
Duck Testing Enhancements for Automated Validation
of Student Programmes

How to Automatically Test the Quality of Implementation of Students’ Programmes

Pavel Herout and Premysl Brada
Department of Computer Science and Engineering, University of West Bohemia, Plzen, Czech Republic

Keywords: OOP, Testing, Duck Typing, Evaluation, Java, JUnit.

Abstract: This article deals with the issue how to test the quality of novice programmers’ software assignments. This
problem is becoming serious due to the hundreds of students in the introductory courses of programming.
The article discusses the motivation for using quality of implementation tests of students’ programmes, their
principles and a practical solution. So called “duck tests” are used for this type of validation. A combination
of a framework Duckapter, JUnit library and own programmes constitutes the practical solution. It is
represented by a self-contained tool which is freely at disposal. The described tool has been used for three
years in the elementary course of object oriented programming based on the Java programming language,
alongside three other tools used for automatic validation of students projects. The article discusses the
experience gained from its use and the effects on student’s programming skills.

1 INTRODUCTION

Basic courses of programming have several goals.
Certainly the main one is to lay the foundations of
programming. The next aim is considered to be
teaching students the good habits/practices,
recommended techniques and other so-called “extra-
functional properties”. Those will be used by
students later on in all programming subjects during
their studies, and also in their professional life. For
the real learning of skills mentioned above it is
necessary to use them actively in students’
individual projects.

To make sure that they really have learned them
and moreover that they have done it properly, the
best way is to inspect the code thoroughly. That
means situation when a teacher looks into student’s
source code and discusses the mistakes the student
made in both the algorithmic aspects and in
language constructs.

Unfortunately, this ideal status “one-to-one”
(Bloom, 1984, Lane, 2003) is mostly hard to achieve
due to the high number of students (hundreds) in the
programming courses. In reality, the number of
individual student projects is even larger while it is
necessary to evaluate all of these projects to a
reasonable degree.

One widely adopted solution of this problem is

to automatically check the projects on some
validation server (eg. Web-CAT, 2014). Although not
addressing all needs in teaching programming skills,
the appeal of automated validation lies in the
possibility to provide basic feedback to large
numbers of students in a time-effective manner.

1.1 Testing Techniques and
Possibilities

Two main needs related to this validation are testing
the student programmes for correct functionality and
checking the qualitative aspects of their internal
implementation.

There are several ways how to check the
functionality, but the most appropriate one seems to
be the usage of Unit tests. Unit tests have several
advantages. The most important one nowadays is
that they are becoming integral parts of the
programmer’s work. (“Immediately check the
functionality of your piece of code.”) That means,
employing Unit tests as part of course evaluation
prepares students for this style of programming, e.g.
in test-driven-development. The second advantage
of the Unit test is their fine granularity. Rather than
exercising the functionality of a program as a whole,
it is possible and convenient to explore the
functionality of standalone methods. This approach

228
Herout P. and Brada P..
Duck Testing Enhancements for Automated Validation of Student Programmes - How to Automatically Test the Quality of Implementation of Students’
Programmes.
DOI: 10.5220/0005412902280234
In Proceedings of the 7th International Conference on Computer Supported Education (CSEDU-2015), pages 228-234
ISBN: 978-989-758-107-6
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)

significantly helps properly structure the source
code.

A disadvantage of the Unit tests is that they can
validate the functionality, moreover only the
functionality of accessible methods. When we are
concerned about the proper usage of attributes or
private methods (common elements of well designed
code), Unit tests do not help.

To assess the internal quality of implementation,
a commonly used means are tools for static checking
of the source code. The most known ones are PMD
(PMD, 2014), CheckStyle or FindBugs. In the case
of checking of beginners’ programs we usually use
only very limited set of their possibilities (rules),
because there we do not expect sophisticated bugs to
appear in these simple programmes and the detailed
checks would overwhelm the students. Exaggerating
slightly, we use these tools mainly for checking how
“nicely written” the explored code is, i.e. its
comprehensibility for humans—eg. an inspection of
block parenthesis, an appropriate number of lines of
methods, suitable number of formal parameters, not
too big cyclomatic complexity etc.

A good programmer’s documentation is a
necessary part of a well written source code. Not
many solutions are available in this respect; one
such tool we developed (JavadocCheck, 2014) is
able to check an occurrence (but not
meaningfulness) of all the elements of the source
code which can be documented.

