
Offline-provisioning and Synchronization
of Content for Mobile Webapps

Tim A. Majchrzak1 and Timo Hillmann2

1University of Cologne, Köln, Germany
2University of Münster, Münster, Germany

Keywords: Offline, Storage, Synchronization, Webapp, Mobile, Mobile Webapp, Web Application, App, Mobile
Computing.

Abstract: Despite progress in the development of cross-platform frameworks, today’s apps often are realized either as
native apps or as Webapps. The latter are easy to implement and rely on robust and future-proof technologies
such as HTML5, Cascading Style Sheets (CSS) and JavaScript. However, Webapps commonly require a stable
Internet connection. Recent developments facilitate offline-enabled Webapps. If an app is able to store data
locally, it should also be enabled to synchronize with a server backend. We assess current HTML5 storage
capabilities and discuss their possibilities along with considerations of mobile computing synchronization
strategies. Our work includes the compilation of requirements that Webapps have regarding their offline
capabilities. Moreover, we discuss the status quo of offline storage and give an outlook based on a proof-of-
concept implementation.

1 INTRODUCTION

The market for mobile devices has seen unprecedented
growth. Less than 10 years ago – the first iPhone
has been introduced in 2007 (Macedonia, 2007) – the
proliferation of smartphones and tablets had not even
started. Nowadays, these devices are routinely used
by million peoples. They are not mere tools for enter-
tainment but increasingly employed by businesses, too.
This applies both to internal purposes and for keep-
ing contact with customers (Majchrzak and Heitkötter,
2014). The success of mobile devices can only partly
be attributed to their hardware, though. In fact, soft-
ware makes them useful and versatile.

Applications for mobile devices (apps) can roughly
be subdivided into native apps and Webapps (Char-
land and Leroux, 2011). The first make use of a de-
vice’s platform and are developed using native soft-
ware development kits (SDKs). The latter employ
Web technologies such as HTML, CSS and JavaScript
(Charland and Leroux, 2011). While native apps are
bound to a platform, e.g. Android or iOS, Webapps run
on any device that provides a Web browser. Despite
progress in developing cross-platform solutions (Ohrt
and Turau, 2012), many businesses face the choice of
developing either natively or using Web technologies.

Webapps have several shortcomings. Most notably,

they cannot be installed directly on devices if not de-
signed as a hybrid app (Heitkötter et al., 2013). More-
over, they provide a Web-like graphical user inter-
face (GUI) that cannot make use of platform-specific
elements (e.g. Widgets). Much progress has been
achieved with HTML5 (2014): cf. e.g. Zorrilla, Mar-
tin, Sanchez, Tamayo, and Olaizola (2014); Karthik,
Patlolla, Sorokine, White, and Myers (2014); Weeks
(2014). Still, if a native look & feel is important (Ma-
jchrzak and Heitkötter, 2014), native apps or a cross-
platform approach yielding native apps (cf. Heitkötter,
Majchrzak, and Kuchen (2013))are preferable. How-
ever, Webapps are rather easy to develop and their
interoperability is preeminent (Quilligan, 2013). They
are also future-proof due to not being bound to the fast-
paced change mobile platforms face1. In addition, de-
velopment framework support is excellent (Heitkötter
et al., 2013). Thus, mobile Webapps are frequently
chosen for app development.

Due to the mobile nature of smartphones and
tablets, a stable Internet connection is not guaranteed.
There might be times without connectivity; connection
quality in terms of bandwidth, latency and jitter is ever

1To be truly future-proof, careful decision making e.g.
with regard to employed frameworks is necessary. However,
in comparison the dependence on multiple technologies that
have short release circles is low.

601A. Majchrzak T. and Hillmann T..
Offline-provisioning and Synchronization of Content for Mobile Webapps.
DOI: 10.5220/0005423206010612
In Proceedings of the 11th International Conference on Web Information Systems and Technologies (WEBIST-2015), pages 601-612
ISBN: 978-989-758-106-9
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)



changing – a fundamental challenge of mobile com-
puting (Satyanarayanan, 1996). Thus, many apps gain
from keeping (at least some) functionality even in an
offline situation (Gonçalves and Leitão, 2009). Often
more profound functionality is advisable. If data re-
sides in apps and in backend systems, synchronization
is an extended requirement.

Until lately, offline capabilities have been a weak
spot: most Webapps simply do not work without con-
nectivity. Recent progress has greatly improved the
theoretical capabilities, though (cf. (HTM, 2014); de-
tails are covered by newly published textbooks such
as those by Makzan (2014) and Felke-Morris (2014)).
Therefore, these capabilities should be assessed. For
this purpose we introduce strategies for offline-enabled
Webapps and for their synchronization. Moreover, re-
quirements for offline functionality are compiled and
used to realize a proof-of-concept app.

This article makes several contributions. Firstly,
the background of offline storage and synchronization
w.r.t. mobile computing is summarized. Secondly,
HTML5 storage technologies are assessed. Thirdly,
requirements for Webapps with offline capabilities are
compiled. Fourthly, the status quo and future develop-
ments are discussed.

This paper is structured as follows. Sections 2
and 3 introduce offline-provisioning and successively
mobile synchronization. Storage in HTML5 is ex-
plained in Section 4. Section 5 presents an evaluation
case study. Results are discussed in Section 6 before
Section 7 draws a conclusion. Rather than discussing
related work separately, we have incorporated appli-
cable references throughout the paper and highlight
implications.

2 OFFLINE-PROVISIONING

In a mobile environment, data management is gen-
erally influenced by two factors. Firstly, mobile de-
vices tend to have limited storage capabilities – at least
compared to PCs and especially servers. This stor-
age usually cannot be extended2 and has to be shared
with several other applications as well as the oper-
ating system (respectively the platform). Secondly,
Internet connectivity may be unreliable. The connec-
tion can vary in speed and disconnections may occur
(cf. Marco, Gallud, Penichet, and Winckler (2013)).
These aspects need special attention when designing
data-heavy applications in a mobile context.

2Some devices allow extension with removable media
such as memory cards. However, this storage cannot be used
for all purposes and tends to be quiet limited in size, too.

allowed

not allowed

high

medium

low DBMS

tools

cache and index

implicit

manual definition possible

explicit definition

low
medium

high

Possible dynamic of data Resources required on the client

M
o
b
ile
 d
at
a 
m
an
ip
u
la
ti
o
n
 (
o
ff
lin
e)

Influence on local data by the user

P
o
ss
ib
ili
ty
 t
o
 w
o
tk
 o
ff
lin
e

Caching Hoarding Replication

Figure 1: Classification of caching, hoarding and replication
(based on the work by Höpfner et al. (2009)).

