OnTheme/Doc
An Ontology-based Approach for Crosscutting Concern Identification from Software Requirements

Paulo Afonso Parreira Júnior1,2 and Rosângela Aparecida Dellosso Penteado1
1Department of Computer Science, Federal University of São Carlos, São Carlos, Brazil
2Computer Science Course, Federal University of Goiás/Campus Jataí, Jataí, Brazil

Keywords: Aspect-Oriented Requirements Engineering, Ontologies, Early-aspects, Crosscutting Concerns.

Abstract: Context: Aspect-Oriented Requirements Engineering (AORE) is a research field that provides the most appropriate strategies for identification, modularization and composition of CrossCutting Concerns (CCC). Problem: in last years, researchers have developed several AORE approaches. However, some experimental studies have found problems with the accuracy of these approaches, regarding to the CCC identification recall. This mainly occurs, due to: (i) the lack of knowledge presented by the users of these approaches about the crosscutting nature of CCC; and (ii) the lack of resources to support users of these approaches during to CCC identification. Goal: this work aims to improve the values of the recall and precision metrics of a well-known AORE approach, called Theme/Doc, with regard to CCC identification. To do this, we propose an extension of this approach, called OnTheme/Doc, in which the CCC identification activity is supported by ontologies. Experimental results: the data obtained from an experimental study performed on OnTheme/Doc showed a significant increasing of recall, without negative effects on the precision and execution time of the approach.

1 INTRODUCTION
1.1 Contextualization
A set of software requirements related to the same goal/purpose is defined as a “concern” (Chitchyan et al., 2005). Ideally, each software concern should be allocated in a single module, whose responsibility is satisfying the requirements related to this concern (Dijkstra, 1976).

However, there are some kinds of concerns for which this clear allocation into modules is not possible using only the usual abstractions of software engineering, such as use cases, viewpoints, goals, scenarios, among others (Rashid et al., 2003). For instance, a security concern may contain requirements related to the encryption and/or access permissions control. An encryption requirement, in its turn, may affect some requirements related to orders management concern.

The previous example describes a well-known problem, called “concern tangling”, that occurs when requirements of one concern affect requirements of other distinct concern(s); this problem may make hard the software understanding and evolution (Soeiro et al., 2006). Aspect-Oriented Requirements Engineering (AORE) (Araújo et al., 2004; Baniassad and Clarke, 2004; Rashid et al., 2003; Grundy, 1999) is the field that joins efforts on developing methods, techniques and tools for dealing with this problem from the initial phases of the software development cycle.

In AORE, a CrossCutting Concern - CCC (also called “Early Aspect”) is a concern whose requirements affect (is tangled to) the requirements of other software concerns.

In last years, researchers have developed several AORE approaches (Parreira Júnior and Penteado, 2014). Most of these approaches include the Concern Identification and Classification activity, which is responsible for identifying the software concerns, as well as classifying them as base, i.e., concerns that do not affect requirements of other concerns, or as crosscutting ones.

1.2 Problem and Motivation
Some experimental studies, conducted on the main
AORE approaches (Sampaio et al., 2007; Herrera et al., 2012), have pointed out the concern identification and classification as a bottleneck activity in the AORE process. The authors state that identifying CCC is harder than identifying base concerns. Some of the possible causes for this are (Sampaio et al., 2007; Herrera et al., 2012):

Base concerns are better known and understood by the scientific community than the CCC ones and many approaches are based only on the experience of software engineers who apply them. Some approaches support the software engineers during the concern identification and classification through guidelines, such as catalogues, but these guidelines generally are complex to be read and understood by humans and they are not prepared for automated semantic processing. Moreover, most of these approaches does not present a process that instruct the software engineer on how to use the proposed guidelines, and

Some CCC are not explicitly mentioned in the requirements document, i.e., they emerge from other concerns and some AORE approaches are based only on searching for keywords in the requirements document, what may affect the identification of implicit concerns. For instance, if the software requires a good performance to persist its data, a possible strategy is using concurrency mechanisms, such as connection pooling. Hence, the “Concurrency” concern is observed from the existence of two other CCC: “Persistence” and “Performance” (Sampaio et al., 2007).

Theme/Doc (Clarke and Baniassad, 2005; Baniassad and Clarke, 2004) is an AORE approach that has been used, evolved and evaluated in several recent studies (Herrera et al., 2012; Ali and Kasirun, 2011; Penim and Araújo, 2010; Kit et al., 2006). This approach proposes that concern identification and classification activity be performed using a set of keywords identified by the software engineer from the software requirements. This strategy makes Theme/Doc highly depended on the software engineers’ experience, what may lead to low levels of recall and precision, as stated in some experimental studies (Herrera et al., 2012).

1.3 Goal

The main goal of this work is increasing the recall and precision provided by the Theme/Doc approach, regarding to the concern identification and classification. To do this, an ontology for CCC (OntoCCC) and an extension of the Theme/Doc (OnTheme/Doc), in which the concern identification and classification activity is supported by the usage of OntoCCC instances, are proposed.

An ontology defines a specific vocabulary that captures the concepts and relationships of a domain and a set of explicit decisions (axioms), which describe the meaning of this vocabulary (Falbo et al., 2007; Guarino, 1998). Hence, the purpose of the OntoCCC ontology is capturing the specific concepts and relationships of crosscutting concerns domain, which have been documented in several AORE approaches in the literature (Agostinho et al., 2008; Sampaio et al., 2005; Chitchyan et al., 2006; Zheng et al., 2010; Liu et al., 2009; Soeiro et al., 2006; Moreira et al., 2005; Chernak, 2012; Whittle and Araújo, 2004; Alencar et al., 2010; Brito and Moreira, 2003; Mussbacher et al., 2010).

