select the same 
hyperlink at the same place in v2.0. 

Case 3: the new path consists of different pairs 
combined from the same p and k. For example, new 
path p0-k2 p1-k0 p3-0 changes the hyperlinks selected 
at p0 and p1. For C to traverse the new path, it needs 
a new client oracle that selects k2, instead of k0, at p0. 
But C can reuse its client agent, since all p and k in 
the new path occur in the original path. 

Case 4: the new path consists of different pairs 
combined from different p and k. For example, new 
path p0-k3 p4-k4 p3-0 introduces new hyperlink 
predicates {k3, k4} and places {p4} to reach the 
original goal place p3. New hyperlink predicates 
mean new services and protocols that C’s client 
agent cannot fire, while new places mean new 
schemas and tokens that C’s client agent cannot 
process. For this reason, client C has to update both 
client agent and client oracle. However, if the new 
places and transitions in v2.0 are covered by some 
places and transitions in v1.0, then C can update its 
client oracle but keep its client agent.  

4 RC OPERATIONAL MODEL 

In order to find generic conditions and algorithms 
that detect compatible paths between REST Charts, 
this section introduces a deterministic operational 
model from REST Chart based on a state-based 
behaviour model (Murata 1989) of Petri-Net that 
underlies REST Chart. This model leads to a formal 
framework of client oracle and client agent, from 
which the generic REST Chart compatibility model 
for all 4 cases is derived. 

4.1 RC Behaviour Model 

A REST Chart is a bipartite graph RC=(P, T, F, M0, 
p0,  L, S, K, type, link, bind)}, where: 

 P is the finite set of places; 
 T is the finite set of transitions; 
 F (P×T) (T×P) is the set of arcs from 

places to transitions and from transitions to 
places; 

 M0: P→{0, 1, 2, ...} is the initial marking, a 
function that maps each place in P to 0 or 
more tokens; 

 p0 is the initial place; 
 L is a finite set of media type definition 

language; 
 S is the finite set of schemas in some type 

definition language in L and valid(s, x) 
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indicates token x is an instance of schema s; 
 K is the finite set of hyperlink predicates; 
 type: P×L→S maps each place and a media 

type language to a schema; 
 link: P→2K maps a place to a set of hyperlink 

predicates; 
 bind: P×K→T binds a hyperlink predicate in 

a place to a transition. 
We assume that RC has no isolated places or 

transitions as typical. For a REST Chat RC with m 
places and n transitions, let A=[aij] be the n×m 
incident matrix of integers, whose entry is given by: 

  ijijij aaa  (1)

),(),,( ijijjiij TPwaPTwa    (2)

where w(Ti,Pj) is the weight of the arc from 
transition Ti to its output place Pj and w(Pj, Ti) is the 
weight of the arc to transition Ti from its input place 
Pj.   

For a given token marking M, let M(Pj) denote 
the number of tokens in place Pj. Transition Ti can 
fire if and only if: 

mPPMa jjij  1),(  (3)

In the deterministic operation model, only one 
transition fires at each step. To select a transition to 
fire at the k-th step, we define a n×1 column control 
vector uk with exactly one 1 in the i-th position and 0 
elsewhere indicating transition i fires. If g is the goal 
place, then the necessary condition to reach marking 
Md(g)>0 in d steps from M0 is: 

k
T

kkk uAMMM  1  (4)

 



d

k
k

T
d uAMgM

1
0)(  (5)

Among the three factors of Equations (4) and (5), 
AT is fixed by the REST Chart, uk is controlled by 
the client oracle that selects a transition to fire, and 
ΔMk is handled by the client agent that moves tokens 
between the places of the fired transition. The 
procedures of these two components are defined in 
section 4.2.  