For offline-provisioning, literature differentiates
between data caching, hoarding and replication meth-
ods (Höpfner et al., 2009). A summary of their capabil-
ities is given in Figure 1. However, these terms are not
precisely defined and sometimes used interchangeably.
In also has to be noted that work on offline-capabilities
in the mobile context not necessarily presents a clas-
sification of own ideas with regard to theory. This
particularly concerns offline Web access as e.g. cov-
ered by Ananthanarayanan, Blagsvedt, and Toyama
(2006).

A cache is a memory component that is used to
store data with the aim of reducing access time (Vora
et al., 2004). Generally, a cache has a considerably
faster access time compared to other memory com-
ponents. If requested data is stored in the cache, it
will be served from the cache. Otherwise, the data
will be served by reading from the original storage,
thus making the request comparatively slower. Since
cache size is very limited, usually replacement strate-
gies are applied in order to free space for new data. If
requested data cannot be served from the cache and
there is no space left, parts of the cached data have to
be removed. There are various criteria that can be eval-
uated when selecting data for this purpose. Client-side
caching of Web content is a common approach (Marco
et al., 2013), yet limited in functionality (Cannon and
Wohlstadter, 2010).

Semantic caching is a special caching method in
the context of mobile computing. This technique is
based on the concept of semantic locality, i.e. sub-
sequent requests are often semantically related (Dar
et al., 1996). For instance, search engine queries are
often related with regard to content. Consequently,
search results are overlapping. If these results are

WEBIST�2015�-�11th�International�Conference�on�Web�Information�Systems�and�Technologies

602



stored in a cache, it is possible to answer a following
query partially by reading the cache, thus reducing
request time.

However, caching is commonly not appropriate to
store data for offline-enabled Webapps (Höpfner et al.,
2009). Due to the limited capacity, data availability
cannot be guaranteed. The replacement strategy deter-
mines which data will be removed and can, thereby,
be a source of error. The lack of supporting local data
modifications effectively makes caching read-only stor-
age.

Hoarding methods use specially-designed analysis
tools to select the hoarded data. For instance, tools
could analyse usage patterns to select frequently used
data. Consequently, the user does not have explicit
influence on the selection. Similar to caching, hoard-
ing techniques employ replacement policies to cope
with limited storage (Vora et al., 2004). Areas of appli-
cation are distributed file systems, for example. The
UNIX-based Coda File System (2014) analyses the
file accesses of its users in order to store semantically
related files locally. Another variation of hoarding is
used to extend database queries. The increased result
set of a query is then stored locally.

In the context of offline-provisioning, hoarding
methods have limited suitability. Similar to caching,
hoarding does not support local data modifications
(but with special approaches as e.g. proposed by Vora
et al. (2004)). Consequently, hoarding methods are
read-only. In contrast to caching, hoarding can store
data that was not requested (but e.g. anticipated to be
needed, also cf. prefetching (Gonçalves and Leitão,
2009)). However, it still makes use of replacement
strategies to cope with limited storage. Thus, data
availability cannot be guaranteed either.

Data replication is used to increase data availabil-
ity and to reduce access time. Typically, it is em-
ployed in a client-server system. A server provides
data, which a client stores locally. Subsequent requests
can be served by reading the local database. Thus, re-
quests to the server are minimized. Replication is also
used in the context of databases. It enables the distri-
bution of data and requests to multiple databases. As a
result, reachability and reliability are increased.

The local copies of the data are called replicates.
They are selected explicitly by the app or the user.
Replicates are changeable if all three base operations
(add, edit and delete) can be applied, or unchange-
able otherwise. Synchronization between the master
database and clients is necessary to ensure data consis-
tency when replicates can be modified.

Since replacement strategies are not used for data
replication, it is important to guarantee sufficient stor-
age space availability. Similar to caching, replication

is transparent (Weikum and Vossen, 2001, p. 674) to
the app. In contrast to caching or hoarding, replication
is fit to support offline-provisioning and can be used
for offline-enabled Webapps.

3 MOBILE SYNCHRONIZATION

In many business scenarios, simple offline capabilities
such as offline Web browsing (Kao et al., 2011) are
not sufficient (Goncalves and Leitao, 2007). Data is
not only used offline but might be changed at times
without connectivity. To make the situation worse,
data could be altered in its master storage (usually a
backend server) concurrently.

Synchronization ensures data consistency and co-
herence between multiple systems. All data handled
by replication methods is redundant; consequently, it is
vital to keep replicates consistent, i.e. identical. Modi-
fications have to be distributed to all copies. Usually
there are a master database, which stores the origi-
nal data, and replicated databases. Synchronization is
possible between the master and exactly one replicant
(one-to-one synchronization) or with multiple repli-
cants simultaneously (one-to-many synchronization).

The synchronization process is initialized by one
of the involved systems. With symmetric synchroniza-
tion, all systems are capable of starting this process. If
either the master database or the replicated databases
are able to initiate the synchronization, the process
is asymmetric. Synchronization can be started peri-
odically or at predefined times. Moreover, it can be
initialized on commit, i. e. when data was changed, or
on demand, e.g. started explicitly by the user.

The resolution of inconsistency can either be based
on the data sets or on the transactions (König-Ries
et al., 2007). In the first case, the master database
receives two copies of the affected data set. One copy
was created before the data was changed, and the other
one is the resulting data set after the changes. The
master database itself possesses the current state of the
data set. These three elements can then be used to re-
establish consistency. In the latter case, the transaction
itself will be passed to the master database as well.

Moreover, synchronization can be performed either
incrementally or completely (König-Ries et al., 2007).
Incremental synchronization is constrained to the data
sets that changed since the last synchronization. Con-
sequently, considerably less data is transferred com-
pared to a complete synchronization. As a special
form, synchronization can be limited to a subset of
the data (selective synchronization). A possible other
distinction is hot and cold, whereas hot copies have
current (but small) changes, and cold copies are old

Offline-provisioning�and�Synchronization�of�Content�for�Mobile�Webapps

603



ones (Cannon and Wohlstadter, 2010).
Lastly, it is differentiated between synchronous and

asynchronous synchronization. Asynchronous – also:
lazy (Weikum and Vossen, 2001, p. 778) – synchroniza-
tion does not require permanent connectivity, which is
crucial in a mobile context.