In this work, we consider that the usage of OntoCCC ontology may improve the recall and precision provided by the Theme/Doc approach as follows:

Regarding to the Dependence of Software Engineers’ Experience: the knowledge base of the OntoCCC ontology may be used for the definition of better keywords, aiming to minimize the dependence of the professionals’ experience; and

Regarding to the Implicit CCC: the mutual influence that exists between different CCC may be documented in the OntoCCC ontology, aiming to allow the identification of CCC that are not explicitly described in the requirements document.

It is important to state that the usage of ontologies in the context of requirements engineering has been widely explored (López et al., 2008). However, according to a recent systematic mapping of the literature, conducted by the authors of this paper, the usage of ontologies for concern identification and classification has not been fully exploited yet.

1.4 Evaluation and Contributions

To verify the goal proposed in this paper, an experimental study involving undergraduate and graduate students in Computer Science from two Federal Universities in Brazil was conducted.

The study was planning and implemented according to the procedure proposed by Wohlin et al., (2012). As results, it was observed that, with 99.9% of significance level, the values of recall provided by the OnTheme/Doc approach is higher than those provided by Theme/Doc, regarding to the CCC identification. Besides, it was observed no significant differences with regard to the precision provided by both approaches, neither for the time...
spent by the participants of the experiment during the application of these approaches.

The main contributions of the paper are threefold: (i) the proposed ontology can help software engineers to better understand the main concepts and relationships of CCC; (ii) the proposed ontology can allow software engineers to perform automatic processing on it, what it is not easy to do with other kinds of approaches, like catalogues, vocabularies, thesaurus, among others; and (iii) the proposed approach presents how to use ontologies in the context of CCC identification and gives indications that this usage can improve the accuracy of this activity.

This paper is organized as follows: (i) Section 2 presents the main concepts about domain ontologies and the Theme/Doc approach; (ii) Section 3 describes the OntoCCC ontology, as well as the OntoCCC approach; (iii) in Section 4, the planning, execution, results and threats to validity of the experimental study performed in this work are presented; (iv) Section 5 discusses the main works related to the proposal of this paper; and (v) finally, Section 6 presents the final remarks of this work and some proposals for future works.

2 BACKGROUND

2.1 Ontologies

A domain ontology can be defined as a simplified and abstract view of a domain that includes the concepts of some area of interest and the relationships between them (Gruber, 1995; Fensel, 2001). One important feature of an ontology is its must be shared, i.e., the knowledge captured by an ontology must be consensual, not limited to a specific individual. This section presents the three main concepts of domain ontologies: Classes, Properties and Individuals (Horrige et al., 2011; Hernandes, 2009; Lima and Carvalho, 2005). To illustrate these concepts, parts of the OntoCCC ontology (Section 3) are presented.

Classes are concrete representations of a concept. In practical terms, classes are interpreted as sets that contain individuals (Horrige et al., 2011). For example, the CCC class (represent by an oval shape in Figure 1) represents all individuals that are crosscutting concerns. Classes can be arranged in superclass-subclass hierarchies. In Figure 1, the FunctionalCCC and NonFunctionalCCC classes are subclasses of CCC (described by the “is-a” relationship, what means that all functional and non-functional CCC also are crosscutting concerns.

Properties are binary relationships that connect two individuals, two classes, an individual and a value or a class and a value. There are two main kinds of properties: “Object Properties” and “DataType Properties”. The “Object Properties” are used to define relationships between classes. For example, the hasKeywords property (Figure 1) connects the CCC class to the Keywords class. This property defines that a crosscutting concern, functional or non-functional, may contain a set of keywords that can be used to identify it. The hasSubconcerns property indicates that a CCC can be decomposed into sub-concerns, which also are CCC. Similarly, the hasSynonyms property recursively connects the Keywords class to itself, representing that a keyword may contain synonyms.

A “DataType Property” connects a class to a primitive value (e.g., an integer or a string value). For example, the CCC class has the name and description properties (Figure 1), which can be connected to strings values; these properties specify, respectively, the name of a particular CCC and its description.

It is possible to enhance the meaning of the properties through the usage of attributes, such as “transitivity”, “symmetry”, among others. Due to space limitations, the definition of them was omitted; more details can be found in Horrige et al. (2011).

Individuals, also known as “instances” or “class instances”, represent objects of the domain of interest. In the OntoCCC ontology, examples of individuals are instances of CCC already identified and well-known by the scientific community (for example, security, logging, among others).

An example with six individuals is illustrated in Figure 2: four individuals are instances of the NonFunctionalCCC class and two of the Keywords class (classes are highlighted in gray and individuals, in white). In this example, the non-functional CCC are “Logging”, “Persistence”, “Connection” and “Transaction”; “Connection” and “Transaction” are sub-concerns of “Persistence”. In addition, the “Logging” concern is related to two keywords, called “logged” and “log”, which are synonymous.

