
Extending WSLA for Service and Contract Composition

Antonella Longo, Marco Zappatore and Mario A. Bochicchio
Dept. of Innovation Engineering, University of Salento, via Monteroni, Lecce, 73100, Italy

Keywords: SLA Management, SLA Measurement, SLA Composition, SLA Design.

Abstract: Cloud Services (CSs) nowadays experience constantly improving successes in IT scenarios. Dynamic
allocation of network, storage and computational resources, the hiding of visibility of internal IT
components, as well as the pay-per-use paradigm are becoming more and more widespread ways to provide
and consume services. The complexity of CSs is often due to service chains into which third-party services
are aggregated in order to satisfy user requests. This confirms the need of modeling both contracts and
corresponding Service Level Agreements (SLAs) referring to services provided to customers. Similarly,
time-related variability issues in CSs require run-time performance monitoring and reporting solutions
capable of comparing SLAs and feeding requesters with effective resource reservation and allocation
policies. A detailed analysis in contracts and SLAs management has revealed a lack of expressivity in SLA
specification and a consequent inadequacy in tools for describing and managing SLAs and contract
composition. Therefore, we propose an extension of WSLA, a widely known SLA description language. We
aim at modeling contracts and SLAs with additional details to support contract owners during service
composition and its monitoring. The proposed approach has been adopted to develop and validate a tree-
graph-based tool, to simplify SLA and contract composition.

1 INTRODUCTION

In modern IT environments, a wide variety of tasks
requires services to be created and provided to end-
users. A non-trivial problem concerns the definition
of service terms that have to be agreed between
parties and rendered as viable contracts. Arguably,
these contracts have to be at the same time
strategically effective and operationally feasible. In
this scenario, Service Level Agreements (SLAs)
(Telemanagement (TM) Forum, 2008) play a key-
role in describing service relevant features of a
service. Indeed, SLAs specify the agreements
between service producers and consumers in terms
of Quality of Service (QoS), service level
guarantees, Service Level Objectives (SLOs),
compliance to users’ requests, service time-
sustainability. They also define measurements and
criteria to be used when services fail or deviate
beyond specific tolerability thresholds from the
agreed-upon contract terms.

SLAs exhibit different types of complexity,
ranging from single to multiple, co-operating
providers and from single to bulks of diverse
customers; each SLA may concern single or

combined services, and the SLA specification may
be very qualitative and difficult to be transformed in
machine-readable elements. SLA specification
complexity may be inherent with each of the SLA
elements (i.e. contract duration, working window,
multiple targets for a single SLA, etc.).

SLAs usually refer to scenarios where a provider
and a customer agree upon the delivery of single
services with SLAs. Current IT scenarios, instead,
involve cloud paradigm or Business Process
Outsourcing (BPO), thus requiring paying much
more attention to service composition issues.
However, available methodologies and frameworks
lack in formalizing how IT managers can effectively
compose services, contracts they are defined into
and the corresponding SLAs.

The issues arising from both service composition
and corresponding SLAs has a significant relevance
in Cloud Computing (CC) and they affect service
providers and customers as well. On the one hand,
since CC must provide on-demand access to
customizable computational resources, IT managers
and service providers need to assess precisely
Service Levels (SLs) when they design the overall
contract for the delivered service. On the other hand,

307Longo A., Zappatore M. and Bochicchio M..
Extending WSLA for Service and Contract Composition.
DOI: 10.5220/0005401503070315
In Proceedings of the 17th International Conference on Enterprise Information Systems (ICEIS-2015), pages 307-315
ISBN: 978-989-758-098-7
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)

service consumers require fast service provisioning,
reliable resource exploitation, reduced management
efforts and frequent interaction with providers, thus
generating a great variety of SLOs that makes more
difficult to negotiate and finalize service selection.
Moreover, consumers require visibility on SLAs
monitoring data and demand auditing tools.

Since CC services impose aggregating many sub-
services into more complex, higher-level services,
IT managers must supervise the way such services
are functionally composed and also to combine SLs
into the delivered final output in order to effectively
satisfy business needs. The selected composing
contracts and specifications should allow users to
obtain easily the terms and conditions of the overall
contract without being domain-specific.

All these aspects may severely hinder specific
features in CC, such as providers’ accountability
when services do not match with their defined levels
or when delivered services exhibit failures beyond
the allowed guarantees. Therefore, IT cloud
managers need tools to assess how much they adhere
to the promised SLOs for the service chains they
manage, especially if resources are dynamically
reconfigured at run-time and customers must be
guaranteed through customized SLAs.