1.2 Tests of Quality of Implementation
and Meeting Assignment

Unfortunately, it is quite uncommon to
automatically test how student met the assignment
and what is the quality of implementation. Both
these needs are very important in the introductory
programming courses.

Simple tasks in these courses are very often
based on learning basic skills which students
sometimes struggle with. A typical negative example
is not using any formal parameters of method or
local variables, when students misuse “global”
attributes instead. “Magic numbers” in the source
code instead of using symbolic constants are another
example. Very confusing are insignificant names of
variables or methods (namely private ones).

Functional (Unit) tests are inherently not capable
to reveal all these flaws, and we cannot use them for
tests of documentation either. The tools for static
checking of the source code are successful in this
case, but only partly.

1.3 Goal of This Paper

The main goal of this article is to explore a solution
which would reconcile these two needs—to test that
functionality with respect to a given assignment is
correct and to check that the implementation is well
written, in an automated way. In the following
sections we first discuss a motivation example and
then describe a technique which has proven to be
useful in our work. It is based on a lesser known
approach of duck testing.

2 MOTIVATION EXAMPLE

Let’s have a typical assignment in beginner’s
courses of programming: Prepare the class Person
which calculates a person’s Body Mass Index
(BMI). The “non-functional requirements” are:
 The class is able to create immutable object only.
 Attributes of this class are name, real weight (in

kg) and integer height (in cm).
 The class has two constructors. A constructor

without parameters creates the person with name
Person, weight 65 (kg) and height 175 (cm). Use
symbolic constants for setting these values.
 The constructor with three formal parameters sets

all the three attributes.
 Both constructors calculate an integer value of

BMI and store it into an attribute.
 BMI will be calculated by private method
calculateBMI().
 All attributes will have getters only, no setter

(because of the immutable objects).
 The class has an overriden method toString(),

which returns eg. string
"Person [w:65.0, h:175, BMI:21]".

2.1 Teacher’s Solution

The teacher’s idea of source code meeting the
assignment is as follows (the name of the class is
changed to PersonByTeacher for the sake of
definiteness):

/** Class Person with atributes
 * name, weight and height
 * BMI is calculated
 * immutable object - getters only
 */
public class PersonByTeacher {
 private static final String
 DEF_NAME = "Person";
 private static final double
 DEF_WEIGHT = 65.0;

Duck�Testing�Enhancements�for�Automated�Validation�of�Student�Programmes�-�How�to�Automatically�Test�the�Quality�of
Implementation�of�Students'�Programmes

229

 private static final int
 DEF_HEIGHT = 175;

 private String name;
 private double weight;
 private int height;

 private final int BMI;

 public PersonByTeacher() {
 this(DEF_NAME, DEF_WEIGHT,
 DEF_HEIGHT);
 }

 public PersonByTeacher(String name,
 double weight, int height) {
 this.name = name;
 this.weight = weight;
 this.height = height;
 BMI = calculateBMI();
 }

 public String getName()
 { return name; }
 public double getWeight()
 { return weight; }
 public int getHeight()
 { return height; }

 public int getBMI()
 { return BMI; }

 private int calculateBMI() {
 double heightInMe = height / 100.0;
 double bmi = weight /
 (heightInMe * heightInMe);
 return (int) Math.round(bmi);
 }

 @Override
 public String toString() {
 return name + " [" + "w:" + weight
 + ", h:" + height
 + ", BMI:" + getBMI() + "]";
 }
}

2.2 Student’s Solution

Unfortunately, a student’s solution handed in would
typically be like the following one (the name of the
class is changed to PersonByStudent):

public class PersonByStudent {
 static String sss = "Person";

 String s;
 double d;
 int i;
 double d1, d2;

 PersonByStudent() {
 s = sss;
 d = 65.0;
 i = 175;
 }

 PersonByStudent(String parS,
 double parD, int parI) {
 s = parS;
 d = parD;
 i = parI;
 }

 String getName() { return s; }
 double getWeight() { return d; }
 int getHeight() { return i; }

 byte getBMI() {
 d1 = i / 100.0;
 d2 = d / (d1 * d1);
 return (byte) Math.round(d2);
 }