2.2 Theme/Doc Approach

The Theme approach supports the AORE field in two levels. At requirements level, the approach is called Theme/Doc and allows the software engineers
To identify the software concerns, the software engineer first needs to: (i) identify the software concerns from a set of keywords and software requirements; and (ii) refine the views provided by the approach to reveal which concerns are base and which are crosscutting ones. At design level, the approach is called Theme/UML and allows the software engineers to model, through specific notations, base and crosscutting concerns and specify how they can be combined.

A preliminary action-view is a view in which actions were not classified as base or crosscutting ones yet. Figure 3 illustrates the preliminary action-view created from the requirements and the list of key-actions of the CMS software (highlighted words, in the text of Table 1). The key-actions are represented by diamonds and the requirements by boxes with rounded edges.

If a requirement contains a key-action in its description, then it is associated with this action by an arrow that starts in the requirement and ends in the key-action. The set of key-actions should be identified by the software engineer based on his/her experience with regard to the domain for which the software is being developed. There are situations where a requirement may refer to more than one key-action. For instance, the requirement “R3” (Figure 3) refers to register and logged actions. In Theme/Doc approach, CCC are identified by analyzing such requirements.

To perform the classification of actions as base or crosscutting ones, the preliminary action-view and the set of software requirements are required. The software engineer initially must examine the requirements that refer to more than one action and determine what is the primary action (more important action) of these requirements. In the case of requirement “R3”, the primary action is logged, since the requirement was written to specify the implementation of logging behavior. As the register action is not the primary action of this requirement, we say that this action is being affected by the behavior of the logged action. Hence, the logged action is classified as a crosscutting action and register, as a base action. To represent this kind of information, an arrow with a point at one of its ends is drawn from the logged action to the register, indicating that logged affects the register action.

The software engineer should examine all requirements that share the logged action and decide if they also are affected by its behavior. In addition, the software engineer should keep on examining the other requirements that share more than one action. Finally, after analyzing all requirements and actions, an extended action-view is generated (Figure 4), with three base actions (unregister, give and register) and one crosscutting action (logged) that cut-across all the three base actions. The main strengths of the Theme/Doc approach are: (i) it uses visualization resources as a strategy for concern identification, what allows the software engineering to have a better view of the software concerns; (ii) it is independent of the requirements document language; and (iii) it has been widely used, evolved.

Table 1: Requirements description of a course management software (Baniassad and Clarke, 2004).

<table>
<thead>
<tr>
<th>#</th>
<th>Requirements Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>Students can register for courses.</td>
</tr>
<tr>
<td>R2</td>
<td>Students can unregister for courses.</td>
</tr>
<tr>
<td>R3</td>
<td>When a student registers then it must be logged in their record.</td>
</tr>
<tr>
<td>R4</td>
<td>When a student unregisters it must also be logged.</td>
</tr>
<tr>
<td>R5</td>
<td>Professors can unregister students.</td>
</tr>
<tr>
<td>R6</td>
<td>When a professor unregisters a student it must be logged.</td>
</tr>
<tr>
<td>R7</td>
<td>Professors can give marks for courses.</td>
</tr>
<tr>
<td>R8</td>
<td>When a professor gives a mark this must be logged in the record.</td>
</tr>
</tbody>
</table>
and evaluated in recent works (Herrera et al., 2012; Ali and Kasirun, 2011; Penim and Araújo, 2010; Kit et al., 2006).

Figure 3: Preliminary action-view.

Figure 4: Extended action-view.

As limitations, it is possible to note that Theme/Doc: depends on the usage of keywords; depends on the software engineers’ experience; and does not support the software engineering during the identification of implicit concerns.

Section 3 of this paper presents an extension of the Theme/Doc approach, called OnTheme/Doc, as well as an ontology for CCC, called OntoCCC. The main goal of the OnTheme/Doc and OntoCCC is to minimize the weaknesses of Theme/Doc and, hence, to improve the values of recall and precision provide by this approach.

3 OnTheme/Doc APPROACH

As described in Section 2, Theme/Doc requires that the software engineer works using only his/her prior knowledge about the problem domain and the concepts of concern identification and classification. This makes the approach highly dependent on the experience of its users.

According to the extension proposed in this paper, besides his/her prior experience, the software engineer has the support of the knowledge represented in one or more instances of the OntoCCC ontology.

It is important to note that although Theme/Doc supports the identification of base and crosscutting concerns, this paper is worried only with the CCC identification, because, as already stated in this paper, this has been the bottleneck in the AORE process (Sampaio et al., 2007; Herrera et al., 2012).

3.1 OntoCCC Ontology

OntoCCC ontology is responsible for representing well-known and already published concepts and relationships on CCC. The concepts and relationships of the OntoCCC ontology describes the main features of a CCC, such as the name commonly used to identify it in the scientific community, its description, if it is a functional or non-functional CCC, as well as its possible relationships with other concerns.

To build the OntoCCC ontology, several studies that addressed the concern identification and classification subject were analyzed (Agostinho et al., 2008; Sampaio et al., 2005; Chitchyan et al., 2006; Zheng et al., 2010; Liu et al., 2009; Soeiro et al., 2006; Moreira et al., 2005; Chernak, 2012; Whitlale and Araújo, 2004; Alencar et al., 2010; Brito and Moreira, 2003; Mussbacher et al., 2010).

In a systematic mapping conducted by the authors of this paper (Parreira Júnior and Penteado, 2014), thirty-eight AORE approaches were identified. Among these, ten included the concern identification and classification activity and proposed the usage of guidelines to support the software engineers during the execution of this activity. The main features of these guidelines were used to construct the OntoCCC ontology; this was performed to guarantee that the OntoCCC captures a consensual knowledge.