SLA technologies have been profitably applied
so far in Service-Oriented Architectures (SOAs)
(Baker and Dobson, 2005) thanks to their suitability
to model domain information better than ad-hoc
representations. Indeed, SLAs are: a) flexible and
potentially language-independent; b) capable of
defining both measurable quantities (e.g., accuracy,
availability, latency, cost) and non-measurable
aspects (e.g., reputation). Therefore, many formal
specifications have been developed to model SLAs
and their subject of application: WSLA (Keller and
Ludwig, 2002), SLANG (Lamanna et al., 2003),
BPEL (Xiang et al., 2004) are amongst the most
widely known. We focus on WSLA because it is
based on XML and its template is general enough to
cover different domain scenarios.

From such premises, this paper proposes a
descriptive template for contract and SLA
composition in service chains within the CC
environments. We started from WSLA and we have
extended it in order to overcome WSLA expressivity
limitations when dealing with SLA specification and
composition. The new model will allow Cloud
service providers to automatically manage contracts.
As a side positive effect of having such a more
suitable template for describing service composition,
SLAs and delivered services allow identifying
accountability issues more efficiently in CC

scenarios. The proposed template introduces
significant new aspects such as composition rules
and topologies and a more detailed SLA
specification description.

We also propose a tool (Contract-Aware Service
Composer, CASCO) easing contract composition
design and visualization as well as the collaboration
amongst different IT professionals. In order to
validate the proposed model, five different Key
Performance Indicators (KPIs) from CC (i.e.
availability, response time and Mean Time To
Response (MTTR), Mean Time Between Failure
(MTBF), Mean Time To Failure (MTTF)) have been
implemented in CASCO.

The paper is organized as follows. Section 2
analyses existing works on contract representation
models and SLA data management. Section 3
presents our extension of WSLA. The design and
implementation of the supporting tool are described
in Section 4. Section 5 applies the model to a real
use case scenario. Section 6 hosts conclusions.

2 RELATED WORKS

A SLA referring to a specific service should
consider descriptive aspects (agreeing parties, QoS,
obligations); matching between delivered services
and QoS; collected metrics (when and by whom);
penalties for service failures and unmatched SLs;
actions for undelivered services; providers’
responsibilities; technology re-alignments affecting
SLAs and delivered services. SLAs are enforced by
service management policies, thus ad-hoc IT
frameworks are needed, such as the Information
Technology Infrastructure Library (ITIL). These
solutions ensure that deployed applications and
services meet the required SLs at deployment,
operation, support and maintenance stages (Allen,
2006). SLAs need to be machine-readable, since
they are essential in SOAs, in order to support
service discovery, selection and processing w.r.t.
QoS. This originates numerous language
specifications to define SLAs. Some of them
combine high-level modeling languages and
knowledge representation techniques. The TAPAS
project (Lodi et al., 2007) proposed the SLAng
language, where SLAs are defined by mixing
Natural Language (NL), Object Constraint Language
(OCL) and Meta-Object Facility (MOF). In (Paschke
, 2008) a Rule-Based SLA (RBSLA) approach is
described: SLA management policies are provided
as RuleML constructs (Boley et al., 2001) and then
processed by a specific tool. PANDA (Anon., 2007),

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

308

is a Multi-Agent System focused on contract
negotiation, monitoring and Virtual Organization
evaluation. Although it provides some appealing
features (e.g., SLA template storage, partner profile
catalogue), it is primarily limited to Enterprise
Resource Planning Systems (ERP). Despite the high-
level of expressivity, those approaches do not offer
the best suitability to machine processing. Another
drawback is their difficult integration with
documents that traditionally describe Web Services,
as WSDL (Christensen et al., 2001).

XML-based implementations, more amenable to
be machine-readable have emerged, such as the
WSLA framework (Keller and Ludwig, 2002),
firstly introduced into the not anymore available
Web Services ToolKit (IBM Corp., 2006), for
defining and monitoring SLAs for Web Services. It
offers an extensible language and a runtime
architecture comprising several SLA monitoring
services, which may be outsourced to third parties to
ensure maximum objectivity. WSLA language main
elements are: subjects, services and obligations,
SLOs, action guarantees. Although WSLA allows
defining, negotiating, deploying, monitoring and
enforcing SLAs, it has some limitations: 1) contracts
signed by only two parties; 2) no ways to describe
over-/under-achievement of contract obligations; 3)
small support to corrective management actions.

