Keywords: World Wide Web, Student Course Evaluation Questionnaire, Numerical Student Ratings, Student Written Comments, Rank and Gender Bias.

Abstract: The preliminary analysis presented is based on examination of two publicly available data sets. The first one consists of approximately 30,000 Student Course Evaluation Questionnaires (SCEQ) available at the University of Maryland, Baltimore County’s (UMBC) website (http://www.umbc.edu/oir/sceq/index.html). This dataset is used to analyze the effect of class size, faculty rank and gender on student ratings. The second data set is available at the University of Maryland College Park’s (UMCP) website (http://www.ourumd.com/viewreviews/?all). The website contains over 10,000 students’ rating (both numerical and written comments). This data set is used to examine correlation between the ratings and size of students’ written comments. The results presented are compared with those already reported in the literature.

1 INTRODUCTION

The paper examines two sets of student ratings available from Maryland public universities. The first one consists of 29,681 student ratings covering 19 semesters (from Spring 2005 through Spring 2014) available at the University of Maryland, Baltimore County’s website (http://www.umbc.edu/oir/sceq/index.htm). The second one is 10,584 University of Maryland College Park student ratings covering years 2007–2014 and available from (http://www.ourumd.com/viewreviews/?all).

We analyze the datasets in order to address the following topics:
1. Student ratings and class size.
2. Ratings of tenured/tenure track faculty vs. ratings of untenured full time faculty.
3. Ratings of male instructors vs. ratings of female instructors.
4. Student ratings vs. size of student written comments.

These topics (except, perhaps, the last one) have been extensively discussed in literature. We address the first three items above using the UMBC data set. The last item is analyzed through the UMCP data that contains both numerical ratings and written comments.

Colleges advertise student–teacher ratio to attract parents willing to pay high tuition for small class sizes. “Large, highly significant, and nonlinear negative impact of class size on student evaluations of instructor effectiveness” is reported by (Bedard and Kuhn, 2008). We examine the impact of class size on student ratings by focusing on two math classes with size doubled (sometimes almost tripled) over the last ten years. The numerical results presented in this paper contradict conclusions of (Bedard and Kuhn, 2008).

The rank of the instructor and student ratings are discussed already in (Aleamoni, 1999). While mixed results are reported, a “negative relationship” is indicated. Our examination of UMBC student ratings shows that for the last ten years ratings of full time untenured faculty are significantly higher than those of tenured and tenure track faculty.

For general discussion of gender bias in student ratings of university instructors see (Young et al., 2009). In a study conducted at the Hong Kong Polytechnic University (Kwan, 1999) reached the conclusion that students base their answers on factors external to the course. In a similar line, (Karlsson and Lundberg, 2012) analyzed ninety-eight assessments of faculty from across Swedish universities and concluded that the ratings involve a clear gender bias.
Women teachers consistently receive poorer ratings in comparison with their male counterparts. Gender effect on teaching evaluations is also addressed by (Sprague and Massoni, 2005) with similar conclusions. The results provided by UMBC data lead to the opposite conclusion (a milder conclusion can be found in (Feldman, 1992), for a claim coinciding with our findings see e.g. (Feldman, 1993)).

Written comments have been analyzed in the literature (see e.g. (Hodges and Stanton, 2007), (Alhija and Fresko, 2009) and references therein). Little research has been done to examine possible correlation between the written comments and numerical ratings, for a notable exception see (Sliusarenko et al., 2013). The paper attempts to make a small step in this direction.

2 UMBC STUDENT RATINGS

The UMBC questionnaire consists of seven sets of items. One set contains general questions that should be applicable to almost all courses. The remaining sets are designed for lectures, discussion, mathematics and science laboratories, seminars, field experience, and self-paced courses. Six questions permit separate evaluation of as many as four instructors.

The instructor has the option of administering whichever sets of questions are applicable. This study focuses on general question 9 (G9) “How would you grade the overall teaching effectiveness.” In addition to numerical responses provided on a 5 point Likert scale (Likert, 1932) from 5 (one of the best instructors I’ve had) to 1 (one of the worst instructors I’ve had) each questionnaire contains enrollment information, and instructor’s name.

The ratings per question are averaged out, i.e., the ratings per question are added up and the sum is divided by the number of students responded to the question (see e.g. (Hardy et al., 1934) where mean evaluations are discussed). This average is named “Instructor Mean.”

Along with individual instructor statistics per class/question, SCEQ provides additional statistical indicators, among them “Org Mean” representing a discipline. UMBC computed org means are actually mean averages of the instructor’s means. The average scores for a class with one response are weighted equally to a class with numerous responses when “averaging the averages.” Instructor Means for classes of different size contribute equally to the Org Mean, hence the input of large student groups (students in large classes) to the computation of Org Mean is identical to that of small student groups (students in small classes). For detailed discussion of UMBC means we refer an interested reader to (Kogan, 2014).