Conflicts can occur if data is changed in
two databases without synchronization in between
(Gaubatz et al., 2014). Two strategies exist for coping
with conflicts (Weikum and Vossen, 2001, p. 129). The
first is to prevent them by locking (pessimistic). The
second applies conflict resolution (optimistic). How-
ever, a conflict has to be detected in order to be re-
solved (Lam et al., 2002). For that purpose, every data
element needs a unique identifier (e.g. a running num-
ber of a hash value calculated from the data) and a way
to distinguish its versions such as a version number or
a time stamp.

Four different types of conflicts can be distin-
guished (König-Ries et al., 2007). A deletion conflict
occurs when a replicate is deleted, whose correspond-
ing original was changed in the meantime. Since this
cannot be resolved automatically, user intervention
is necessary. Insertion conflicts occur when a data
element is created and its identifier (ID) is already as-
signed to another element in the master database. This
can be resolved by reassigning IDs or be prevented by
assigning a pool of IDs to a client (key-pool-scheme).
These IDs can then be used when creating new ele-
ments. A modification conflict occurs when two col-
liding changes to a single data element are made. This
might be solved by exploiting the nature of the corre-
sponding data. For instance, the arithmetic mean can
be calculated for data representing a numeric value.
Lastly, a modification-deletion conflict occurs when
a replicate is modified, whose corresponding original
was deleted. This can be resolved by reversing the
deletion.

4 STORAGE IN HTML5

HTML5 introduces five distinctive storage technolo-
gies, which can be used to provide Webapps with of-
fline capabilities. These technologies have not only be
designed with different aims in mind (and are based on
different backgrounds of technological evolution), but
actually differ w.r.t. their functionality. Unsurprisingly,
their practicability varies by usage scenario. Moreover,
browser support greatly differs. We, therefore, pro-
vide an overview of minimum version requirements
in Table 1. Please note that some technologies are not
even supported in the latest version of some browsers
(denoted by “–”). As a particularity of this section,

Table 1: Browser support of storage technologies.

C
hr

om
e

Fi
re

fo
x

Sa
fa

ri

In
te

rn
et

E
xp

lo
re

r

A
nd

ro
id

iO
S

AppCache 4.0 3.5 4.0 10.0 2.1 3.2
Web Storage 4.0 3.5 4.0 8.0 2.1 3.2
Web SQL 4.0 – 3.1 – 2.1 3.2
IndexedDB 23.0 10.0 7.1 10.0* 4.4 8.0
File API 13.0 3.6* 6.0* 10.0* 4.4* 6.1*

* limited support (cf. Deveria (2014) for an overview)

most sources refer to (usually the official) Web sites
concerning the respective technology rather than sci-
entific articles. This not only is a intentional choice
of primary sources but also a necessity since scientific
sources are scarce.

The application cache (AppCache) enables users
to access a Webapp without using an Internet con-
nection (Berjon et al., 2013). Since resources, such
as HTML documents or images, are cached locally,
the AppCache reduces server load and request time
(Bidelman, 2010). A HTML document can be added
explicitly by listing it in the manifest file or implic-
itly by adding the manifest attribute to the document.
Other resources have to be listed in the manifest file
in order to make use of the application cache. Further-
more, it is possible to specify resources that require
a Internet connection as well as fallback pages for
inaccessible ones. However, it is not possible to manu-
ally remove or update files from the cache through the
API (Berjon et al., 2013). Furthermore, the cache is
only updated if the manifest file is modified or users
manually clear the cache in their browser (Bidelman,
2010). An example for a cache manifest file is given
in Listing 1.

1 CACHE MANIFEST
2 # Time : Wed Sep 17 2014 1 4 : 0 6 : 4 7 GMT
3

4 CACHE:
5 scripts / source . min . js
6 scripts / source . min . js . map
7 css / styles . min . css
8 img / sprites . png
9 img / loading . gif

10

11 NETWORK:
12 *

Listing 1: Exemplary manifest file.

Due to the nature of the application cache, it works
best if the application’s logic and content are strictly
separated. Then the cache can be used to store the
Webapp’s logic (Archibald, 2012). However, it is
not suited to store dynamic application data or user
data. The AppCache is supported by almost all current

WEBIST�2015�-�11th�International�Conference�on�Web�Information�Systems�and�Technologies

604



Table 2: Comparison of storage technologies

AppCache Web Storage Web SQL IndexedDB File API
Basic storage
technology

File system Key-value store Relational DBMS Document-
oriented DBMS

File system

Supported data
types

File String All SQL data types String, Number,
Object, Array,
BLOB

File, Directory

Query
language

(none) No actual query
language

SQL Specified by the In-
dexedDB API

No actual query
language

(Database-)
queries

(none) Queries possible
by merely iterating
over files

SQL queries can be
used to full extent

Complex queries
are possible

No queries possi-
ble; files can be re-
quested directly or
as part of folders

Synchronicity Unknown Synchronous Asynchronous
Memory limit Dependent on the implementation of the Web browser
Browser
support

Broad Broad Mainly on mobile
devices

Mainly by desktop
browsers

Limited (so far)

Standardized yes yes not anymore yes yes
Applicable
for. . .

Application logic Unstructured data Complex data
structures

Complex data
structures; particu-
larly when using
JavaScript objects
and JSON

Files

browsers.
Local storage and session storage are two HTML5

storage methods that are subsumed under the term Web
storage (Hickson, 2013). While local storage stores
data persistently, session storage stores data only for
the current session (Hickson, 2013). If the browser
or Web site is closed, all data stored using session
storage will be deleted. For instance, session storage
can be used to save credentials. When using Web
storage, data is stored as a key-value pair consisting
of strings. Consequently, data can only be accessed
through the corresponding key. Web storage is some-
times regarded as an evolution from cookies. However,
cookies are limited to four kilobytes of storage (Kris-
tol and Montulli, 1997). In general, Web storage has
no such limitation although storage capacity depends
on the browser implementation. As a limitation, the
server cannot access data stored using Web storage.
Web storage is supported by all major browsers.

Web SQL is an API to store data in a relational
DBMS (Hickson, 2010). SQL can be used to full
extent to query the database. This allows complex
queries with joins and sub-queries. Because relational
databases are widespread, it makes sense to use them
on the client, too. In most cases, the usage of Web SQL
requires object-relational mapping (ORM) due to the
usage of JavaScript objects (Green, 2011). Web SQL
is supported by mobile browsers, mostly. Since Web
SQL is no longer a standard – it was on the “W3C Rec-
ommendation track but specification work has stopped”
(Hickson, 2010) –, it is unclear whether support will
increase or decline.