Cremona architecture (Ludwig et al., 2004), by
IBM, is a SLA middleware supporting contracts
monitoring, with a three-level architecture but it
does not offer decision-making capabilities based on
agreement terms and does not support workflow
handling for service interactions.

The Open Grid Forum (OGF) proposed the Web
Service Agreement (WS-Agreement) (Andrieux et
al., 2007) as a protocol to establish agreements
between providers and consumers, built on top of
Cremona. It is detached by WSLA in order to meet
the need for a standard by the OASIS organization
(OASIS, 2014). It allows describing agreement
contexts and a set of attributes for a specific service
(i.e., name; context; Service Description Terms,
SDT; guarantee terms; constraints). It allows
customers to ask for service requirements via XML
files and providers to evaluate available resources.
However, it does not allow to model third parties’
contributions and no metrics are available for
monitoring service choreographies.

A widely agreed, standardized model would
enable to apply templates to every type of contracts
and SLAs, and to categorize contract terms for
different service domains. Therefore, based on
WSLA and WS-Agreement, in (Stamou et al.,

2013.10) a SLA digraph model (where nodes and
edges represent SLA content) for automating SLA
formulation and data handling was proposed,
tailored to SLA data management over distributed
web resources. The model was tested in (Stamou et
al., 2013.6) in a SOA client-server scenario, where
the server behaves as a cloud service marketplace
using SLA templates for service offers. Customers
submit their requirements over HTTP and the
marketplace returns SLA templates matching the
requests. The representation of SLA is broader, it
includes e-business outsourcing contracts (Ward et
al., 2002) and inter-organizational scenarios, where
service and contract compositions occur, such as
Cloud Computing. Modelling and monitoring
aspects related to service chains and networks in
many business ecosystems are usually based on
graph models. BPMN (Dijkman et al., 2008) models
represent another viable alternative, due to their
suitability to be translated in BPEL (Xiang et al.,
2004) but are effective for domain-skilled
professionals, thus limiting their usage for non-
technical stakeholders. At the moment there are no
significant attempts to model service chains in Cloud
Computing taking into account stakeholders
perspectives. Moreover, researchers have focused
their investigations on the Quality of Service (QoS)
composition (Ben Mabrouk et al., 2009), (Cardoso et
al., 2004) on modeling dependability among SLAs
(Bodenstaff et al., 2008), or on aggregation patterns
of SLAs (Ul Haq and Schikuta, 2010). These
approaches consider metric composition or abstract
aggregation patterns, but none so far has
investigated on how to compose specific features of
contract and SLA (e.g., working windows, start/end
date, guaranteed calendar), together with QoS
values. Indeed, SLA standardization policies are still
in their infancy, thus providing IT professionals with
just static or semi-structured information.

This relevant issue is related with the entire SLA
data management process (Stamou et al., 2013.10)
but also involves service elements (e.g., metrics,
descriptions, provisioning guarantees). SLA content
belongs to several domains, and various
vocabularies of provisioning terms represent a
primary cause of semantic and structural SLA
heterogeneity, which complicates comparison and
hinders SLA handling in distributed service markets
(Stamou et al., 2013.10). Therefore, we believe that
the digraph model employed in (Stamou et al.,
2013.6), as well as the WSLA framework, represent
a suitable foundational base for our approach.

Extending�WSLA�for�Service�and�Contract�Composition

309

3 WSLA MODEL EXTENSION

IT and CC service contracts often results from the
composition of underpinning service contracts (and,
in turn, of their specifications). Starting from them,
the final provider’s goal is to automatically obtain
overall contract terms, after defining composition
rules. A service-based approach enables to derive
the final contract from composition rules, and
contract specifications by applying these rules on the
parameters of each low-level contract and service.
Consequently, services from different providers can
be used and composed. Since service composition is
“the ability to take existing services” (or building
blocks) “and combine them to form new services”
(Piccinelli, 1999), if obligations must be guaranteed
in service composition, service contracts (and SLAs)
must be defined accordingly.

From such premises, we can define contract
composition as the derivation of a contract, obtained
by integrating other contracts, signed with different
providers (Bochicchio et al., 2013). Terms and
conditions of the composite contracts come from
those of each component, after applying composition
rules. Similarly, the definition of contract
composition implies that a provider of a composite
contract is able to extract and feed clients with terms
related to the component contracts according a
specific applied rule. Moreover, the final contract
provider need evidence about service accountability
of underpinning providers if necessary. It is evident
that contract composition is the result of a service-
oriented approach applied on Contract Management,
since it is directly based upon service composition.