The results reported in this paper provide means computed in accordance with standard mathematical definition of the arithmetic mean (see e.g. (Hardy et al., 1934), (Hodges Jr. and Lehmann, 1964)). The same way means are computed by the University of Maryland College Park (UMCP). Each reference to means computed by UMBC is specifically indicated in the text below.

3 CLASS SIZE AND STUDENTS’ RATING

We focus on two math classes, a part of a three course calculus chain mandatory for many undergraduate students. The first class, MATH 151, with the total enrollment of 10,514 over the last 19 semesters (the second one is MATH 152, total enrollment of 6,932 for the same time period).

The other class, MATH 152, is the second one in the three classes undergraduate calculus chain offered by the Department. As Figure 3 shows the average
class size more than doubled in Fall 2009. The average student response rate graph (Figure 4) indicates no significant difference between “before” and “after” Fall 2009 ratings.

Figure 2: MATH 151 average Q9 rating.

Figure 4: MATH 152 average Q9 rating.

4 MATH AT UMBC: RANK AND GENDER

In this section we focus on a single org, “MATH”, and provide information extracted from student ratings and pertaining to ratings received by tenured/tenure track faculty and full time lecturers teaching “MATH”.

As of Fall 2014 the Department faculty is made up of:
- 1 post doc,
- 5 lecturers (with no research responsibilities),
- 28 tenured or tenure track faculty (to make the title shorter we shall refer to those also as “Research Faculty”).

Of the 33 research faculty and lecturers (we leave out the post doc), 23 are Mathematicians, and 10 are Statisticians.

Typically (but not always) Mathematicians teach only MATH classes, and Statisticians are involved in STAT instruction only. The results presented below mainly cover the 23 Mathematicians (a female Statistics Lecturer often also teaches MATH classes, and this is the reason for fractional number of female faculty members and lecturers that will appear in the text later).

The group of the 23 Mathematicians consists of 4 lecturers and 19 research faculty. Although 4.5 lecturers are about only 20% of the math group they teach from 30% to over 50% of the MATH classes per semester. While the typical teaching work load for a research faculty member is defined in writing as 2 classes per semester, the teaching workload for Lecturers appears to vary from semester to semester.

Of the 23.5 instructors involved in teaching MATH 4.5 are female and 19 are male faculty members. The female faculty members teach between 30% to over 50% of the MATH classes per semester.

The distribution of the teaching load between research faculty and lecturers is very similar to that between male and female faculty members. These distributions allow us to compare student ratings for these groups inspite of the relatively small size of lecturers and female professors.

4.1 Rank Bias

The average of student ranking for lecturers and research faculty is shown on Figure 5. As the graph
shows lecturers consistently receive better student ratings. Although the issue of teaching load is beyond the scope of this paper we note that lecturers mainly teach low level large math classes (such as MATH 151 and MATH 152 discussed earlier), while research faculty often teach small graduate classes.

3.2 Gender Bias

Finally we move to student ratings of male and female instructors. The average rating for both groups is shown on Figure 6, and the graph speaks for itself. So far ratings of female faculty supersede those of male faculty. Reasons for convergence of two graphs is beyond the scope of this paper and will be analyzed elsewhere.

![Figure 5: Lecturers vs. Tenured/Tenure Track faculty average Q9 rating.](image)

5 NUMERICAL RATINGS AND WRITTEN COMMENTS

In addition to considering quantitative responses there is an attractive option of gaining an insight into teaching ratings through students’ written comments. The open ended free text allows students to focus on matters they perceive as important, the lack of formal structure makes analysis of written comments difficult.

Manual analysis of large amount of text requires considerable resources and is time consuming. Recent advances in Text Mining research area devoted to computerized text processing (Berry and Kogan, 2010) opens the door for computer aided analysis of large text collections (Shlussarenko et al., 2013).

The University of Maryland College Park (UMCP) website http://www.ourumc.com/viewreviews/?all provides 10,584 student ratings for 2,122 instructors covering years 2007–2014. The course numbers are ranging from 003 to 899, with 267 courses assigned no course number. As it was mentioned in the literature students tend to provide more written comments when “the course invoked relatively strong reaction” (Alhija and Fresko, 2009).

In this section we attempt to provide a simple numerical description of students’ “strong reaction.” The entire collection of 10,584 written comments is divided into five groups. Texts corresponding to the same numerical rating are grouped together, the number of written comments in each group is reported in column “size” of Table 1, the entries of this column add up to 10,584.