For each concept/relationship defined in OntoCCC, we describe what work served as inspiration for it. The full version of OntoCCC ontology is presented in Figure 5.

The concepts represented by CCC, FunctionalCCC, NonFunctionalCCC and Keywords classes, as well as the name, description, hasSubconcerns, hasKeywords and hasSynomymes properties were briefly commented in Section 2.1.

The CCC and NonFunctionalCCC concepts are well-known in AORE community and are reported in all analyzed studies. The FunctionalCCC concept, however, was taken from work of Moreira et al. (2005), which was the first study to report that functional requirements also can cut-across other software requirements. Hence, the FunctionalCCC class represents the concerns related to functional features of the software that cut-across requirements of other concerns, for example, “Orders Management” and “Virtual Shopping Cart”.

ICEIS 2015 - 17th International Conference on Enterprise Information Systems
The concept of keywords appears in several AORE approaches (Agostinho et al., 2008; Sampaio et al., 2005; Chitchyan et al., 2006), including the Theme/Doc.

However, only the proposal of Agostinho et al., (2008) presented a template to store the keywords used for identifying specific concerns. The concept represented by the Source class appears in some AORE approaches, such as proposed by Agostinho et al., (2008), Moreira et al., (2005) and Whittle and Araújo (2004). A source can be: (i) a suggestion of a stakeholder, e.g. the project manager – Stakeholder class; (ii) a catalog, for instance, the catalog of non-functional requirements proposed by Chung and Leite (2000) – Catalogues class; or (iii) a business document, such as a security protocol of a company, among others – Business Document class. A CCC may be related to several sources through the hasSources property. Each kind of source has a description property that may store more information on it.

The two main types of relationships between CCC are defined by Dependency and Contribution classes. Dependency class defines a dependency relationship between two CCC: a source and a target. This means if “A” (source) depends on “B” (target) and “A” appears in the software requirements document, then “B” need to be there too. This type of information is important because: (i) it allows the software engineer to explore other CCC, before unrecognized by him/her, i.e., by saying that “A” depends on “B”, he/she should also look for keywords related to “B” concern in the requirements document; and (ii) it allows the software engineer to verify inconsistencies in the requirements document, because, if a CCC “A” depends on “B” and “B” is not described in the software requirements and is not an implicit concern, then the requirements document may be inconsistent.

Another important concept about CCC is represented by the Contribution class. It represents a mutual influence between different CCC. This kind of influence is reported in the catalog Chung and Leite (2000), but only for non-functional requirements. In AORE field, Moreira et al., (2005) address this type of influence on their work. To do this, the authors proposed a “contribution matrix”, which is created by the software engineer, based on his/her experience and on some catalogues of non-functional requirements. In this matrix, it is possible to visualize the kind of contributions (negative or positive) between different CCC of the software. However, the knowledge about the contribution between several CCC is limited to the project under analysis and there are no clearly defined mechanisms to reuse it in later projects.

A contribution can be Negative or Positive as defined by the ContributionType class and the hasType property. For example, the “Information Retrieval” and “Mobility” concerns are related as...
follows (Moreira et al., 2005): the higher the mobility, the greater the difficulties of retrieving information. This means that “Mobility” negatively contributes to “Information Retrieval”. The inverse contribution is also negative, since the more complex is the information to be retrieved, the less mobile the software can be, since some wireless networks have limited bandwidth size.

Another example is the case of the “Concurrency”, “Performance” and “Cost” concerns. The implementation of concurrency mechanisms in the software can positively contribute to the software performance, but not to the cost of the project.

The knowledge presented in both previous examples can be represented in the OntoCCC ontology by means of Contribution, ContributionType and CCC classes and hasType, source and target properties. Figure 6 presents an instance of the OntoCCC ontology, in which the contribution between “Concurrency”, “Performance” and “Cost” concerns is presented.

Finally, each CCC has a hasPriority property that relates a CCC to an instance of the Priority class. The priority can be defined by stakeholders or experts in CCC and may assume the following values: “High”, “Medium” or “Low”. This information is important when one specific CCC “A” is negatively influenced by other two different CCC “B” and “C”, or when one specific CCC “A” exerts negative and positive influences on two different CCC “B” and “C”; in these cases, the software engineer must decide on what concern will contribute to “Information Retrieval”. The inverse contribution is also negative, since the more complex is the information to be retrieved, the less mobile the software can be, since some wireless networks have limited bandwidth size.

In the example of “Concurrency”, “Performance” and “Cost” concerns, the software engineer will have to decide between prioritizing cost or performance; the Priority class and the hasPriority property may provide more information for the software engineer to make his/her decision. Priority is a concept discussed in the work of Moreira et al., (2005), but it is used only in the conflict detection and resolution activity – one of the last activities in the AORE process. We believe that treating this issue in the beginning of the AORE process is important, because it can reduce the rework, as well as the propagation of errors throughout this process.

Using the concepts and relationships of OntoCCC ontology, commented above, it is possible to store the existing knowledge about specific types of CCC, creating instances of this ontology. Small examples of OntoCCC instances for the “Persistence”, “Connection”, “Transaction”, “Logging”, “Concurrency”, “Performance” and “Cost” concerns were described in Figure 2 and Figure 6.