The contract model can be considered as built by
three levels of abstraction, depending on whether we
are considering the signed contracts, the
provided/requested services or the resources needed
to provide services. Inter-level links represent
dependencies. Intra-level links represent resource or
service compositions. In order to test the feasibility
of our approach in SLA composition design, we
prefer to strictly focus on service and SLA
aggregation. In this way, we just consider contracts
in terms of basic composing elements, thus
forwarding the service-to-resource mapping to
further research developments.

These aspects cannot be fully described by
current SLA models and frameworks, therefore we
define a WSLA extension that considers service
level management aspects, according to (Stamou et
al., 2013.6). Our template presents contracts as
composed by three sections.

The Agreement Info handles general contract

information such as name, description, start date and
expiry date. The Agreement Parties models
information related to parties involved in the
contract. It is composed by at least two parties (i.e.,
a service provider, or contractor, and a service
consumer, or customer), but additional participants
can be added as well. The Agreement Services
manages services information and it can be referred
to one or more services. Each service exposes
specific properties: a description, a guarantee
calendar and its SLA, which is the core element of
this component as well as of the entire template.
Each SLA exhibits specific features: reference
period, description, report date, specification.

SLAs specifications refer to multiple parameters:
cost, start/end date, sample period, SLO (i.e.,
threshold value for SL), working window (i.e., time
range during which SL must be generated), penalty,
Service Level Indicators (SLIs) (i.e., metrics and
algorithms to calculate SLA for service monitoring).

Directed tree graphs (digraph), (Bang-Jensen and
Gutin, 2008) can be used to model this contract
template. Figure 1 proposes the overall digraph,
(nodes: template components; oriented edges:
available properties; edge labels: node cardinalities).

In order to extend WSLA for describing SLA
and contract composition, composition topologies
and rules have been introduced.

Figure 1: Contract template as a digraph.

Topologies allow chaining services to satisfy end
users’ requests. We adopted a four-pattern modeling

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

310

strategy (Ul Haq and Schikuta, 2010). Series:
services execute jobs in sequence, so a service starts
when the previous ends. Parallel: services execute
jobs simultaneously. Loop: a service needs several
cycles to complete its job. Condition: a parallel
topology, with an initial choice for a specific path.

Figure 2: Composition topology model.

Figure 3: Composition rule model.

Topologies can be further composed (in a way
similar to circuit elements are cascaded in circuit
theory): by doing so, the final service can be
obtained by recursively choosing the available
topology patterns. Each composition requires one
(loop pattern) or more services (other patterns) to be
built and each final service may (or may not) derive
from a topological composition. Figure 2 depicts the
relation between services and composition.

After composition, SLAs must be modelled
starting from input services SLAs. This is the main
reason for the definition of a third model that
specifies the formula for a given SLA and topology.
This formulation has been called Composition Rule.
Figure 3 illustrates this model as well as its
relationship with SLAs and composition topologies.

4 TOOL DESCRIPTION

The main goal of CASCO is to test the model
proposed in Section 3 and to help the users in
composing SLAs for services contracts. Indeed, it
can be useful for customer and service providers
both in design and execution phases. During the
design phase, composition can be simulated to verify
the compliance with requested SLs, as well as to
obtain SLA of composed services starting from

elemental ones. During the execution phase the
system offers an engine that is able to calculate the
result of composite SLAs at run time.

The tool has been designed by starting from
stakeholders and goals elicitation steps. We have
identified multiple stakeholders for a generic service
providing/consuming company, encompassing
managers (i.e., general, technical, business,
department, human resource, service, contract) and
administration personnel, each having different
tasks. For instance, a service manager can use the
tool in order to 1) insert contracts signed with other
companies to buy primary services; 2) access and
visualize the service catalogue; 3) insert new
primary services; 4) create a new service by
composing services from the catalogue; 5) create
new contracts to be signed with other firms or users.

From an architectural point of view (Figure 4),
the tool is based on the widely-adopted Model-
View-Controller (MVC) pattern for web
applications, whose purpose is to achieve a clean
separation between data management, user interface
and business logic. According to this pattern,
CASCO is based on a three-layer architecture, as
represented in Figure 4.