 @Override
 public String toString() {
 return s + " [" + "w:" + d + ", h:"
 + i + ", BMI:" + getBMI() + "]";
 }
}

2.3 A Confrontation of Both Solutions

Both solutions would pass all functional tests since
they give functionally the same results. However,
the student’s solution does not meet assignment fully
(and the quality of its implementation is poor)
because:
 it does not use the symbolic constants,
 it does not use the access modifiers (public,

private),
 the naming of attributes is very unclear for a

reader (but probably clear for the student, who
chose d for double instead of weight, etc.),

 it uses “global” variables instead of local ones
(d1, d2),

 the method getBMI() returns inappropriate (not
expected) integer type (byte),

 the private method for calculating of BMI is not
used at all (private methods cannot be tested
externally).

Static code checkers would identify some of
these problems but they cannot compare the solution
to the one expected by the teacher.

The following section shows how this problem
can be overcome by using duck tests to pinpoint all
of these flaws.

CSEDU�2015�-�7th�International�Conference�on�Computer�Supported�Education

230

3 DUCK TESTS AND THEIR USE

In dynamically typed languages, an object's
suitability for some purpose is determined by the
presence of certain methods and properties (with
appropriate meaning), rather than the actual type of
the object. This concept has been named duck
typing, after a test attributed to James Whitcomb
Riley, which may be phrased as follows:

“When I see a bird that walks like a duck and
swims like a duck and quacks like a duck, I
call that bird a duck.”

In duck typing, a programmer is only concerned
about ensuring that objects behave as demanded in a
given context, rather than ensuring that they are of a
specific type. Instead of specifying types formally,
duck typing practices rely on documentation, clear
code, and testing to ensure correct use (Duck typing,
2014).

The duck tests for Java programming language
as described below are based on the Duckapter
framework (Duckapter, 2012). It was created as a
master’s project and its detailed description can be
found at (Orany, 2010). Basic principles of its
functionality are duck typing, Java annotations and
the adaptor design pattern.

3.1 Duckapter Test Specifications

In Duckapter, the checked properties of a class are
defined by interfaces—every such attribute, method
and constructor must be described in a standalone
interface. Because it is not possible to describe
requested attributes, constructors or static methods
in Java interfaces, annotations describe these
aspects. The framework is able to process these
annotations when running the tests.

Attributes are denoted by the @Field annotation
which determines the particular attribute. In the next
step, following annotations are used:
@Declared—attribute is declared in the checked

class, not inherited
@Private @Public @Protected—access

modifiers
@StaticField @NonStatic—static or instance

attribute
@Final—constant

The name of the attribute must start with the
prefix get and finishes with the parenthesis, like a
method (getDEF_NAME()).

Description of checked methods must be again
described in the interface and it is very similar to a

definition of method. Following annotations are
used:
@Declared—method is declared in the checked

class, not inherited
@Private @Public @Protected—access

modifiers
@Static @NonStatic—static or instance method

The annotation @Constructor and the name
newInstance() with appropriate numbers and
types of formal parameters is used for description of
constructors.

Some examples from the Person class above in
their standalone interfaces are:

interface ITestDuckPerson_DEF_NAME {
 @Field @Declared @Private @Final
 @StaticField String getDEF_NAME();
}
interface ITestDuckPerson_name {
 @Field @Declared @Private
 @NonStatic String getname();
}

interface ITestDuckPerson_toString {
 @Declared @Public @NonStatic
 String toString();
}
interface ITestDuckPerson_calculateBMI() {
 @Declared @Private @NonStatic
 int calculateBMI();
}

interface ITestDuckPerson_Person2 {
 @Constructor Person
 newInstance(String name,
 double weight, int height);
}

3.2 Actual Testing

During the test the framework Duckapter verifies if
the checked class includes all elements defined in
the interfaces. A method wrap() is used for it. Its
real parameters are the checked class and a specific
interface. If all checked parts of class’s element
correspond with their description in the interface, the
actually checked element is valid. If not, an
exception WrappingException is thrown.