The size of written comments (in characters) in the same group is averaged out and reported in column “mean” of Table 1. As rating decreases the mean of written comments grows longer. When, for example, the numerical rating is 5 an average written comment contains about 540 characters. For the numerical rating 4 an average written comment is about 610 character long, an increase of almost 13%. Hence, if the average size of written comments corresponding to the numerical rating 5 is used as a benchmark (i.e. 540.89 is considered as 100%), then the average size of written comments corresponding to the numerical rating 4 (610.37) is 112.85% of the benchmark.

Similarly to the column “size” the last column of Table 1 shows the “percentage-wise size” of an average written comment as rating goes down from 5 to 1.
Table 1: Ratings vs. Average Size of Written Comments.

<table>
<thead>
<tr>
<th>rating</th>
<th>mean</th>
<th>size</th>
<th>percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>540.89</td>
<td>3855</td>
<td>100.00%</td>
</tr>
<tr>
<td>4</td>
<td>610.37</td>
<td>2250</td>
<td>112.85%</td>
</tr>
<tr>
<td>3</td>
<td>654.41</td>
<td>1518</td>
<td>120.99%</td>
</tr>
<tr>
<td>2</td>
<td>689.43</td>
<td>1159</td>
<td>127.46%</td>
</tr>
<tr>
<td>1</td>
<td>719.57</td>
<td>1802</td>
<td>133.04%</td>
</tr>
</tbody>
</table>

6 CONCLUSIONS AND FUTURE STUDY

This paper presents a preliminary analysis of Student Course Evaluations at the University of Maryland Baltimore County (UMBC) and the University of Maryland College Park (UMCP).

A relevant part of the UMBC data is selected and analyzed to investigate a single discipline. We would like to investigate data pertaining to additional disciplines. An interesting research direction is to cluster together disciplines using similarity measures provided by student ratings (see e.g. (Kogan, 2007), (Mirkin, 2005) for general description of clustering techniques). A step in this direction (based on manual clustering) is reported in (Kogan, 2014).

Teaching effectiveness and involvement in research is a topic of current public interest in the USA. The claim “the relationship between teaching and research is zero” is attributed to education experts who analyzed data on “more than half a million professors” (Grant, 2014). While the claim might surprise some it is endorsed by specific evidence provided by UMBC SCEQs covering instruction in statistics. For example, SCEQ for Fall 2010 STAT 350 01 (instructor Deneen Blair) reports class average rating of 4 for question 9. While Ms. Blair is lacking research experience in statistics (she is a secretary in the Department) her ratings are much better than those of many statistics research faculty.

The secretary’s rating makes one wonder how students’ ratings reflect on instructor’s qualifications, knowledge of the subject, and professional competence. Additional Maryland colleges, and, perhaps, nationwide data should be analyzed to provide accurate account of the relationship between teaching and research as well as other relevant topics.

The UMCP data provides written comments along with numerical ratings. Analysis of written comments may accurately reveal students’ reason for satisfaction or discontent. The problem of processing large amounts of text naturally lends itself to Text Mining, a powerful approach to efficiently handle text collections.

Computer aided examination of texts (as opposed to numbers) is a nontrivial exercise. Free text lacks structure, and often is contaminated. Expressions such as “you c” instead of “you see”, or “on ur own” instead of “on your own” should be automatically deciphered (these examples are coming from the UMCP collection analyzed in this paper). Applications of Text Mining, an interdisciplined field that combines statistics and computational linguistics, might be a right way to proceed (Manning and Schütze, 1999).

Reliability of the data is an issue of fundamental importance for any meaningful analysis. A UMBC SCEQ form provides information concerning enrollment and the number of questionnaires filled out by students in the class. The ratio of these two numbers has been currently defined as “response rate.” If, for example, 35 questionnaires have been filled out in a class with total enrollment of 100 students, then the response rate is 35% (Bell, 2014).

Some believe a low response rate is correlated with poor teaching. Inspection of SCEQ forms shows that while sometimes the response rate can reach the perfect 100% (see e.g. Fall 2005 ART 210 0101, “Visual Concepts”), the forms also reports higher than 100% response rate (see Fall 2005 BIOL 100 0101, “Concepts in Biology”, and even much higher than that response rate (see e.g., Spring 2005, phil 399, “philosophy of humor”) with course title perhaps reflecting on the form’s content.

Consistency of the data under scrutiny is of paramount importance for success of any computer aided analysis. The inconsistency as, for example, illustrated above (see also (Kogan, 2014) for additional examples) should be detected. This requires development and implementation of appropriate tests the data should be subjected to before it is analyzed. With no reliable data any analysis of student ratings is worthless.

ACKNOWLEDGEMENTS

The authors thank anonymous reviewers whose constructive comments improved exposition of the results.

References

REFERENCES