In order to separate contract visualization issues
from user-agent interaction during composition, the
tool splits the front end (Presentation module) and
the back end (Business Logic and Data Management
module) by using three XML files, which provide
information about agreements, topologies and rules.

The Presentation module is responsible for user
operations management and input parsing, in order
to generate the XML files that will be accessed by
both Presentation and Manager modules

The Manager module is further divided in four
subsections. The Parser allows extracting and
manipulating XML data from agreement, topology
and rule files in order to store them in the graph
database (DB). The Agreement Manager handles
contracts and operations that must be performed on
them. The SLA Compositor is responsible for the
creation of composed services, for the definition of
corresponding metrics and parameters as well as for
the storage of output services into the database. The
SLA Control allows accessing services information
and parameters for resources/services monitoring

The digraph model (Section 3) has been used as a
basis for the adoption of a NoSQL graph DBMS
(Neo4j v.1.9.6/v.2.0.0 (Neo Technology, Inc., 2014)),
in order to store SLA and contracts information as
well as composition topologies and rules.

The tool has been developed in PHP, for the front
end part, respecting the HTML5 format, in order to

Extending�WSLA�for�Service�and�Contract�Composition

311

be natively compatible with mobile device, and Java
for the back end. Moreover we used Spring-data-
neo4j (v2.3.4) (Pivotal Software, Inc., 2014), a
framework for mapping classes with the elements
stored in Neo4j, and Neo4jPHP (v.0.1.0) (Adell,
2012), a PHP library for accessing Neo4j database.

Figure 4: MVC-based architecture for CASCO tool.

5 APPLICATION SCENARIO

We refer to a set of five significant SLA metrics in
CC, in order to check whether our template can
capture all the relevant information for SLA
composition. The metric computation phase
demonstrates that all the elements needed to manage
contracts have been correctly modeled and included
within the proposed template. SLA values are
calculated with respect to metrics capable of
measuring whether a service is compliant with the
contract terms and whether the service can achieve
the desired business objectives. If we consider a
service composition scenario, metrics must be the
same and their measurement units must be
commensurable and compatible (e.g., all time-related
or all percentages, etc.).

The selected metrics are: Availability, Response
Time, Mean Time To Failure (MTTF), Mean Time
Between Failures (MTBF), Mean Time To Repair
(MTTR). In order to better understand MTTF,
MTTR and MTBF, some quantities must be defined.
Service Downtime (TSD): it is the time span between
the i-th occurrence of a service failure, td,i, and the i-
th occurrence of its reactivation, tu,i.
Service Uptime (TSU): it is the time range between
the i-th occurrence of the service start, tu,i, and the
i+1-th occurrence of its failure td,i+1).

Therefore, the time lapse between two downtime
periods (Time Between Failures, TBF) is the sum of
the time needed to have the service up again (Time
To Repair, TTR) and the time elapsed before another

failure occurs (Time To Failure, TTF).
We have defined the metrics as specified below.

1. Availability (Av): it describes the percentage of
time a service SA is available in a certain time lapse
corresponding to the temporal window of analysis.
Being TAW the duration of the temporal window of
analysis and TSD the service downtime period, the
availability Av is expressed as in (1):

ሺݒܣ ܵሻ ൌ ሺ ்ܶௐ െ ௌܶሻ ∗ 100/ ்ܶௐ (1)

2. Response Time (RT): it quantifies how long it
takes to a service SA to answer client’s request. If we
consider N client requests, each having its own
response time rtSA(t)i, the overall RT is the average of
the distinct response times, as defined in (2):

ܴܶሺ ܵሻ ൌ ൬ ሻݐௌಲሺݐݎ
ே

ୀ
൰ /ܰ (2)

3. MTTF: it measures the mean time between two
consecutive failures for the same service SA. Let us
N denotes the set of monitored events (i.e., service
failures and restorations). Let us tSA

u,i indicates the
time from which the service is up for the i-th time
and tSA

d,i+1 the time at which the same service fails
again. Then, MTTF is expressed by (3):

ሺܨܶܶܯ ܵሻ ൌ ൬ ൫ݐௌಲௗ,ାଵ െ ௌಲ௨,൯ݐ
ேିଵ

ୀଵ
൰

/ܰ
(3)

4. MTTR: it measures the mean time needed to
repair a specific service SA for N times. Let be tSA

d,i
the time from which the service is down and tSA

u,i the
time from which the same service is up again, MTTR
is given by (4):