Instances of OntoCCC ontology can be created from: (i) catalogues of crosscutting concerns; (ii) other kind of catalogues, e.g., the catalogue of non-functional requirements, such as those proposed by Cysneiros (2014) and Chung and Leite (2000); (iii) the knowledge of experts on AORE; or (iv) historical data of previous projects, among others.

3.2 OnTheme/Doc

We believe that the knowledge represented by the instances of the OntoCCC ontology may help the software engineers to perform the concern identification and classification activity in a more effective way. Hence, it was proposed an extension of Theme/Doc approach, called OnTheme/Doc.

The execution of OnTheme/Doc approach follows the same flow of the Theme/Doc. However, there are two new activities to be performed by the software engineers (“Checking Dependencies” and “Checking Contributions”), and the procedure for key-actions identification was redefined.

Identifying Key-actions: the software engineer should analyze each CCC defined in the OntoCCC instance, searching for the keywords presented in this instance in the requirements document.

Checking Dependencies: for each identified CCC, the software engineer should verify the relationships of it with other CCC, in order to detect possible dependencies between them. If there are dependencies between a CCC “A” with “B” or “C”, the software engineer should also consider the keywords of “B” and “C”. If there are no keywords related to “B” or “C” in the requirements, they may be implicit concerns and should be analyzed in the “Checking Contributions” activity, or the requirements document is inconsistent; and

Checking Contributions: after building an action-view, the software engineer should analyze the CCC ontology again looking for possible contributions of a CCC over other ones. In this activity, new CCC, before unidentified, may appear due to the mutual influence between different CCC. In addition, it may be necessary to resolve conflicts between different CCC. For this, the value of the priority property of each conflicting CCC must be observed. If the conflict persists (for example, when the priority levels of two CCC are the same), meetings with stakeholders may be necessary.
4 EXPERIMENTAL STUDY

The evaluation goal of this work is: “To analyze: the OnTheme/Doc approach. In order to: evaluate. With respect to: recall and precision provided by this approach. From the point of view of: software engineers. In the context of: a group of undergraduates and graduates in Computer Science.”.

4.1 Planning

The planning of this experimental study was defined according to the Wohlin’s proposal (Wohlin et al., 2012) and involves the following steps: (i) context selection; (ii) hypotheses formulation; (iii) variables selection; (iv) participants selection; and (v) design and execution of the experimental study.

a) Context Selection. This experimental study was conducted with fourteen undergraduate and graduate students in Computer Science from two Federal Universities in Brazil.

An information system that aims to record complaints in health area, called Health Watcher (2014), was used in this study. It is a well-known application in the AORE field and was chosen because it has a suitable requirements document for CCC identification. Its requirements document presents several CCC, such as security, persistence, concurrency, among others. In addition, all CCC of this application have already been identified and cataloged by experts (Health Watcher, 2014), serving as an oracle to verify the answers given by the participants of this experimental study.

b) Hypotheses Formulation. An important part of an experimental study is to specify the metrics that will be used. Based on these metrics, the researcher may establish hypotheses and draw conclusions from the results of the experiment.

In this work, three metrics were used, whose formulas and description are presented in Table 2: recall, precision and f-Measure (a harmonized average of the recall and precision).

These metrics are commonly used for measuring the effectiveness of products and processes in several research areas, such as information retrieval, natural language processing, among others. They also are widely used at works on concern identification and classification (Herrera et al., 2012; Sampaio et al., 2007). In this work, the interpretation of these metrics is very trivial, the higher the value of recall, precision and f-Measure, the better the effectiveness of the approach. Based on these metrics, six hypotheses were developed for this study, two related to the recall metric, two for precision and two for f-Measure (Table 3).

Table 2: Metrics of the experimental study.

<table>
<thead>
<tr>
<th>Metrics</th>
<th>Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recall (Re)</td>
<td>(\frac{\text{CIC}}{\text{EC}} \times 100)</td>
<td>\text{CIC (Correctly Identified Concerns): amount of correctly identified concerns, i.e., without the false positives.}</td>
</tr>
<tr>
<td>Precision (Pr)</td>
<td>(\frac{\text{CIC}}{\text{TIC}} \times 100)</td>
<td>\text{Pr (Precision): percentage of correctly identified concerns, regarding to the amount of existing concerns.}</td>
</tr>
<tr>
<td>f-Measure (fM)</td>
<td>(\frac{\text{Re} \times \text{Pr}}{\text{Re} + \text{Pr}})</td>
<td>\text{fM (f-Measure): a harmonized average of the recall and precision values.}</td>
</tr>
</tbody>
</table>

c) Variables and Participants Selection. Independent variables are those manipulated and controlled during the experimental study. In this study, the independent variable is related to the approaches for concern identification and classification. The dependent variables are those under evaluation and whose variations must be observed. In this experiment the recall, precision and f-Measure metrics are considered as dependent variables. The participants of this study were selected through non-probability for convenience sampling.

d) Design and Execution of the Experimental Study. The distribution of the participants was performed aiming to form two homogeneous groups, with regard to the participants’ experience and the amount of available participants in each group. Each group had seven participants and the participants’ experience was verified by the application of a profile characterization questionnaire. It takes into account the knowledge of the participants about AORE and Theme/Doc approach. In addition, the experimental study was planned in phases (training and execution) to minimize the effect of participants’ knowledge of the dependent variables.