4.2 REST Client Components 

A client agent A of a REST Chart RC consists of the 
following abstract procedures that operate on tokens 
in a place:  

 (H, d)=decode(p, l, x): decodes a token x in 
type language l in place p into a set of 
hyperlinks H and data d, such that: 

o ( hH k link(p))k(h): every 
decoded hyperlink h matches a hyperlink 
predicate k at place p; 

o valid(type(p, l), x): is true, indicating that 
token x is an instance of schema type(p, l) 
at place p with language l;  

 x=encode(p, l, (H, d)): encodes a set of 
hyperlink H and data d into a token x in type 
language l in place p, such that: 
o valid(type(p, l), x) is true as described 

above; 
  (p, xout)=fire(t, h, xin): send token xin to the 

resource identified by hyperlink h and 
receives token xout in place p according to 
protocol defined by transition t. 

In this model, each place and language pair 
defines a schema and each token in a place is 
processed as an instance of the schema. To decode 
in place pj a token encoded in place pi requires that 
these places maintain the coverage relation denoted 
by pi pj. More precisely, for any media type 
definition language l and token x, pi pj if and only 
if type(pi, l)   type(pj, l) such that:  

valid(type(pi, l), x)→valid(type(pj, l), x). 
It is evident that if pi pj, then any token 

encoded in pi can be decoded in pj such that:  
(H, d)=decode(pj, l, encode(pi, l, (H, d))). 
A client oracle Q of a REST Chart RC consists 

of the following abstract procedures that operate on 
the control vector: 

 (k, t, pj, Hj, d)=select(pi): selects a hyperlink 
predicate k, transition t for k, input place pj 
for t, data d, and hyperlinks Hj for pj, based 
on current place pi; 

 Bool=goal(d): return true if data d satisfies 
the target place. 

A client oracle can be derived from a REST 
Chart to select a shortest path to reach the goal 
place.  It could be implemented as a rule-based 
system or finite-state machine that is easy to 
reconfigure when RC or the goal changes. 

The client operation model can be represented by 
a recursive procedure by which the client agent 
moves towards the goal place guided by the client 
oracle. More precisely, a REST client C = (Q, A, 
reach), where Q is a client oracle, A is a client agent, 
and reach is a control procedure that combines Q 
and A to reach the goal place, starting from the 
initial place p0 and token x0 (Listing 1). Variable V 
collects the traversed places and transitions with an 
empty set as the initial value. 
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Listing 1: REST client operational model 

5 RC COMPATIBILITY 

The compatibility between two REST Charts RC1 
and RC2 can be defined in terms of the client 
operation model introduced in Section 4. More 
formally, a place p in REST Chart RC2 is compatible 
with REST Chart RC1 for client C, if and only if the 
following conditions hold:  

1) C = (Q, A, reach) ; 
2) (p, x) = reach(Q, A, M0, p0, x0); 
where:  
 QRC2 is a client oracle for RC2; 
 ARC1 is a client agent for RC1; 
 M0 is the initial state of C; 
 p0 is the initial place of RC2; 
 x0 is the initial token in p0. 

By the maze analogy in Section 3, this definition 
implies that RC2 is compatible with RC1 if client C 
can reuse the keys for RC1 to open the doors in RC2, 
when guided by oracle QRC2. Here a key refers to the 
decode(), encode() and fire() procedures defined in 
Section 4.2. The situation is illustrated in Figure 2, 
where client C has a token in place p02 and its oracle 
QRC2 selects door t2 to enter place p22.  