ሺܴܶܶܯ ܵሻ ൌ ൬ ൫ݐௌಲ௨, െ ௌಲௗ,൯ݐ
ேିଵ

ୀଵ
൰ /ܰ (4)

5. MTBF: it measures the mean time occurred
between two consecutive failures of the same
service. It can be simply considered as the sum
between (4) and (3), as depicted in (5):

ሺܨܤܶܯ ܵሻ ൌ ሺܴܶܶܯ ܵሻ ሺܨܶܶܯ ܵሻ (5)

New composed services (Cardoso et al., 2004)
exhibit different metrics, depending on the
composition rules and topologies selected during the
design phase. Let us explain the five selected metrics
w.r.t. series and parallel topologies, in the case we
have two different services SA and SB that have to be
composed sequentially and whose respective metrics
are known before the composition is performed. As
for the series topology, we assume separate services
are independent (i.e., stochastically modelled as
independent variables (Ben Mabrouk et al., 2009).
This means that the Av of a composed service is the

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

312

product of the availability of each component, RT of
the composed service is the sum of response time of
each component service and MTTF is the reverse of
the sum of single components’ MTTFs.

Regarding the value associated with parallel
compositions we consider the worst values of all the
possible composition executions. For instance, to
determine RT of parallel activities, we consider the
activity with the longest RT. Table 1 resumes the
rules mentioned above, for Av, RT and MTTF. These
examples are independent from the specific domain.

Table 1: Examples of composition rules.

Metric Rule (Series Topology) Rule (Parallel Topology)

Av ݒܣௌ ൌ ሺݒܣ ܵሻ ൈ //ݒܣ ሺܵሻݒܣ ൌ ሺݒܣ ܵሻ ൈ ሺܵሻݒܣ

RT ܴ ௌܶ ൌ ܴܶሺ ܵሻ ܴܶሺܵሻ ܴ /ܶ/ ൌ ሼܴݔܽ݉ ܶ, ܴ ܶሽ

MTTF
MTTFS = 1 / ((MTTF(SA)) +

(MTTF(SB)))
MTTF// = MTTF(SA) + MTTF(SB) –

MTTFS

In service composition the time window (and the
service calendar) in which the composite service is
guaranteed depends on the composing services. It
defines the time and calendar the composite service
level is guaranteed. For example SA is guaranteed
from 8:00 to 20:00 in business days and SB is
guaranteed from 7:00 to 23:00 only in odd days
(e.g., front office openings). When SA and SB are
composed into SC, the guaranteed windows changes
according to composition topology: if SC = (SA series
SB), then SC guaranteed service calendar is the
intersection of SA and SB calendars. If SC = (SA // SB)
and SA and SB are homogeneous (the same kind of
service), then guaranteed windows is the union of SA
and SB calendars. If SA and SB are heterogeneous, SC
guaranteed calendar is the intersection of SA and SB
service hours. If the SC has an empty guaranteed
window, it cannot be guaranteed.

Each component service within the SLA owns a
specific measurement period: the composite
measurement period is constrained by the
corresponding component services. In general, it is
the least common multiple (l.c.m.) of each
component’s measurement period, if component
services start simultaneously. Otherwise, the two
measurements periods need to be aligned. For
example, let us suppose that SA and SB have a 2-
month and a 3-month measurement period
respectively. The measurement period of SC should
be the l.c.m. of SA and SB that is 6. If we suppose that
SA started a month later than SB, then they will be out
of phase and only after a 2-month transition SC
would be measured with a 6-month period.
Similarly, the SC contractual duration is the
intersection of the duration of SA and SB.

The tool has been verified and validated. A set of
agreements has been simulated, proving that all the
SLAs aspects necessary to calculate and composed
SLAs are represented in the model. Moreover,
system results conform to the rules described before.

Our approach starts from the assumption that the
user uses a Graphical User Interface (GUI) to submit
services and contract terms and conditions. The GUI
helps the user to express the request in terms of
services and SLAs requirements, translated into
machine-understandable specifications by the tool.
This is the reason why specific tests have been
executed to evaluate the tool usability for IT
managers and contract owners.

We selected 20 Italian users as testers, aging
from 30 to 50 years old and belonging to technical
and juridical areas. The candidates have been
assigned with a series of tasks representative of a
concrete deployment scenario. Task#1: to retrieve a
service purchased by a company. Task#2: to register
an agreement and to compose a new output service.
Task#3: to evaluate the application completeness
and user-friendliness. The users were required to fill
a questionnaire to assess their mood against the
proposed system and the features it exposes.