Before starting the execution of the experimental study, a training was conducted, in order to homogenize the knowledge of participants on AORE and Theme/Doc and OnTheme/Doc approaches. During the training, it was not informed to the participants what approach was developed by the authors of this paper.
Hypotheses for f-Measure

Table 3: Hypotheses of the experimental study.

<table>
<thead>
<tr>
<th>Hypotheses for Recall</th>
<th>Hypotheses for Precision</th>
<th>Hypotheses for f-Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H_{\text{Rec}}:) there is no difference of using (\text{OnTheme}/\text{Doc}) or (\text{Theme}/\text{Doc}), regarding to the recall. (H_{\text{Rec}}: \text{Re}{\text{OnThD}} = \text{Re}{\text{ThD}})</td>
<td>(H_{\text{Pr}}:) there is no difference of using (\text{OnTheme}/\text{Doc}) or (\text{Theme}/\text{Doc}), regarding to the precision. (H_{\text{Pr}}: \text{Pr}{\text{OnThD}} = \text{Pr}{\text{ThD}})</td>
<td>(H_{\text{fM}}:) there is no difference of using (\text{OnTheme}/\text{Doc}) or (\text{Theme}/\text{Doc}), regarding to the f-Measure metric. (H_{\text{fM}}: \text{fM}{\text{OnThD}} = \text{fM}{\text{ThD}})</td>
</tr>
<tr>
<td>(H_{\text{Rec}}:) there is difference of using (\text{OnTheme}/\text{Doc}) or (\text{Theme}/\text{Doc}), regarding to the recall. (H_{\text{Rec}}: \text{Re}{\text{OnThD}} \neq \text{Re}{\text{ThD}})</td>
<td>(H_{\text{Pr}}:) there is difference of using (\text{OnTheme}/\text{Doc}) or (\text{Theme}/\text{Doc}), regarding to the precision. (H_{\text{Pr}}: \text{Pr}{\text{OnThD}} \neq \text{Pr}{\text{ThD}})</td>
<td>(H_{\text{fM}}:) there is difference of using (\text{OnTheme}/\text{Doc}) or (\text{Theme}/\text{Doc}), regarding to the f-Measure metric. (H_{\text{fM}}: \text{fM}{\text{OnThD}} \neq \text{fM}{\text{ThD}})</td>
</tr>
</tbody>
</table>

\(X_{\text{OnThD}} \), where \(X \) is a metric, means: the value of \(X \) obtained by a specific participant using the \(\text{OnTheme}/\text{Doc} \) approach.

\(X_{\text{ThD}} \), where \(X \) is a metric, means: the value of \(X \) obtained by a specific participant using the \(\text{Theme}/\text{Doc} \) approach.

In the execution phase, the participants had to identify the CCC existing in the requirements document of the Health Watcher application. To do this, the Group 1 used the Theme/Doc approach and the Group 2, the OnTheme/Doc. The part of the requirements document analyzed by the participants had seven types of non-functional CCC: “Security”, “Concurrency”, “Usability”, “Performance”, “Distribution”, “Availability” and “Persistence”. “Distribution” and “Competition” were implicit concerns, i.e., there were not keywords in the requirements document with regard to them. To calculate the values of the recall, precision and f-Measure metrics, it was considered the amount of CCC identified by each participant, individually.

The participants of the Group 2 also received an instance of the OntoCCC ontology, created by the authors of this paper, from the catalogs of Moreira et al., (2005), Chung and Leite (2000) and Cysneiros and al., (2007) in their experimental study on AORE approaches: “Generally the AORE approaches do have good precision (…). However, the majority of these approaches do have limitations when considering recall”. This means that there is little incidence of false positives, but the amount of correctly identified concerns is low. The precision values of both groups were higher than the recall values.

Table 4: Experimental results.

<table>
<thead>
<tr>
<th>Approach (\text{OnTheme}/\text{Doc})</th>
<th>Participant</th>
<th>Re (%)</th>
<th>Pr (%)</th>
<th>fM (%)</th>
<th>Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P8</td>
<td>71,42</td>
<td>80,00</td>
<td>75,47</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>P9</td>
<td>85,71</td>
<td>100,00</td>
<td>92,30</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>P10</td>
<td>85,71</td>
<td>100,00</td>
<td>92,30</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>P11</td>
<td>71,42</td>
<td>100,00</td>
<td>85,32</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>P12</td>
<td>57,14</td>
<td>80,00</td>
<td>66,66</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>P13</td>
<td>71,42</td>
<td>80,00</td>
<td>75,47</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>P14</td>
<td>71,42</td>
<td>100,00</td>
<td>83,32</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>73,46</td>
<td>91,42</td>
<td>81,26</td>
<td>45</td>
<td></td>
</tr>
</tbody>
</table>

4.2 Results

Table 4 presents the results of this experimental study. The first (lines 1-10) and the second (lines 11-20) parts of this table, respectively, present the results for the Theme/Doc and OnTheme/Doc approaches. The first column presents the codes that identify each participant; the second, third and fourth columns refer to the values of recall, precision and f-Measure; the last column of this table shows the time (in minutes) that each participant took to finalize the CCC identification.

The values for the recall, precision and f-Measure metrics emphasize a statement made by Sampaio et al. (2007) in their experimental study on AORE approaches: “Generally the AORE approaches do have good precision (…). However, the majority of these approaches do have limitations when considering recall”. This means that there is little incidence of false positives, but the amount of correctly identified concerns is low. The precision values of both groups were higher than the recall values.

