
O3 - A Webpage Preprocessing Tool

Karthik Senthil, Karthik S. Bhat, Nitin Jamadagni, Sudeep Sureshan and Gaurav Prasad
Department of Information Technology, National Institute of Technology Karnataka, Surathkal, India

Keywords: Front-end, Optimization, Load Time, Performance, Optimization Methods, Preprocessing.

Abstract: One of the prime factors for the success of the internet is determined by the time taken to load a web page.
Even a difference of a few hundred milliseconds in the response time will largely affect the number of users
of a web page to shift from one to the other. So, in the commercial market, providing quick service to the
users is of utmost importance in remaining ahead of competitors. In this paper, we mainly address this issue
by applying various optimization techniques at the front-end to improve the user experience by reducing the
load time of the web pages. Though the overall optimization is purely web page-dependent, the optimization
techniques not only reduce the time taken to load the page, but also reduce the load on the server.

1 INTRODUCTION

Web based applications and websites are being visited
more and more frequently in the recent times due to
the ease of access to the internet. It has reached such
an extent that there are many countries where there is
an internet connection in every household. This has
led to the increased number of web pages altogether,
as organizations have created personal web pages as a
marketing strategy, social networking sites are on the
rise and so on. Website loading is an inherent part of
the user experience in using a website.

At the browser level, when a website is re-
quested for, the browser sends a HTTP request to the
server and the server in turn sends the response in a
HTTP response packet which is then received by the
browser. The data is being represented in the form of
a Document Object Model (DOM) which can be uni-
versally rendered by all browsers. The DOM is a tree
structure of the contents of the webpage. Webpages
generally consist of HTML, which is the markup,
CSS which adds styling to the markup and client-
sided JavaScript. During the rendering of the DOM,
the browser loads the HTML and its associated CSS
together, as they go hand in hand. Scripts are, how-
ever, rendered differently. Since scripts have the ca-
pacity to modify the DOM structure dynamically, the
loading of the DOM is halted until all of them have
finished loading. This results in an unnecessary loss
of time, as many scripts are irrelevant to the user (like
click counter or analytics). This is a drawback that
has been widely discussed. In this paper we discuss

some ways to improve the DOM loading speed and in
essence to improve the loading time of webpages.

In this paper, section two discusses the motivation
behind the creation of the tool. Section three dis-
cusses the previous work similar/related to this tool.
Section five discusses the methodology followed dur-
ing the implementation of the project. Section six (a),
discusses in detail the techniques used to achieve the
speed-up of loading of the web pages. Section six
(b) shows the results we obtained and compare them
to unprocessed websites and thereby shows how opti-
mization effectively improves page-load time.

2 MOTIVATION

Large access frequency and increased user-
friendliness of webpages has led to an increase
in the amount of resources used by the web pages.
The escalated number of page accesses, fuelled by
the number of users, has forced the hosting agencies
to add extra web servers to handle these requests.
This has in turn led to increased expenditure for the
organization. This rise in number of resources used
by web pages not only multiplies load on the server,
but also on the client who is connected to the site
affecting the user experience while using the web
page. User experience plays a critical role in page
ranking, as a better experience leads to better rating
for a web page and consequently, a higher page rank.

Steve Souders (Souders, 2012) suggests that 80-
90% of the end-user response time is spent on the

15Senthil K., S. Bhat K., Jamadagni N., Sureshan S. and Prasad G..
O3 - A Webpage Preprocessing Tool.
DOI: 10.5220/0005438100150020
In Proceedings of the 11th International Conference on Web Information Systems and Technologies (WEBIST-2015), pages 15-20
ISBN: 978-989-758-106-9
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)



frontend. This claim has been supported by statis-
tics, among the top 10 ranked websites 76% end-user
time has been recorded on the front end,among the top
9990+ ranked websites a staggering 92% of the same
and among the top 50000 ranked websites a 87% has
been recorded.This seems to suggest that much of the
optimization techniques must be concentrated on the
front-end of websites.

According to surveys conducted by Akamai (Aka-
mai, 2012), close to half of web users have a time
limit expectation of about 2 seconds or less, and tend
to abandon a site that hasn’t loaded within 3 sec-
onds.79% of the online shoppers who have trouble
with their shopping websites tend to not visit the site
again to buy products and 44% of them would tell a
friend that he had a bad experience with the online
shopping website.Seeing these statistics, it is a neces-
sity for online shopping websites to optimize the web
pages, which otherwise would lead to a loss of many
potential sales.