To find a reusable key, we introduce agent B to 
RC2 whose job is to search RC1 for a door 
(transition) t1 equivalent to t2 so C can use the key 
for t1 to open t2. This equivalent relation can be 
defined with an auxiliary Petri-Net that connects 
RC1 and RC2 with dashed places and transition 1, 3, 
4 shown in Figure 2. Transition t1 and t2 are 
equivalent if C can fire transition t2 in the following 
4 steps. At step 1, agent B encodes token x0 in place 
p02 and sends it to place p01 where agent ARC1 
decodes x0 to extract the hyperlinks H0. At step 2, 
oracle QRC2 selects from p02 hyperlink predicate k 
that   leads  to  place p22.  Client C  applies k to H0 to 

 

Figure 2: C uses A to fire a transition of RC2. 

choose hyperlink h to follow at place p01. At step 3, 
B finds place p11 for ARC1 to encode token x1 

(request). Agent ARC1 sends token x1 to place p12 for 
B to decode it. At step 4, agent ARC1 fires transition 
t1 which in turn fires transition t2 to produce token x2 

(response) in p22. The procedures of ARC1 and B at 
each step are correlated in Table 1 (for brevity, the 
subscripts of Q and A are removed). 

Table 1: Procedures called by client agents A and B. 

 RC2: Q, B RC1: Q, A 

1 

x0 =  
B.encode(p02,l,(H0,d0)) 
valid(type(p02, l), x0) 

(H0, d0) =  
A.decode(p01, l, x0) 
valid(type(p01, l), x0) 

2 
(k, t, p1, H1, d1) = Q.select(p02) 

h H0  k(h) 

3 

(H1, d1) =  
B.decode(p12, l, x1) 
valid(type(p12, l), x0) 

x1 =  
A.encode(p11,l,(H1,d1)) 
valid(type(p11, l), x0) 

4 

(p22, x2)= 
B.fire(t2, h, x1) 
t2 t1 

(p22, x2)= 
A.fire(t1, h, x1) 
t1 t2 

Table 2: Constraints between RC2 and RC1. 

1 p02  p01 

2 kRC1.link(p01)∩ RC2.link(p02) 

3 p11 p12 

4 RC1.bind(p01,k)= t1= t2=RC2.bind(p02, k) 

For client agent ARC1 to fire the transition, all the 
procedures in Table 1 must succeed in the right 
order. However, these conditions rule out non-
validating  client agents that do not use schemas. For 

 
 
 
 

 RC1: _, ARC1 
 

RC2: QRC2, B

p12

p02

t2 p22 

p01  

t1 

k(h)

p11  

2: QRC2 selects k 

4 1 3

1. reach(l, Q, A, V, p0, x0) 
2.    (H0, d0) = A.decode(p0, l, x0) 
3.    if Q.goal(d0) then return V 
4.    (k, t, p1, H1, d1) = Q.select(p0) 
5.    if h H0  k(h) then 
6.       V = V  {(p0, x0, t)} 
7.           x1 = A.encode(p1, l, H1, d1) 
8.       (p2, x2) = A.fire(t, h, x1) 
9.       return reach(l, Q, A, V, p2, x2) 
10.    end 
11.    return V 
12. end 
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Listing 2: REST Chart comparison algorithm. 

this reason, Table 1 summarizes the necessary 
conditions for finding a compatible path. Using the 
hyperlink predicate equality relation defined in 
Section 3 and the schema coverage relation defined 
in Section 4.2, the Table 1 conditions can be reduced 
to Table 2, where the dependences on the operational 
procedures are removed and the conditions depend 
only on the structures of RC1 and RC2. These 
structural conditions allows us to compare RC1 and 
RC2 with a Depth-First search algorithm to traverse 
RC2 aided by RC1 as outlined in Listing 2.  

Procedure RC1.cover() finds a transition t1 in RC1 
equivalent to transition t2 in RC2 based on the Table 
2 conditions without actually constructing the 
auxiliary places and transitions in Figure 2. For each 
transition in RC2, this procedure may need to search 
up to |P1| places of RC1 in the worst cases, where P1 
is the set of places of RC1, since hyperlink predicate 
k may occur in all places of RC1. As the algorithm 
traverses all transitions and places of RC2, its time 
complexity is O(|P1|(|P2|+|T2|)), where P2 is the set 
of places and T2 is the set of transitions of RC2. 