IndexedDB is an API to store data in an object-
oriented database (“Basic concepts – IndexedDB”,
2013). The database consists of object stores, which
are roughly equivalent to database tablets. The object
stores contain the individual data sets. Similar to Web
storage, key-value pairs are kept. However, several
other data types are supported by IndexedDB, includ-
ing strings, number types, and BLOBs. Furthermore,
it maintains indexes, which allow complex queries.
When using JavaScript objects, IndexedDB is a natu-
ral choice because these objects can be saved without
manual serialization (Green, 2011). Browser support
for IndexedDB had been confined to desktop browsers.
Since becoming a standard, support has extended to
mobile browsers.

File API consists of several programming inter-
faces, which allow file manipulation (Ranganathan
and Sicking, 2013; Uhrhane, 2012). In addition,
FileSystem API and FileWriter API have been added
to File API. After getting access to a local file system,
it is possible to read, create and delete files and direc-
tories. File API differentiates between persistent and
temporary storage. Files that are stored in the tempo-
rary storage might be deleted by the browser in case
more space is needed (Bidelman, 2011). Persistent
storage has to be granted by the user. Areas of appli-
cation are file uploads and handling of media files, for
example. Since file operations are executed in a local
sandbox file system, other data on the devices is safe
from unauthorized access. While File API is supported
in the recent version of most browsers, FileSystem API
and FileWriter API so far only work in Chrome.

Offline-provisioning�and�Synchronization�of�Content�for�Mobile�Webapps

605



With the Quota API it will become possible to re-
quest storage memory for a Webapp from the browser
(Yasuda, 2013). This should improve memory man-
agement without adding complexity.

The comparison of storage technologies is summa-
rized in Table 2, which can also be used as a reference.
Due to the differences of the technologies, it is not
practical to give a one-choice-fits-all-scenarios rec-
ommendation. In fact, choice should be made after
carefully waging arguments. Situation-sensitive advise
is given in Section 6.2.

5 EVALUATION CASE STUDY

A case study is presented in the following. We first
sketch requirements that represent a common scenario
for offline provisioning. We then propose a design for
the app and discuss lessons learned from the imple-
mentation.

5.1 Requirements

During the design of an offline-enabled Webapp, cer-
tain requirements have to be considered. There are
basically two greatly differing perspectives: the end-
user’s and the developers’ point of view.

First of all, the Webapp has to be accessible without
connectivity. The application logic has to be saved lo-
cally. Therefore, the AppCache has to be used manda-
tory. Depending on the features as well as the complex-
ity of the data management of the Webapp, a suitable
offline-provisioning method (as illustrated in the prior
section) has to be chosen. Transparency is an impor-
tant aspect in this context. It should be irrelevant for
users whether or not they are online or offline. The
choice of storage technology depends on the data struc-
ture. For instance, File API can be used when develop-
ing a file system. In order to resolve inconsistencies
when working with replicates, at least basic synchro-
nization is required. For the design of the synchro-
nization method, the aspects identified in Section 3
have to be considered. Detection of the connection
status is a requirement, too (how this is possible is e.g.
described by by Hales (2012)). Moreover, it is neces-
sary to detect changes in connectivity. For example, it
might be useful to initiate synchronization right when
an Internet connection is established.

A change in the manifest file for the AppCache is
detected after one page refresh. But at this point the
app is still served from the cache. After another page
refresh, the cache gets emptied and the updated app is
stored in it. To avoid problems, the second refresh has
to be initiated automatically.

In relation to the developer perspective, we identi-
fied three main requirements. To make use of the App-
Cache efficiently, the app has to be structured in a spe-
cific way. Unlike normal Web sites, an offline-enabled
Webapp needs a separated application logic (cf. Sec-
tion 4). Consequently, an offline-enabled Webapp can-
not follow a thin client architecture (Goncalves and
Leitao, 2007), like most Webapps do. Furthermore,
the build process has to support the developer with the
creation of the manifest file. Additionally, browser-
specific differences of the HTML5 implementation
have to be carefully considered (cf. Section 4).

5.2 Specification and Design

A ToDo list app was implemented for evaluation – a
simple but practicable choice for an offline-capable
app (Kao et al., 2012). Its main functions revolve
around the management of tasks. A registered user
should be able to add, edit and delete tasks. Moreover,
the app should provide the flagging of tasks as done
and as important. Obviously, the proposed Webapp
should work offline.

In order to make the tasks accessible from multiple
devices, they have to be stored in a remote database.
Therefore, a client-server architecture was chosen.
Usually, Webapps realize a three-tier architecture to
separate user interface (presentation), application logic
(application) and data storage (data). Moreover, We-
bapps generally feature a distributed presentation tier.
The (Web) server provides content, which is rendered
by the browser on the client. An application server
and database complete the architecture. However, this
architecture is inadequate for offline-enabled Webapps.
If the client only consists of the presentation, business
logic and data storage are inaccessible when no con-
nection is available. Therefore, a rich client is needed
(overruling the usual three-tier architecture), which
provides functionality independently.

As a consequence, the client was designed as
a single-page application (SPA) (Flanagan, 2006,
p. 128). In general, a SPA is closer to a native user
experience because there are no page reloads. Instead,
the user navigates between different states of the We-
bapp. Typically, a SPA consists of views, which render
the templates and manipulate the DOM (Document
Object Model), and models, which interact with the
(local and external) data storage (Takada, 2012). In
addition, the application logic is situated in the mod-
els. Moreover, there is a routing component, which
manages the different states of the app and the navi-
gation between them. The DOM emits events such as
clicking or scrolling for handling by the Webapp.

The server was designed as a RESTful Web service.

WEBIST�2015�-�11th�International�Conference�on�Web�Information�Systems�and�Technologies

606



Since a SPA moves the application logic to the client,
the server only needs to provide access to the database
and, therefore, is less complex. This is also referred
to as thin server architecture (Kovatsch et al., 2012).
A Web service API is RESTful if it adheres to the
architectural constraints defined by REST (Represen-
tational State Transfer) (Roth, 2009). REST simplifies
the architecture, access and modification of resources,
and eases offline-provisioning due to its statelessness.
An additional benefit is the improved scalability, which
e.g. allows load balancing (Rodriguez, 2008).