The page-load time and bandwidth requirement of
web pages can be reduced by applying various front-
end optimization techniques. These techniques not
only optimize the load-time on the client side, but also
reduce the load on the web server, by decreasing the
bandwidth requirement and the number of connected
clients.

3 RELATED WORK

Some related work/tools in webpage optimization are:

1. Google PageSpeed
PageSpeed (Zhenhua et al., 2012) is a set of tools
designed to improve the performance of a web-
site.It helps a developer in identifying high per-
formance oriented practices that can be applied to
the website. It also includes optimization tools
that can help the developer automate this process.

2. Radware’s FastView
FastView (Radware, 2012) is a web performance
optimization(WPO) and acceleration tool which
permits better performance of a website or web-
based application in real time. It has an automated
functionality to reduce the complexity of the front
end optimization process.

3. Akamai’s Front End Optimization (FEO)
FEO (Akamai, 2012) is a service offered by Aka-
mai for the clients using their cloud computing
service. It allows mobile optimization of web
content primarily for smartphone and tablet users.
The Akamai FEO engine analyses the target web
content and then identifies the possible optimiza-

tions for different device capabilities and environ-
ments.

4. JCH Optimize
JCH Optimize (Marshall, 2013) is a plugin of
Joomla! that aims at speeding up a website by
combining JavaScript and CSS files into a single
file,hence minimizing expensive HTTP requests
and ultimately optimizing the net download time
of a webpage.

5. Iliev, I. et al.’s work (Iliev and Dimitrov, 2014)
has also discussed various front end optimization
techniques.

In comparison to the above mentioned tools, the O3
web preprocessing tool performs a comprehensive
evaluation and graphically represents the results ob-
tained before and after the optimizations made by the
tool.

4 PROBLEM STATEMENT

In the current era of high speed internet we observe
that various front-end optimization techniques are
prevalent and used, but these are being done man-
ually by the web page designers/developers. This
project aims at automating this time-consuming pro-
cess thereby saving on development time while also
implementing optimization techniques for the web
page in parallel.

5 METHODOLOGY

The methodology adopted in this project is essen-
tially the development of Python scripts to automate
the optimization techniques on a given set of web
pages, which we have found to give measurable out-
comes.The observations and results obtained by us
are specific to WEBrick server version 1.3.1. We
have measured the speed-up of the web page’s loading
time, by using some performance-measuring tools,
such as YSlow and ab Tool, as benchmarking tools
for quantitative analysis.
We aim to achieve optimization using the following
techniques:

1. Placing Scripts at the bottom of the page

2. Removing Duplicate Scripts

3. Using External Scripts

4. JavaScript Minification

5. CSS Minification

WEBIST�2015�-�11th�International�Conference�on�Web�Information�Systems�and�Technologies

16



6. Using Compression techniques

7. Using CDNs(Content Delivery Networks)

8. Using Cache Techniques

6 IMPLEMENTATION

The following tools/libraries were used during the im-
plementation of the above techniques:

1. BeautifulSoup : BeautifulSoup which is a pack-
age of Python, is used for HTML documents pars-
ing. It builds a parse tree for web pages it parses,
which can then be used to modify the DOM struc-
ture.

2. Requests : Requests is a simple, elegant HTTP
library for Python licensed by Apache2.

3. YUICompressor : A Java based compres-
sion/minification tool.

4. ab Tool : ab is a tool for benchmarking Apache
Hypertext Transfer Protocol (HTTP) server. It
simulates any test case by taking number of re-
quests and number of concurrent requests as in-
put.

The optimization was performed using the follow-
ing techniques:

1. Placing Javascript at the bottom of the page
This technique involves the manipulation of the
DOM structure built by the browser, before the
rendering of the web page to the user. We find
the node which has the script tag and extract
it, simultaneously replacing it with an empty
tag after its removal. We now traverse through
the entire DOM tree again to find the last child
node of the body tag and thereafter append the
extracted script tag as the last child and complete
the DOM structure, which is then finally parsed
to display to the user the web page.
The reason behind this approach is that while
rendering a web page, if the browser comes
across a script tag, the downloading of web page
is paused until the entire script is fetched (as it
can affect the DOM structure), thereby increasing
the page load time. So, by moving the scripts to
the end of the page we can ensure that the page
download happens completely before the scripts
are fetched, ultimately cutting down a significant
portion of page load time.