Table 5: Concerns identified by each participant.

<table>
<thead>
<tr>
<th>#</th>
<th>Participants (\text{Theme}/\text{Doc})</th>
<th>%</th>
<th>Participants (\text{OnTheme}/\text{Doc})</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X X X X</td>
<td>28</td>
<td>X X X X X X X X X</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>X X X X X X X</td>
<td>71</td>
<td>X X X X X X X X X</td>
<td>85</td>
</tr>
<tr>
<td>3</td>
<td>X X X X X X X X X X</td>
<td>71</td>
<td>X X X X X X X X X</td>
<td>85</td>
</tr>
<tr>
<td>4</td>
<td>X X X X X X X X X X X X X X X</td>
<td>71</td>
<td>X X X X X X X X X</td>
<td>85</td>
</tr>
<tr>
<td>5</td>
<td>X X</td>
<td>71</td>
<td>X X X X X X X X X</td>
<td>85</td>
</tr>
</tbody>
</table>

Average 91 Average 71

Legend: (1) Persistence; (2) Security; (3) Concurrency; (4) Usability; (5) Performance; (6) Availability; (7) Distribution

To improve the discussion about the recall
values, Table 5 presents: (i) the list of CCC of the Health Watcher application - first column; (ii) the CCC identified by each participant who used the Theme/Doc approach - from second to eighth columns; (iii) the percentage of participants who identified each CCC - ninth column; and (iv) the same information previously described to the OnTheme/Doc approach – from tenth to the eighteenth columns.

Based on this table, it is possible to note that only one of the participants who used the Theme/Doc approach was able to identify the “Concurrency” concern and none of them has identified the “Distribution” concern; “Concurrency” and “Distribution” were implicit concerns. Regarding to the participants who used OnTheme/Doc approach, just one participant did not identify the two implicit concerns. For all concerns, the percentage of participants who identified them is always greater for OnTheme/Doc approach than for the Theme/Doc. Consequently, on average, the percentage of participants who identified any concern using OnTheme/Doc approach (71%) is higher than that one who used Theme/Doc (41%).

Finally, it is important to note that even using ontologies, the percentage of participants who identified the “Distribution” concern is not satisfactory (43%). This indicates that the strategy used to represent the mutual influence between different concerns must be reviewed.

Based on Table 4 again, it is possible to note that there is no difference between the two approaches with regard to the precision. This means that there was not a high incidence of false positives during the CCC identification for both approaches.

Regarding f-Measure metric (Table 4), the average value obtained by the participants who used OnTheme/Doc was higher than that one obtained to the Theme/Doc approach. This occurs, because the precision provided by the two approaches is similar and the recall provided by OnTheme/Doc approach is higher than that one provided by Theme/Doc.

Table 4 still presents that the average time for execution of OnTheme/Doc (45 min) was higher than that one provided by Theme/Doc approach (41 min). This is due to the participants who used the OnTheme/Doc approach had another artefact to analyzed, i.e., the instance of the OntoCCC ontology, as well as two new activities to be performed: “Checking Dependencies” and “Checking Contributions”. However, we noted that the difference (4 minutes) is not significant. Although the participants who used the OnTheme/Doc approach had to perform additional tasks, the usage of the ontology and the proposed process may have led the participants to perform the concern identification activity in a more focused way. This may have minimized the impact on the time of execution of the OnTheme/Doc approach.

4.3 Hypothesis Tests

Although the values presented in Section 4.2 indicate that the usage of OnTheme/Doc approach provides good recall and f-Measure values with regard to CCC identification, it is necessary to perform statistical analyses by means of hypothesis tests, in order to ensure the reliability to the statements expressed in this paper. The hypotheses related to the precision metric was not tested, since the two analyzed samples did not show differences with regard to the values of this metric.

The purpose of a hypothesis test is to verify if the null hypothesis (H₀) may be rejected, with some significance level; when H₀ is rejected, the alternative hypothesis H₁ may be accepted. Before applying a hypothesis test, it is necessary to know in what type of probability distribution the data collected in the study is organized. This occurs because many hypothesis tests, such as the t-test (Montgomery, 2000), have as a prerequisite the need that data be normally distributed.

To verify if the data is normally distributed, we have applied a test known as Shapiro-Wilk test (Montgomery, 2000) and the values for recall, f-Measure and time metrics were considered normalized with a significance level of 99.9%.

To verify the hypotheses defined in Table 3, the t-test was applied. Comparing the average values for recall provided by the approaches Theme/Doc (average = 40.81) and OnTheme/Doc (average = 73.46), the H₀, null hypothesis can be rejected with significance level of 99.9% (p-value = 0.0004). This means that, with 99.9% of confidence, we can say that the recall provided by OnTheme/Doc approach is higher than that one provided by Theme/Doc.

Similarly, comparing the average values of f-Measure metric of both approaches - Theme/Doc (average = 55.48) and OnTheme/Doc (average = 81.26) - the null hypothesis H₀fM can be rejected with significance level of 99.9% (p = 0.002).