A short example of testing source code for the
attribute DEF_NAME described in the interface
ITestDuckPerson_DEF_NAME (see above):

public class DuckTestPerson {
...
 try {

Duck�Testing�Enhancements�for�Automated�Validation�of�Student�Programmes�-�How�to�Automatically�Test�the�Quality�of
Implementation�of�Students'�Programmes

231

 Duck.wrap(new Person(),
 ITestDuckPerson_DEF_NAME.class);
 }
 catch (WrappingException e) {
 System.out.println(e.getAdapted()
 .getClassWrapper()
 .getUnimplementedForInstance());
 System.out.println("Wrong declared"
 + " attribute DEF_NAME - " +
 "must be private static final ");
 }
...
}

If we return back to the motivation example
above, in the teacher’s solution we can see the parts
with a grey background—they provide the
information what needs to be checked in the
solution. If the corresponding duck tests are a part of
an automatic validation tests, a student’s source code
like the one shown will be rejected as incorrect.
Moreover, detailed error messages will advise the
student about the problems found.

3.3 Limitation of Duck Tests

The basic idea of duck test is well suitable for our
purpose; also the implementation in the Duckapter
framework is fit to use.

However, a major weakness for regular use is that
it is a necessity to have a template solution (usually
the teacher’s one) in advance. Moreover, the
students have to keep this solution. These
requirements imply several drawbacks:
 Duck test are suitable only for rather simple

(trivial) tasks.
 Student’s own creativity is almost impossible.
 Teacher’s solution must not include any errors or

imperfections.

Despite these limitations it is possible to find
situations (see Section 5) where these are not a
drawback but an advantage. This comprises the
evaluation of programs in the introductory
programming courses where students learn the basic
skills and the level of their creativity should be
minimized.

During practical use of duck tests in our first year
courses, we also revealed several practical issues:
 Handmade (eg. using text editor) preparation of

all of interfaces with the descriptions of attributes,
methods and constructors is long term
monotonous work requiring a high level of
perfection. Several errors or omissions occur
every time and it is very difficult to detect them.
The complexity (eg. number of testing interfaces)

obviously increases with the number of checked
classes. The situation becomes very difficult to
manage if we have to use approximately 100
interfaces (Section 5).
 Error output to the console is not suitable.
 The same set of tests is used in two contexts—for

student self-evaluation and when grading the
projects they hand in. Therefore, students need to
have the same local testing programme as are the
ones located on the validation server, used for the
grading evaluation.
 Running duck tests from the command line is an

almost insuperable obstacle for many beginners.

4 CREATED MODIFICATION OF
DUCK TESTS AND
RESULTING SYSTEM

On the basis of the experiences mentioned above we
decided to keep using the framework Duckapter but
extend its possibilities in the following ways:
 An evaluation of tests (pass/fail) will be provided

by JUnit library, which is well known and widely
used.
 A new duck test generator will be prepared to

simplify duck tests preparation. It should have a
GUI and work automatically, eg. generate the
source code of all interfaces and all tests.
 A new duck test launcher will be created. It must

have a GUI to let duck test run as easily as
possible. This way the students can run tests
repeatedly with clear results and error messages.
The “directive feedback” (Shute, 2008) is to be
used.

Implementation of these ideas resulted in a new
system consisting of a test generator and test
launcher (www.kiv.zcu.cz/~herout/data/duck-
test-system.zip) which has been used for three
consecutive years now. The test generator
(duckTestGenerator.jar) automatically creates
two source codes for each of the checked classes.
The ITestDuckXYZ.java contains all interfaces
(eg. ITestDuckPerson.java) and the file
TestDuckXYZ.java the source codes of all tests
(eg. TestDuckPerson.java). The generator
subsequently compiles both files and packs them,
together with the Duckapter framework and JUnit
library, into one JAR file (duckTestPer-
son.jar). This file is at disposal to the students.

The generator works fully automatically, the
only activity which the teacher should do is to select

CSEDU�2015�-�7th�International�Conference�on�Computer�Supported�Education

232

a list of checked classes. The test launcher allows
choosing a given JAR file (eg.
duckTestPerson.jar) and a directory with
student’s source codes. The launcher runs all the
prepared duck tests and generates a detailed and
transparent error message in case any test fails. The
student is able to correct flaws in his/her source code
immediately and validate this correction by another
run of the tests.

5 PRACTICAL EXPERIENCE

The system for generating and running duck tests
described above has been a routine operation for
three years of teaching the course Object Oriented
Programming, run in the first year of a bachelor
curriculum.