2. Moving script contents to an external
JavaScript file
In our next technique we have removed all the

Figure 1: Placing scripts at the bottom of the page.

script tags from the HTML page and moved them
to a separate external Javascript file. The HTML
file is parsed and the content inside script tags
are removed and placed in a new file named
”external.js”. Consequently, this external.js is
included in the head section of the HTML page.
Also, we have ensured that the order of inclusion
of other external JavaScript files is maintained.
This is done to reduce effective HTML document
length of the web page, thus reducing the page
load time. This also leads to simple DOM tree
structure without any script tags.

3. CSS and JavaScript Minification
In our final technique we have made use of the
concept of minification. Minification is the re-
moval of all unnecessary characters from source
code without changing its functionality. This is
done to bring in some significant change in the
file size(of the JS or CSS file).

Here we used a JAVA based command-line compres-
sion tool, namely YUICompressor. Among all the
style-sheets and Javascript files that were fetched for
a particular web page, we identified the un-minified
files. These were consequently fed to the tool and
the minified output was used to replace the unminifed
files.

O3�-�A�Webpage�Preprocessing�Tool

17



Figure 2: Placing scripts in external file.

Figure 3: CSS and script minification.

Minification is proven to give an average of 25% effi-
ciency in compression. We observed the same results
with our techniques.

(a)

(b)

(c)
Figure 4: Results obtained (a) Technique 1 on google.com.
(b) Technique 1 with JS on top. (c) Technique 1 with JS in
the middle.

7 RESULTS OBTAINED AND
ANALYSIS

The results obtained on moving the content of the
script tags in google.com to the bottom of the page
resulted in an improvement of 12.95% in Mean Load
Time (MLT) and an increase of 9.3% in Data Trans-
ferred (Bytes) as shown in Figure 4(a).
The results obtained on moving the content of the
script tags to the bottom of the page with JS on top
resulted in an improvement of 12.95% in MLT and
an increase of 9.3% in Data Transferred (Bytes) as
shown in Figure 4(b).
The results obtained on moving the content of the
script tags to the bottom of the page with JS in the
middle resulted in an improvement of 20.97% in MLT
and an increase of 11.37% in Data Transferred (Bytes)
as shown in Figure 4(c).

It can be noted that in all cases of Technique 1,
the data transferred has increased after optimization,
which is contrary to expected behavior.
The results obtained on moving the content of the
script tags to an external JS in goolge.com resulted in
an improvement of 28.02% in MLT and an increase of

WEBIST�2015�-�11th�International�Conference�on�Web�Information�Systems�and�Technologies

18



(a)

(b)

(c)

Figure 5: Results obtained (a) Technique 2 on google.com.
(b) Technique 2 with JS on top. (c) Technique 2 with JS in
the middle.

9.3% in Data Transferred (Bytes) as shown in Figure
5(a).

The results obtained on moving the content of the
script tags to an external JS with JS at the top of the
page resulted in an improvement of 27.14% in MLT
and an increase of 7.7% in Data Transferred (Bytes)
as shown in Figure 5(b).
The results obtained on moving the content of the
script tags to an external JS with JS in the middle
of the page resulted in an improvement of 23.85% in
MLT and an increase of 11.3% in Data Transferred
(Bytes)as shown in Figure 5(c).
The results obtained on CSS and JS minification in
yottaa.com resulted in an improvement of 5.01% in
MLT and an decrease of 64.01% in Size(Bytes) as
shown in Figure 6(a). It can be noted from Figure 6(a)
that the resulting MLT for 100 requests has increased
from the non-optimized version. This is an anomaly
to the expected behavior.
The results obtained on CSS and JS minification
in w3schools.com resulted in an improvement of
9.495% in MLT and an increase of 19.56% in Data
Size(Bytes) as shown in Figure 6(b).

The results obtained on CSS and JS minifica-
tion in simplecartjs.com resulted in an improvement

(a)

(b)

(c)
Figure 6: Results obtained (a) Technique 3 on yottaa.com.
(b) Technique 3 on w3schools.com. (c) Technique 3 on sim-
plecartjs.com.

of 7.32% in MLT and an decrease of 22.45% in
Size(Bytes) as shown inFigure 6(c).