Regarding to the average time spent by the participants to perform the activities in the Theme/Doc (average = 41 min) and in the OnTheme/Doc (average = 45 min), it was not possible to obtain statistical evidences, with significance level equal or higher than 95%, to say that these values are different.
In summary, hypothesis tests have revealed that there are significant differences between the values for recall and F-Measure metrics measured for the two approaches in analysis, and the OnTheme/Doc approach presented better results. However, it is not possible to say that there are significant differences between the values for precision provided by both approaches, as well as for the time required to perform their activities.

4.4 Threats to Validity

Wohlin et al., (2012) state that an experimental study may face situations that threaten the validity of its results. The main threats addressed in this study are:

1) **Conclusion Validity.** This kind of threat refers to issues that affect the ability to draw correct conclusions about the experimental results. An example of this kind of threat is the choice of appropriate statistical methods for data analysis. In the case of this study, one of the statistical tests used was the t-test, which requires normally distributed data. To verify the normality of the data and minimize this threat, the Shapiro-Wilk test was applied and the result was positive for the samples.

2) **Internal Validity.** It refers to issues that may affect the ability to ensure that the results were, in fact, obtained from the treatments (i.e., the AORE approaches: OnTheme/Doc and Theme/Doc) and not by coincidence. A threat of this kind can be related to the strategy used to select and group the participants of the experimental study. To mitigate this threat, we did not demonstrate expectations for any approach during the training phase. In addition, the participants were grouped according to their levels of experience.

3) **External Validity.** This kind of threat refers to issues that affect the ability to generalize the results of an experiment to a wider context. In this case, the relevant factors that could have influenced the results of this study are: (i) the application used in the study, i.e., Health Watcher; (ii) the quality of the resources (the CCC ontology and the requirements document) presented to the participants; (iii) the amount of participants of the study; and (iv) the use of undergraduate and graduate students in Computer Science. In order to mitigate these potential threats, we intend to replicate this experiment with other groups of participants and different applications.

5 RELATED WORK

Several AORE approaches have been proposed in last years; among them, many approaches address the concern identification and classification activity. In a systematic mapping (SM), conducted by the authors of this work (Parreira Júnior and Penteado, 2014), it was noted that until 2013, there were thirty-eight different AORE approaches and twenty-two of them were related to this activity. Among these, ten provided resources to support software engineers during this activity (Agostinho et al., 2008; Sampaio et al., 2005; Chitchyan et al., 2006; Zheng et al., 2010; Liu et al., 2009; Soeiro et al., 2006; Moreira et al., 2005; Chernak, 2012; Whittle and Araújo, 2004; Alencar et al., 2010; Brito and Moreira, 2003; Musbacher et al., 2010). These approaches aimed to support the software engineer during the concern identification and classification through guidelines, such as catalogues of Non-Functional Requirements (NFR) (Chung and Leite, 2000; Cysneiros, 2014) or catalogues of CCC that were extensions of NFR catalogs (Moreira et al., 2005). Some problems with regard to the usage of these catalogs are (López et al., 2008): (i) they are complex to be read and understood by humans; and (ii) they are not prepared for automated semantic processing. In addition, most of these approaches does not present a process that helps the software engineer on how to use the guidelines.

Another problem that was noted from the systematic mapping is that only five of these ten AORE approaches (Sampaio et al., 2005; Soeiro et al., 2006; Moreira et al., 2005; Chernak, 2012; Brito and Moreira, 2003) were evaluated with some kind of experimental study. Hence, there is no way of knowing on the effectiveness of these approaches.

In another recent SM conducted by the authors of this study, it was found that several ontology-based approaches have been proposed for the requirements engineering field, however, none of them is specific to the context of AORE. Maybe, one of the closest works, related to this paper, is that one proposed by López et al., (2008). In this work, the authors presented an ontology for sharing and reusing NFR and design decisions. The proposed ontology aims to store the knowledge related to the NFR and design decisions, based on the description of NFR catalogues. The researcher can create instances, from this ontology, that address the NFR and design decisions of interest.

The proposal of López et al., (2008) differs from that one proposed in this paper as following: (i) their work is not related to the AORE field, therefore, it
does not address specific features of CCC, such as the classification of a CCC as non-functional or functional one, the relationships between CCC and keywords, the decomposition of concerns into sub-concerns, among others; (ii) their work does not present a process or a set of guidelines that helps the software engineer on how to use the proposed ontology; and (iii) the work does not present any kind of an experimental study on the proposal.

6 FINAL REMARKS

Based on the problems reported in recent work (Herrera et al., 2012; Sampaio et al., 2007), and already mentioned in this paper, it is possible to note that the concern identification and classification activity from requirements documents is a relevant and challenging research subject yet.

This paper presented an extension of a well-known AORE approach (Theme/Doc), called OnTheme/Doc; the aim of this extension is to improve the values for recall and precision with regard to the concern identification and classification. The main innovation of OnTheme/Doc approach is the usage of ontologies (OntoCCC) to support the users during the CCC identification. An experimental study conducted on OnTheme/Doc showed that the usage of ontologies may improve the values for recall, without negatively impact on the execution time and precision of the approach.

As future work proposals, we intend to: (i) register other kinds of concerns as instances of the OntoCCC ontology; (ii) create a computational tool for concern identification, based on instances of the OntoCCC ontology; and (iii) extend the OntoCCC ontology to include the concepts and relationship of base concerns (non-crosscutting concerns).

REFERENCES

Hernandes, E. C. M. Um processo automatizado para tratamento de dados e conceituacao de ontologias com o apoio de visualizacao. Master dissert. UFSCar, 2009 (in Portuguese).