AJAX (Asynchronous JavaScript And XML) is
used for the communication between client and server.
AJAX uses XMLHttpRequests (XHR) to send and
retrieve data from the server asynchronously. These re-
quests are commonly used in synchronization contexts
(cf. with Cannon and Wohlstadter (2010)). Despite
the name, AJAX is not limited to XML. In fact, JSON
is often used as the data exchange format. When us-
ing JSON, it is sometimes referred to as AJAJ (Hurth,
2010). In contrast to XML, JSON is less complex,
more compact, and easier to use. Consequently, JSON
is suited for Webapps. JSON supports JavaScript ob-
jects, arrays, strings, numbers, booleans and null val-
ues. Furthermore, it is possible to nest objects and
arrays. Listing 2 shows an example for a JSON repre-
sentation of a task.

1 f
2 ”_id ” : ” a01mVP9RL9rA ” ,
3 ” title ” : ” Example ” ,
4 ” descr ” : ”This is an example ” ,
5 ” dueTo ” : 1379059200000 ,
6 ”done ” : true ,
7 ” favorite ” : false ,
8 ” _creator ” : ” Ip6OHG4q3OGw ” ,
9 ” _created ” : 1379035100000 ,

10 ” _modified ” : 1379042200000 ,
11 ” _deleted ” : false
12 g

Listing 2: JSON representation of a task.

5.3 Implementation and Outcome

Two screenshots in Figure 2 illustrate the example. In
order to support creating, editing and deleting tasks
offline, a replication and a synchronization method
were implemented.

IndexedDB was chosen as the storage technology,
since it works well with JavaScript objects and JSON.
Furthermore, the server uses a compatible database;
no serialization or transformation of the data was nec-
essary. In order to expand the support of IndexedDB
to mobile browsers, a polyfill (Sharp, 2010) based
on Web SQL was used (namely indexeddb.shim.js
(Narasimhan, 2014)). The structure of a task can be

Figure 2: Example Application.

seen in Listing 2. In accordance with the demand for
transparency (cf. Section 2), it is irrelevant to the app
whether it stores tasks in the local or remote database.

The class Storage implements the replication
method. Every task belongs to a collection, which
has its own instance of Storage. Each instance has
its own database connection, which is established on
instantiation. The class provides methods to read, add,
edit and delete data. It accesses IndexedDB through a
third-party library (db.js by Powell (2012)), which pro-
vides convenient functionality for IndexedDB usage.

The synchronization method uses an approach
based on data sets (cf. Section 3). Consequently, two
copies of the data will be transferred to the server: the
unmodified data set and the resulting data set. How-
ever, when adding or deleting tasks, it is not necessary
to transmit the two copies. Due to the small data size,
complete (and, obviously, asynchronous) synchroniza-
tion was chosen. Synchronization is initiated after
every operation (add, edit, delete) or on demand. Ad-
ditionally, it starts whenever a connection becomes
available, and when the app is started.

The class StorageManager implements the syn-
chronization. Each instance of Storage has an in-
stance of StorageManager assigned to it. This class
provides methods to pull and push changes from and
to the server. Therefore, it creates AJAX requests. Af-
ter starting the synchronization, all tasks are pulled
from the server and checked for changes and deletions.
Changes are applied on the local database before local
changes are pushed to the server. A dirty flag is used
to identify locally modified tasks. New and deleted
tasks are identified similarly. In order to differentiate
the versions of a task, a time stamp is employed.

A custom build process simplifies deployment. The
workflow supports the automatic creation of the mani-
fest file, compression and concatenation of assets (e.g.
CSS and JavaScript files), and error checking. As We-
bapps usually consists of a multitude of files, concate-

Offline-provisioning�and�Synchronization�of�Content�for�Mobile�Webapps

607



nation is useful to reduce their number; compression
saves storage space on devices.

The developed app is able to manage tasks of a reg-
istered user across multiple devices. All changes are
transferred to the server once connectivity is given. In
order to avoid insertion conflicts, a local ID is assigned
to a new task. After synchronization, the affected task
is deleted locally. Then a new task is created with
an server-assigned ID. Where possible, conflicts are
resolved automatically. Modification conflicts are de-
tected by comparing the old and new version of the
task and resolved by using the newer one based on
attributes. Modification-delete conflicts are detected
through a delete flag and resolved by revoking the dele-
tion. Deletion conflicts have to be resolved manually
by users. They can decide whether to force delete the
task or cancel the deletion.

6 DISCUSSION

While our article has laid out the foundation for offline
provisioning and synchronization, there is much room
for discussion. To address the fast progress that un-
derlies the topic, we first highlight insights. We then
propose recommendations. Moreover, we have a look
at limitations and present the outlook of our work.

6.1 Insights

There has been interest in offline Web access even
before smartphones became popular, e.g. by by Song,
Yu, Wang, and Nie (2006). With the widespread usage
of Webapps, not only have offline capabilities become
a necessity but the requirements considering what has
to be possible in offline scenarios have become diverse.
The possibilities introduced in Section 2 will facilitate
a new generation of Web applications. Despite – or
even due to – the availability of different technologies,
the choice of the right approach is not straightforward.
In fact, it has to be made based on the specific require-
ments (see next Section).

Both the theoretical assessment and the case study
have shown that it is possible to create powerful We-
bapps with offline-capabilities using HTML5. Imple-
menting apps is manageable if an adequate technology
has been chosen. However, a shift in architecture is
needed: while design patterns – especially the model-
view-controller distinction – remain, some past lessons
for the design of Webapps do not apply any more. This
is a consequence from requiring application logic on
the backend and might be confusing at least for unex-
perienced developers.

Whereas the (rather general) requirements for our
case study should be generalizable, it has to be con-
cluded that many aspects of offline-capabilities reflect
in diverse, fine-grained requirements. While there are
some common necessities, no set of requirements can
be attributed to all situations.

Any app that allows modifications of local data
while being offline needs some form of synchroniza-
tion. The concepts as sketched in Section 3 are rather
easy to understand and their application is straightfor-
ward if using a RESTful (or other Web service-based)
approach. In many cases, these simple forms do not
suffice, though. This particularly applies to situations
in which concurrent changes are made and users can-
not intuitively decide which data set to keep if queried
during synchronization. Moreover, fully automated
synchronization is desirable in many situations. The
insights provided in this article help to understand
this problem but do not close the research gap. In fact,
future work need to put emphasis onto improved mech-
anisms and eventually better tools for synchronization.

6.2 Recommendations

The insights from our case study implementation in
combination with a theoretical assessment allow for
drawing recommendations.