Experimental Steps for Implementation and
Result Analysis
1. The existing ideas had to be implemented manu-

ally, but we have automated three of the optimiza-
tion techniques through a tool. The tool automates
the procedure by changing the DOM structure of
the web page to be optimized.

2. We have also done a thorough evaluation of the
strategies by:

(a) Evaluating the techniques for a variety of web
pages with different structures.

(b) Benchmarking with standardized tools like the
abTool.

(c) Testing with real world test cases like:

Table 1: Performance Improvement in Technique 1.

NO. OF REQUESTS % DECREASE IN MCT
25 27.69

100 11.33
200 13.78

Average 17.6

O3�-�A�Webpage�Preprocessing�Tool

19



Table 2: Performance Improvement in Technique 2.

NO. OF REQUESTS % DECREASE IN MCT
25 28.845

100 31.089
200 25.411

Average 28.448

� Varying number of requests for the page.
� Varying number of concurrent requests for the

page.

3. Static and dynamic graphical representations of
the benchmarked results, for better comparison
and evaluation.

4. Analysis of the size of HTML documents and the
related files for further network latency bench-
marking.

5. Use of platform independent technologies and
easily available/accessible tools for building the
optimization tool.

6. All the strategies have been tested on multiple
browsers (Ex. Google Chrome, Mozilla Firefox,
Apple Safari, Internet Explorer) as well as ’wget’
and the results have been confirmed to be consis-
tent.

8 CONCLUSIONS AND FUTURE
WORK

The above techniques, when implemented individ-
ually, give a slight improvement in performance.
However, in conglomeration with the other tech-
niques of optimization, it is sure to give a significant
measurable increase in performance in terms of time
required to load a webpage.
Other techniques mentioned in the paper need to be
implemented, and if possible, a new technique that
has not yet been accounted for can be discussed,
and the performance optimization can be mea-
sured. It is also a significant problem to determine
which optimization techniques together generate
the best performance optimization. This is because
performing all optimization techniques may have
a performance overhead, so determining the best
combination of techniques is necessary. In addition

Table 3: Performance Improvement in Technique 3.

NO. OF REQUESTS % DECREASE IN MCT
25 5.97

100 1.8
Average 3.885

Table 4: Document Size Analysis - I.

TECHNIQUE % INCREASE IN
DOCUMENT LENGTH

1 9.358
2 9.35

Table 5: Document Size Analysis - II.

TECHNIQUE % DECREASE IN FILE SIZE
3 26.44

to this, the anomalies obtained in our results needs to
be explained, after proper analysis.
An appreciable performance acceleration must be
achieved after the implementation of a significant
number of front-end optimization techniques.

ACKNOWLEDGEMENTS

We would like to thank Mr. Sanket Ingole and Mr.
Shridhar Sanshi for their support and valuable inputs
towards the improvement and completion of this pa-
per. We would also like to thank Mr. Raghavendra
G. S. for his timely help towards the organisation and
formatting of this paper.

REFERENCES

Akamai, A. (2012). Akamai’s front end optimiza-
tion. http://www.akamai.com/html/resources/front-
end-optimization-feo.html. Accessed on: 14th
November 2014.

Iliev, I. and Dimitrov, G. P. (2014). Front end optimization
methods and their effect. In Information and Commu-
nication Technology, Electronics and Microelectron-
ics (MIPRO), 2014 37th International Convention on,
pages 467–473. IEEE.

Marshall, S. (2013). Jch optimize. https://www.jch-
optimize.net/documentation/how-the-plugin-
works.html. Accessed on: 14th November 2014.

Radware, R. (2012). Radware’s fastview.
http://www.radware.com/Products/FastView/. Ac-
cessed on: 14th November 2014.

Souders, S. (2012). The performance golden rule.
http://www.stevesouders.com/blog/2012/02/10/the-
performance-golden-rule/. ”Accessed on: 14th
November 2014”.

Zhenhua, C., Crowell, J., Grigorik, L., Kaufman, J.,
and van der Schaaf, O. (2012). Pagespeed.
https://developers.google.com/speed/pagespeed/. Ac-
cessed on: 14th November 2014.

WEBIST�2015�-�11th�International�Conference�on�Web�Information�Systems�and�Technologies

20