6 PROTOTYPE AND 
EXPERIMENTS 

We implemented the REST Chart comparison 
algorithm (Listing 2) in Java and tested it on several 
REST Charts. The Java tool uses JDOM package to 
parse two REST Charts, each defined by some XML 
files, and outputs compatible places and schema 
relations. An example output of the REST Chart 
comparison is illustrated in Figure 3, where a 
compatible place in the new version is marked by 
arrows pointing to the old places that cover it.  

 

Figure 3: Compatible places between version 1.0 (left) and 
version 2.0 of Floodlight REST API. 

The RC1.cover() procedure is based on the SOA 
membrane package (SOA Membrane XSD tool 
2014) that compares XML schemas and identifies 
their differences. In particular, if s1 and s2 are two 
XML schemas, the procedure compare(s1, s2) returns 
a set of differences D, where e denotes the element 
in s1 that has been changed in s2 by operation op: 

D={(e, op)|op={add, remove, move, type}}. 
Let B be the set of bad elements in D, where 

e.min is the minimum occurrence of element e, and 
t1 t2 indicates that t1 is a super type of t2: 
B = {e|(e, remove)D, (e, move)D, (e, add)D 
  e.min≠0, (e, type, t1, t2)   D  (t1 t2) }. 

Let G be the set of good elements in D and s1: 
G={e|es1, eB}. 

 Then we have the following decision rules: 
1. D={}: s1= s2; 
2. B={}, G≠{}: si sj; 
3. B≠{}, G≠{}: s1 is partially covered by s2. 
To test the correctness of the algorithm, we took 

a REST Chart and created a dozen versions of it by 
changing the places, transitions and schemas in 
various ways, and verified the outputs of the 
algorithm against the changes.  

The performance of the algorithm is summarized 
in Table 3 for two REST APIs: SDN REST Chart 
(rows 1 and 2) and flat Coffee REST Chart (rows 3 
and 4). The results are averaged over 5 runs of the 
algorithm on a Windows 7 Professional notebook 
computer (Intel i5 CPU M560 Dual Core 2.67GHz 
with 4GB RAM). The results show that the 
algorithm spent extra (1179.4–1063.8)=115.6ms 
when the complexity factors increased by 
(19+21)*17/((10+11)*8)=4 times from the Coffee 
REST API to the SDN REST API. 

1. traverse(RC2, RC1, V, p0) 
2.    if p0  V then return 
3.    V = V  {p0} 
4.    K = RC2.link(p0) 
5.    for each k   K  
6.       t2 = RC2.bind(p0, k) 
7.       if t1 = RC1.cover(t2) then 
8.          V = V  {(t2, t1)} 
9.          p2 = RC2.output(t2) 
10.          traverse(RC2, RC1, V, p2) 
11.       end 
12.    end 
13. end 
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Table 3: Performance summary. 

Charts RC1 RC2 Time (ms)/std 
place 17 19 1179.4 
transition 17 21 30.3 
place 8 10 1063.8 
transition 10 11 55.9 

7 CONCLUSIONS 

The contributions of this paper are summarized 
below: 

 We proposed and formalized the REST Chart 
structural and behaviour models based on 
Petri-Net semantics. 

 We introduced a formal REST client 
operational model based on REST Chart, 
which decomposes the client side into two 
reusable functional modules: a client oracle 
and a client agent.  

 We proposed a formal definition for REST 
Chart compatibility, and derived the 
necessary conditions to test REST API 
compatibility utilizing the proposed client 
operational model. 

 We developed an efficient algorithm to 
compare REST Chart to determine the 
compatible paths based on the compatibility 
conditions. 

Main advantages of our approach are: 1) it is a 
generic method independent of the REST API 
structure or messages; and 2) it promotes REST 
client reusability by migrating only client oracle or 
client agent. For future work, we plan to extend the 
REST Chart comparison algorithm to more complex 
cases and implement an automated client migration 
process based on the comparison.  
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