Regarding the basis paradigms, caching is suited
for read-only offline apps that merely need to maintain
a current set of data. An example is an app that reads
news feeds. Hoarding is applicable if apps are more
sophisticated but still only read data. This e.g. applies
to apps that provide access to Wikis or online journals;
they could hoard articles that match the user’s interest
and that are linked by already read articles. Replication
is needed in any case of truly working with data (i.e.
also modifying it) without permanent connectivity.

Moreover, advice for development can be given.
Firstly, a manifest file as required for the AppCache
should be created (automatically) during the built pro-
cess. Maintaining the manifest file manually is cum-
bersome and error-prone. Secondly, the efficiency of
the AppCache is bound to the structure of the app. It
has to be recommended to separate application data
from application logic. This calls for the compilation
of offline-app development best practices, as already
argued earlier. Thirdly, programmers should use devel-
opers’ community advice where it is already available.
This e.g. applies to the selection of frameworks for
single-page apps (TodoMVC, 2014).Assessed, specifi-
cally scientific sources remain to be scarce.

Even though HTML5 in theory is a technology to
bridge all platform gaps, it has become evident that
browser support needs to be taken into consideration.

WEBIST�2015�-�11th�International�Conference�on�Web�Information�Systems�and�Technologies

608



Therefore, when making a choice the intended plat-
forms should be kept in mind. Judging from basic
support only, AppCache and WebStorage form the
“smallest common divisors” but at the same time are
not always useful (e.g. since WebStorage has no query
language). Web SQL could be chosen for Webapps
that are mainly used on mobile devices; IndexedDB
would be the choice for PC applications. These con-
siderations are only rough recommendations, though:
app usage could change and also performance has to
suffice. At the same time, polyfills might be used to ex-
tend browser support by providing emulated function-
ality (Sharp, 2010). Our recommendation, therefore, is
to wage arguments if more than one technology seems
appropriate, and if the app is intended for longer use
or if the storage component of it is not easily inter-
changeable.

An additional recommendation is to consider how
synchronization and offline-capabilities are used in
other scenarios. For some applications, mature so-
lutions exist; the underlying concepts might be ap-
plicable for usage in mobile Webapps. One closely
related example is Google Docs (2015). It offers quite
advanced offline functionality. In general, synchroniza-
tion for Web-based collaborative tools (Fraser, 2009)
might be worth a closer look.

Another source of advise might be work on
database replication (Wiesmann et al., 2000a; Wies-
mann et al., 2000b). Even thought replicating
databases is different to synchronizing apps, the basic
principles apply to both. Depending on what kind
of synchronization is desired, particularly domain-
specific applications of replication should be assessed.
Details are out of scope of this paper; for examples
check the work by by Groothuyse, Sivasubramanian,
and Pierre (2007), Amza, Cox, and Zwaenepoel (2003)
and Lin, Kemme, Patino-Martinez, and Jimenez-Peris
(2006).

6.3 Limitations, Outlook and Future
Work

Two kinds of limitations have to be assessed: the limi-
tations of the presented work, and the boundaries inher-
ent to Webapp offline usage and synchronization. Our
work is naturally limited in that it is a snapshot. How-
ever, this limitation is inherent to most papers on mo-
bile devices and apps due to the fast pace of progress.
The key to making a contribution is to provide applica-
ble knowledge (which we do in Sections 2 to 5) and
a generalization (Section 6). Our case study and the
recommendations are limited due to their qualitative
character. To back our work, additional case study-like
experimental work is required. Advise should then be

verified quantitatively (e.g. in a field study), which is
a task for future work.

Offline-enabled Webapps are much less limited
than they used to be. The technology is quite potent.
Nevertheless, improvements are desirable particularly
with regard to support for developers in designing
synchronization mechanisms (Agrawal et al., 2013),
e.g. with novel frameworks. The greatest shortcom-
ing, however, seems to be the lack of experience: de-
velopers will need more guidance on how to choose
technology and on how to apply it. Eventually, the
collecting of best practices and the design of patterns
drive further technological improvements.

Giving an outlook that goes beyond speculation
is no easy task. There is no reason to believe that
technological progress will decelerate. Moreover, a
widespread use of offline technology in new Webapps
is likely. How the distinct technologies evolve and
whether browser support of technologies will improve
is hard to estimate, though.

From a scientific point of view, it will be needed
to examine existing approaches that combine mobility
with offline usage. This for example is relevant when
deploying mobile devices in regions with scarce con-
nectivity (Shrestha et al., 2011). It has to be assessed
whether HTML5 Webapps with offline capabilities are
a proper choice in the scenarios already described in
the literature or if there are obstacles that have yet to be
overcome. Moreover, there are situations in which sim-
ple offline capabilities and common synchronization
strategies are not sufficient. In these cases, sophisti-
cated approaches are required, which are beyond the
scope of what HTML5 seems to be suited for. An quite
recent example is (near) real-time access of health data
in a mobile environment (Lomotey and Deters, 2014).

As also given as a recommendation, future work
could try to transfer knowledge from other applications
of synchronization to what is required for mobile We-
bapps. This particularly applies to advanced database
replication.

Another field that should be assessed is security
of storage technologies (West and Pulimood, 2012).
Security is named a prevailing topic by practitioners
(Majchrzak and Heitkötter, 2014) and it poses many
research challenges. Storing data locally that used to
reside on backends introduces new risks. Think of
stolen smartphones and compromised devices that con-
tain confidential corporate data. In addition, storage
technology itself might pose security risks.

With this article, our work on offline-provisioning
for Webapps is finished. However, we will likely
revive our efforts once there has been technological
progress or typical usage has moved beyond today’s
scope. Offline-provisioning however will stay on our

Offline-provisioning�and�Synchronization�of�Content�for�Mobile�Webapps

609



agenda for it also is important for native apps and
in cross-platform scenarios. While the native case is
quite well understood and covered by textbooks (such
as by Mednieks, Dornin, Meike, and Nakamura (2012)
and Conway, Hillegass, and Keur (2014)), offline ca-
pabilities can become challenging for cross-platform
frameworks. For those built atop or by employing
Web technology (such as the popular PhoneGap a.k.a
Apache Cordova (2014)), the findings of this article
commonly apply. For those that have an (probably pro-
prietary) technology stack of their own, the situation is
not as simple. Particularly if frameworks yield native
code, the unified approach that comes with HTML5 is
lost. Rather, an abstraction from platform-depended
capabilities has to be found. The latter is a challenge
we will tackle in the future.

Additionally, we intend to more closely investi-
gate synchronization. This article provides the tech-
nological background, but synchronization has both
implications for the proper usage of technology and
for business processes.