A 10-point psychometric Likert scale (Allen and
Seaman, 2007) has been used to measure users’
responses in evaluating each task, according to the
easiness in retrieving information, navigational
clarity and message clarity. In this way, users were
allowed to express their opinion within a numerical
scale ranging from 1 to 10, where 1 stands for the
worst possible evaluation and 10 represents the best
one. Table 2 enlists average scores for the features
evaluated when performing a specific task and it
also shows task mean execution times across all
tested users). At the end of the questionnaire, users’
comments were collected, thus observing their
concerns was only about explanatory labels and the
localization of the application (which actually is in
English to better match references about service
contracts and composition) and do not refer to
possible issues in contract and SLA design or
missing modelling functions.

Table 2: Overall average scores (AS) from voters’ pool
and mean execution times (MTE) for each task.

Evaluated Feature AS MTE

T
as

k1

Easiness in retrieving information 6.45 / 10 42.3
[s] Clarity of navigation and messages 6.8 / 10

T
as

k2

Clarity of agreement registration reqs. 8.5 / 10 183
[s] Easiness of composite service creation 6 / 10

T
as

k3

Clarity of content presentation 9.25 / 10 352
[s] Clarity of graphical representation 9,35 / 10

Extending�WSLA�for�Service�and�Contract�Composition

313

6 CONCLUSIONS

A model for managing SLA information when
dealing with contracts and SLA composition in
service-based IT environments has been presented in
this paper. Starting from the widely known, WSLA
framework, we have proposed an extension capable
of overcoming two main issues in managing SLAs.

At first, we tackle the lack in standard models
representing service contracts and their SLAs in
SOA and service network environments. We mainly
address contract and SLA composition aspects, by
proposing a flexible template for IT service contracts
that can be applied to several domains. The original
WSLA model has been complemented by
considering two new aspects: composition
topologies and rules to cope with Cloud Computing
scenarios, where IT resources are usually reserved
and allocated dynamically according to users’
requests. Moreover, cloud services are provided to
customers as the composition of multiple, third-party
services, thus requiring specific attention to the
corresponding contracts that have to be signed and
their terms and guarantees.

Secondly, we target the possibility to make SLAs
effectively machine-readable, thus allowing easier
design and monitoring policies for IT professionals
managing service networks. The choice of WSLA,
due to its XML-based structure has been done right
in that direction. In order to ease SLA machine
readability, we modeled the contract template as a
digraph. The implementation has been done by
revolving to a NoSQL graph-based DBMS.

A specific tool, named CASCO (Contract-Aware
Service COmposer), has been designed, developed
and implemented in order to provide IT
professionals with a solution allowing contract and
SLA evaluation and assessment during the design
phase. A set of five SLA metrics has been selected
to evaluate template feasibility via to our tool. We
have ascertained that WSLA extension can handle
all the information for describing contracts of
composed services and their SLAs.

In the near future, this research will be widened
and by considering three additional aspects: 1)
template extension to describe SLAs related to BPO
contracts; 2) ontological formalization of the
template; 3) adoption of rule-based policies to
perform real-time monitoring of the composed
services as in Complex Event Processing.

REFERENCES

Adell, J., 2012. Neo4jPHP. (Online) Available at:
https://github.com/jadell/neo4jphp (Accessed Nov.
2014).

Allen, P., 2006. Service Orientation - Winning Strategies
and Best Practices. Cambridge Univ. Press.

Allen, E. & Seaman, C., 2007. Likert Scales and Data
Analyses. Quality Progress, pp.64-65.

Andrieux, A. et al., 2007. GFD-R-P.107 Web Services
Agreement Specification. Memo. (GRAAP) WG.

Anon., 2007. http://www.panda-project-com/ PANDA:
Collaborative Process Automation Support using
Service Level Agreements and Intelligent Dynamic
Agents in SME Clusters. IST-Panda Reseach Project.

Baker, S. & Dobson, S., 2005. Comparing Service-
Oriented and Distributed Object Architectures. In Int.
Symp. on Distributed Objects and Applications., 2005.

Bang-Jensen, J. & Gutin, G.Z., 2008. DIgraphs: Theory,
Algorithms and Applications. 2nd ed., Springer.

Ben Mabrouk, N. et al., 2009. QoS-aware Service
Composition in Dynamic Service Oriented
Environments. Middleware 2009 - ACM/IFIP 10th
Int. Conf., 2009.