Note: In this course we use Level 1 of learner
engagement, where “an advancement employs
simple scenarios or interactive examples that
demonstrate or require the learner to work through a
problem that is tied to a learning objective.”
(Greitzer, 2007)

Approximately 100 students enrol for this course

each year. Each of them has to prepare a complex
student’s project consisting of eight parts which
gradually follow each other.

The final version (task) of the project consists of
8 classes, one enum and two interfaces. Together
they have 22 constructors and 58 methods.

All classes are checked by duck test (and of
course parallel for their functionality and
completeness of Javadoc documentation). There are
103 duck tests totally in the final version. All classes
of the whole project are checked by 326 duck test,
but some of them repeat, of course.

Students have all mentioned tests at their
disposal and run them by the launcher mentioned
above. That means that the launcher can be
considered as verified. On the other hand the test
generator is used by the author of this article, so it
should be considered as a prototype.

At the beginning of the project students consider
Duck-test as useless and annoying (similarly to static
checking of the source code and checking of
completeness of Javadoc comments). But during the
course they find out their usefulness. They concede
this fact in personal meetings during seminars and in
course final quality assessment too.

Figure 1: Duck test launcher.

Duck�Testing�Enhancements�for�Automated�Validation�of�Student�Programmes�-�How�to�Automatically�Test�the�Quality�of
Implementation�of�Students'�Programmes

233

They realize that without properly fulfilling non-
functional requirements they cannot understand a
progressive complexity of the project (the first task
has only one class, but the final task 11
classes/enums/interfaces).

Understanding that their piece of source code is
not isolated and the only one used, but forms a part
of bigger system, is very important for them.

On the other hand as teachers we know that fully
automatic validation does not solve all problems.
We therefore check the source code of the final task
manually too.

Because the students have used the Duck
launcher locally up to now, we do not have data
about their mistakes and improvement at disposal.
This is planned to change in the future.

6 CONCLUSIONS

This article describes motivation for using tests of
implementation quality for students’ programmes,
their principles and a practical solution based on the
duck testing approach. The practical solution is
represented by a system of tools which allow highly
automated use.

The examples of practical experience gained
during three years of usage of the system allow us to
state that implementation quality tests prove their
usefulness as a complement to other validation test.

The proposed tool need not be used directly by
students or for automatic validation only. It can be
used by the teachers only to quickly pinpoint flaws
in the student programme, so the teacher can
concentrate e.g. on students with higher number of
flaws.

For future enhancements of the approach, we are
preparing data collection from all running Duck-
tests. The goal is to make it possible to analyse:

 continuous improvement of students during the
course,

 typical / most common mistakes,

 correlation between total error rate and final
mark,

 percentage of students who make mistakes
repeatedly, etc.

Further, the used “directive feedback” can be
exchanged to the “error flagging” one (Shute, 2008)
for some advanced tasks.

ACKNOWLEDGEMENTS

This work was supported by Ministry of Education,
Youth, and Sport of the Czech Republic—University
specific research—1311.

REFERENCES

Bloom, B. S., 1984. The 2 sigma problem: The search for
methods of group instruction as effective as one-to-
one tutoring. Educational Researcher 13(6), pp. 4-16.

Lane, H. C., 2003. Preventive Tutoring in Programming:
A Tutoring System for Novice Program Design.,
University of Pittsburgh.

Web-CAT, 2014. Resources for automated grading and
testing, http://web-cat.org.

PMD, 2014. The scanner of Java source code,
http://pmd.sourceforge.net.

JavadocCheck, 2014. The parser and the checker of Java
documentation, https://github.com/scais/jdparser.

Duckapter, 2012. Java reflection library introducing duck
typing into the Java programming language
http://github.com/musketyr/duckapter.

Orany, V., 2010. Automatic validation of students’
projects. Master Thesis, University of Economics,
Prague.

Duck typing, 2014.
http://en.wikipedia.org/wiki/Duck_typing.

Shute, V. J., 2008. Focus on formative feedback. Review
of educational research 78(1), pp. 153-189.

Greitzer, F. L., Kuchar, O. A. and Huston, K,, 2007.
Cognitive science implications for enhancing training
effectiveness in a serious gaming context. Educ.
Resour. Comput., 7(3):2.

CSEDU�2015�-�7th�International�Conference�on�Computer�Supported�Education

234