7 CONCLUSION

In this paper, we presented the status quo of offline-
provisioning and synchronization of content for mobile
Webapps. Besides providing an overview, which can
be used as a reference, we sketched a scenario and
discussed insights. Moreover, we illustrated situation-
specific recommendations.

The outlook is blurry to some degree but promising.
The increasing interest of businesses in mobile Com-
puting (Majchrzak and Heitkötter, 2014) will likely
foster sophisticated usage of the available technology
and drive improvements – and probably new develop-
ments. The same applies to synchronization, which
has significance for many apps. Therefore, offline
technologies for Webapps and synchronization will be
topics of both research and practitioners’ interest for
the near time to come.

REFERENCES

Agrawal, N., Aranya, A., and Ungureanu, C. (2013). Mobile
data sync in a blink. In Proc. HotStorage ’13, HotStor-
age’13, Berkeley, CA, USA. USENIX Association.

Amza, C., Cox, A. L., and Zwaenepoel, W. (2003). Dis-
tributed versioning: Consistent replication for scaling
back-end databases of dynamic content web sites. In
Proc. Middleware ’03, pages 282–304, New York, NY,
USA. Springer.

Ananthanarayanan, G., Blagsvedt, S., and Toyama, K.
(2006). Oweb: A framework for offline Web browsing.

In Proc. LA-WEB ’06, pages 15–24, Washington, DC,
USA. IEEE CS.

Apache Cordova. (2014). Retrieved from http://cordova.
apache.org/

Archibald, J. (2012). “Application Cache is a Douchebag”.
Retrieved from http://alistapart.com/article/application-
cache-is-a-douchebag

“Basic concepts – IndexedDB”. (2013). Retrieved from
https://developer.mozilla.org/en-US/docs/IndexedDB/
Basic Concepts Behind IndexedDB

Berjon, R., Faulkner, S., Leithead, T., Doyle Navara,
E., O’Connor, E., Pfeiffer, S., and Hickson, I.
(2013). Offline Web applications. Retrieved
from http://www.w3.org/html/wg/drafts/html/master/
browsers.html#offline

Bidelman, E. (2010). A Beginner’s Guide to Using the Appli-
cation Cache. Retrieved from http://html5rocks.com/
en/tutorials/appcache/beginner/

Bidelman, E. (2011). Exploring the FileSystem APIs.
Retrieved from http://html5rocks.com/en/tutorials/
file/filesystem/

Cannon, B. and Wohlstadter, E. (2010). Automated object
persistence for JavaScript. In Proc. WWW ’10, pages
191–200, New York, NY, USA. ACM.

Charland, A. and Leroux, B. (2011). Mobile application
development: Web vs. native. Commun. ACM, 54:49–
53.

Coda File System. (2014). Retrieved from http://www.coda.
cs.cmu.edu/

Conway, J., Hillegass, A., and Keur, C. (2014). iOS Pro-
gramming. Big Nerd Ranch, 4th edition.

Dar, S., Franklin, M. J., Jónsson, B. T., Srivastava, D., and
Tan, M. (1996). Semantic data caching and replace-
ment. In Proc. VLDB ’96, pages 330–341, San Fran-
cisco, CA, USA. Morgan Kaufmann.

Deveria, A. (2014). Can I use ? Retrieved from http://
caniuse.com/

Felke-Morris, T. (2014). Web Development and Design Foun-
dations with HTML5. Addison-Wesley Professional,
7th edition.

Flanagan, D. (2006). JavaScript. O’Reilly, 5 edition.
Fraser, N. (2009). Differential synchronization. In Proc.

2009 ACM DocEng’09, pages 13–20, New York,
NY, USA. Retrieved from http://neil.fraser.name/
writing/sync/eng047-fraser.pdf

Gaubatz, P., Hummer, W., Zdun, U., and Strembeck, M.
(2014). Enforcing entailment constraints in offline
editing scenarios for real-time collaborative Web docu-
ments. In Proc. SAC ’14, pages 735–742, New York,
NY, USA. ACM.

Goncalves, E. and Leitao, A. M. (2007). Offline execution in
workflow-enabled Web applications. In Proc. QUATIC
’07, pages 204–207, Washington, DC, USA. IEEE CS.

Gonçalves, E. E. M. and Leitão, A. M. (2009). Using com-
mon lisp to prototype offline work in web applications
for rich domains. In Proc. 6th Europ. Lisp Workshop,
pages 18–27, New York, NY, USA. ACM.

Google Docs. (2015). Retrieved from https://docs.
google.com/

WEBIST�2015�-�11th�International�Conference�on�Web�Information�Systems�and�Technologies

610



Green, I. (2011). Migrating your WebSQL DB to IndexedDB.
Retrieved from http://html5rocks.com/en/tutorials/
webdatabase/websql-indexeddb/

Groothuyse, T., Sivasubramanian, S., and Pierre, G. (2007).
Globetp: Template-based database replication for scal-
able Web applications. In Proc. WWW ’07, WWW ’07,
pages 301–310, New York, NY, USA. ACM.

Hales, W. (2012). HTML5 and JavaScript Web Apps.
O’Reilly.

Heitkötter, H., Hanschke, S., and Majchrzak, T. A. (2013).
Evaluating cross-platform development approaches for
mobile applications. In LNBIP, volume 140, pages
120–138. Springer.

Heitkötter, H., Majchrzak, T. A., and Kuchen, H. (2013).
Cross-platform model-driven development of mobile
applications with MD2. In Proc. SAC ’13, pages 526–
533.

Heitkötter, H., Majchrzak, T. A., Ruland, B., and Weber,
T. (2013). Evaluating frameworks for creating mo-
bile Web apps. In Proc. WEBIST 13, pages 209–221.
SciTePress.

Hickson, I. (2010). Web SQL Database. Retrieved from
http://www.w3.org/TR/webdatabase/

Hickson, I. (2013). Web Storage. Retrieved from http://
www.w3.org/TR/webstorage/

Höpfner, H., Mansour, E., and Nicklas, D. (2009). Review
of Data Management Mechanisms on Mobile Devices.
it - Information Technology, 51(2):79–84.

HTML5. (2014). Retrieved from http://www.w3.org/TR/
html5/.

Hurth, D. (2010). JSON Beats XML, or Ajaj vs Ajax.
Retrieved from http://www.ajaxonomy.com/2010/xml/
json-beats-xml-or-ajaj-vs-ajax

Kao, Y.-W., Chow, T.-H., and Yuan, S.-M. (2011). Of-
fline Web browsing for mobile devices. J. Web Eng.,
10(1):21–47.