Bochicchio, M.A., Longo, A. & Giacovelli, S., 2013.
SARA: a Tool for Service Levels-Aware Contracts. In
IFIP/IEEE Int. Symp. on Integrated Network
Management, 2013.

Bodenstaff, L., Reichert, M. & Jaeger, M.C., 2008.
Monitoring Dependencies for SLAs: the MoDe4SLA
Approach. In IEEE Service Computing Conference.,
2008.

Boley, H., Tabet, S. & Wagner, G., 2001. Design
Rationale of RuleML: A Markup Language for
Semantic Web Rules. In SWWS-2001, 2001.

Cardoso, J. et al., 2004. Quality of Service for Workflows
and Web Service Processes. Journal of Web
Semantics, 1, pp.281-308.

Christensen, E., Curbera, F., Meredith, G. &
Weerawarana, S., 2001. http://www.w3.org/TR/wsdl
Web Service Description Language (WSDL) 1.1. W3C
Note.

Cortellessa, V. & Grassi, V., 2007. A Modeling Approach
to Analyze the Impact of Error Propagation on
Reliability of Component-based Systems., 2007.

Dijkman, R.M., Dumas, M. & Ouyang, C., 2008.
Semantics and Analysis of Business Process Models in
BPMN. Inform. and Software Tech., 50(12), pp.1281-
94.

IBM Corp., 2006. IBM Web Services Toolkit (WSTK).
(Online) (2.3 (discontinued)) Available at:
http://www.alphaworks.ibm.com/tech/webservicestool
kit.

Keller, A. & Ludwig, H., 2002. RC22456 The WSLA
Framework: Specifying and Monitoring Service Level
Agreements. Technical Paper. IBM Research.

Lamanna, D., Skene, J. & Emmerich, W., 2003. SLAng: a
Language for Defining Service Level Agreements.
FTCDS 2003, 2003.

Lodi, G., Panzieri, F., Rossi, D. & Turrini, E., 2007.

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

314

SLA-Driven Clustering of QoS-Aware Application
Servers. IEEE Trans. on Software Eng., 33(3), pp.186-
97.

Ludwig, H., Dan, A., Kearney, R. & Heights, Y., 2004.
Cremona: an Architecture and Library for Creation
and Monitoring of WS Agreements. Res. Rep. IBM.

Neo Technology, Inc., 2014. Neo4j. (Online) (2.1.6)
Available at: http://www.neo4j.org/ (Nov. 2014).

OASIS, 2014. OASIS -Advancing open standards for the
information society. (Online) Available at:
https://www.oasis-open.org/ (Accessed November
2014).

Paschke, A., 2008. Knowledge Representation Concepts
for Automated SLA Management. Decision Support
Systems, 46(1), pp.187-205.

Piccinelli, G., 1999. HPL-1999-84 Service Provision and
Composition in Virtual Business Comm.. Tech. Rep.

Pivotal SW, Inc., 2014. Spring Data Neo4J. (Online)
http://projects.spring.io/spring-data-neo4j (Nov.
2014).

Saeedi, K., et al., 2010. Extending BPMN for Supporting
Customer-Facing Service Quality Requirements. In
IEEE Int. Conf. on Web Services., 2010.

Stamou, K., Kantere, V. & Morin, J.H., 2013.10. SLA
Data Management Criteria. In IEEE Big Data.,
2013.10.

Stamou, K., Kantere, V. & Morin, J.H., 2013.6. SLA
Template Filtering: a Faceted Approach. In 4th Int.
Conf. on Cloud Computing, GRIDs and
Virtualization., 2013.6.

Telemanagement (TM) Forum, 2008. SLA Handbook
Solution Suite v2.0.

Ul Haq, I. & Schikuta, E., 2010. Aggregation Patterns of
Service Level Agreements. FIT'10, 2010.

Ward, C., et al., 2002. A Generic SLA Semantic Model for
the Execution Management of e-Business Outsourcing
Contracts. In 3rd Int. Conf. on e-Commerce and Web
Technologies., 2002.

Xiang, F., Tevfik, B. & Jianwen, S., 2004. Analysis of
Interacting BPEL Web Services. In WWW '04, 2004.

Zheng, Z. & Lyu, M.R., 2010. Collaborative Reliability
Prediction of Service-Oriented Systems. In 10th ICSE.
Cape Town, South Africa, 2010. ACM.

Extending�WSLA�for�Service�and�Contract�Composition

315