Kao, Y.-W., Lin, C., Yang, K.-A., and Yuan, S.-M. (2012).
A Web-based, offline-able, and personalized runtime
environment for executing applications on mobile de-
vices. Comput. Stand. Interf., 34(1):212–224.

Karthik, R., Patlolla, D. R., Sorokine, A., White, D. A., and
Myers, A. T. (2014). Building a secure and feature-
rich mobile mapping service app using HTML5: Chal-
lenges and best practices. In Proc. of the 12th ACM Int.
Symp. on MobiWac ’14, MobiWac ’14, pages 115–118,
New York, NY, USA. ACM.

König-Ries, B., Türker, C., and Höpfner, H. (2007). Informa-
tionsnutzung und -verarbeitung mit mobilen Geräten –
Verfügbarkeit und Konsistenz. Datenbank-Spektrum,
7(23):45–53.

Kovatsch, M., Mayer, S., and Ostermaier, B. (2012). Moving
application logic from the firmware to the cloud. In
Proc. IMIS ’12, pages 751–756. IEEE.

Kristol, D. and Montulli, L. (1997). Request for comments
2109 – HTTP state management mechanism. Retrieved
from https://www.ietf.org/rfc/rfc2109.txt

Lam, F., Lam, N., and Wong, R. (2002). Efficient synchro-
nization for mobile XML data. In Proc. CIKM ’02,
pages 153–160, New York, NY, USA. ACM.

Lin, Y., Kemme, B., Patino-Martinez, M., and Jimenez-
Peris, R. (2006). Applying database replication to
multi-player online games. In Proc. NetGames ’06,
New York, NY, USA. ACM.

Lomotey, R. K. and Deters, R. (2014). Mobile-based med-
ical data accessibility in mhealth. In Proc. MOBILE-
CLOUD ’14, pages 91–100, Washington, DC, USA.
IEEE CS.

Macedonia, M. (2007). iPhones Target the Tech Elite. Com-
puter, 40:94–95.

Majchrzak, T. A. and Heitkötter, H. (2014). Status quo and
best practices of app development in regional compa-
nies. In LNBIP, volume 189, pages 189–206. Springer.

Makzan (2014). HTML5 Game Development Hotshot. Packt
Publishing.

Marco, F., Gallud, J., Penichet, V., and Winckler, M. (2013).
A model-based approach for supporting offline interac-
tion with web sites resilient to interruptions. In Current
Trends in Web Engineering, volume 8295 of LNCS,
pages 156–171. Springer, Heidelberg, Germany.

Mednieks, Z., Dornin, L., Meike, G. B., and Nakamura, M.
(2012). Programming Android. O’Reilly.

Narasimhan, P. (2014). IndexedDB polyfill over WebSql. Re-
trieved from http://nparashuram.com/IndexedDBShim/

Ohrt, J. and Turau, V. (2012). Cross-platform development
tools for smartphone applications. IEEE Computer,
45(9):72–79.

Powell, A. (2012). db.js. Retrieved from http://aaronpowell.
github.io/db.js/

Quilligan, A. (2013). HTML5 Vs. Native Mobile Apps:
Myths and Misconceptions. Retrieved from http://
forbes.com/sites/ciocentral/2013/01/23/html5-vs-
native-mobile-apps-myths-and-misconceptions/

Ranganathan, A. and Sicking, J. (2013). File API.
Rodriguez, A. (2008). RESTful Web services: The basics.

Retrieved from http://www.ibm.com/developerworks/
webservices/library/ws-restful/

Roth, G. (2009). RESTful HTTP in practice. Retrieved
from http://infoq.com/articles/designing-restful-http-
apps-roth

Satyanarayanan, M. (1996). Fundamental challenges in
mobile computing. In Proc. PODC ’96, pages 1–7,
New York, NY, USA. ACM.

Sharp, R. (2010). What is a Polyfill? Retrieved from
http://remysharp.com/2010/10/08/what-is-a-polyfill

Shrestha, S., Moore, J., and Nocera, J. A. (2011). Open-
source platform: Exploring the opportunities for offline
mobile learning. In Proc. MobileHCI ’11, pages 653–
658, New York, NY, USA. ACM.

Song, J., Yu, G., Wang, D., and Nie, T. (2006). Offline web
client: Approach, design and implementation based
on web system. In Proc. WISE ’06, pages 308–314,
Berlin, Heidelberg, Germany. Springer.

Takada, M. (2012). Modern Web applications: an overview.
Retrieved from http://singlepageappbook.com/
goal.html

TodoMVC. (2014). Retrieved from http://todomvc.com/
Uhrhane, E. (2012). File API: Directories and System. Re-

trieved from http://www.w3.org/TR/file-system-api/

Offline-provisioning�and�Synchronization�of�Content�for�Mobile�Webapps

611



Vora, A., Tari, Z., and Bertok, P. (2004). An hoarding ap-
proach for supporting disconnected write operations
in mobile environments. In Proc. SRDS ’04, pages
276–288, Washington, DC, USA. IEEE CS.

Weeks, M. (2014). Creating a web-based, 2-D action game
in JavaScript with HTML5. In Proceedings of the 2014
ACM Southeast Regional Conference, ACM SE ’14,
pages 7:1–7:6, New York, NY, USA. ACM.

Weikum, G. and Vossen, G. (2001). Transactional Informa-
tion Systems. Morgan Kaufmann, San Francisco, CA,
USA.

West, W. and Pulimood, S. M. (2012). Analysis of privacy
and security in HTML5 web storage. J. Comput. Sci.
Coll., 27(3):80–87.

Wiesmann, M., Pedone, F., Schiper, A., Kemme, B., and
Alonso, G. (2000a). Understanding replication in
databases and distributed systems. In Proc. of the 20th
ICDCS, Washington, DC, USA. IEEE CS.

Wiesmann, M., Schiper, A., Pedone, F., Kemme, B., and
Alonso, G. (2000b). Database replication techniques:
A three parameter classification. In Proc. of the 19th
IEEE SRDS, Washington, DC, USA. IEEE CS.

Yasuda, K. (2013). Quota Management API. Retrieved from
http://www.w3.org/TR/quota-api/

Zorrilla, M., Martin, A., Sanchez, J. R., Tamayo, I. n., and
Olaizola, I. G. (2014). HTML5-based system for in-
teroperable 3D digital home applications. Multimedia
Tools Appl., 71(2):533–553.

WEBIST�2015�-�11th�International�Conference�on�Web�Information�Systems�and�Technologies

612


