
Improving Software Design Decisions towards Enhanced Return of 
Investment 

Pedro Valente 1, David Aveiro 2 and Nuno Nunes 2 
1University of Madeira (UMA), Colégio dos Jesuítas, Funchal, Portugal 

2Madeira Interactive Techonologies Institute (M-ITI), Campus Universitário da Penteada, Funchal, Portugal 
 

Keywords: Software Engineering, Enterprise Engineering, Business Process Improvement, Software Process 
Improvement, Software Metrics, Financial Metrics. 

Abstract: One outstanding issue in modern information systems development is the Return of Investment (ROI) of 
supporting Business Processes (BPs) through in-house development and/or integration of business modules 
from component-based development. Software solutions to solve this problem will usually be based in internal 
software development processes where the inadequate decision, for e.g. the wrong software framework, may 
lead to losses that will range from minor adjustment budgets to financially catastrophic situations. Here we 
propose to use information from the analysis of BPs metrics to enhance decisions related to software design, 
based on software development effort estimation for the new enhancement, and the related ROI as a path to 
consistently raise project success. This paper frames a Software Process Improvement (SPI), Enterprise 
Engineering (EE) and Software Engineering (SE) based-solution to enhance ROI following better design 
decisions, and provides in-depth relevant considerations regarding our future work.

1 INTRODUCTION 

Interactive Information Systems (IISs) allow 
organizations to collect data in order to produce, with 
more or less effort, all the information users need to 
complete their tasks according to everyday needs and 
strategic projects. However, when Business 
Processes (BPs) are enhanced, if the adequate 
structural information support is not provided for the 
new and changed tasks, users might be led to “jump” 
from system to system (including telephone) in order 
to keep track of situations they are responsible for or 
related to. Hence, lack of BP control may lead to 
pressure cascades that result in discontentment and 
diminished performance, instead of the envisioned 
augmented efficiency and/or effectiveness. 

It is commonly accepted that dealing with BP 
Improvement (BPI) is a meaningful stage for 
Software Engineering (SE) as numerous Software 
Process Improvement (SPI) initiatives are 
continuously elaborated to deal with this problem. 
Nevertheless, only few inherently consider cost-
benefit analysis (Unterkalmsteiner et al., 2011), and 
human factors are still not sufficiently considered 
weakening the strength of the crucial alignment 
between managers, SE practitioners and users in 

order to consistently reach project success (Ferreira 
and Wazlawick, 2011). 

In order to achieve BPI, there is usually the need 
to promote new software projects that aim for: (i) 
corrective maintenance, in order to develop new 
interface features or enhanced data integration; (ii) 
improvement maintenance to e.g. provide new front-
ends or new systems (Abreu, 2013). These projects 
will be carried out using internal or outsourced know-
how and internal or acquired tools, as the commercial 
pressure for the option for cloud frameworks (Fox et 
al., 2013, Larry Coyne, 2014) and BP management 
tools (Skalle and Hann, 2013) may lead to a software 
development structural transition. We argue however, 
that this pressure and its related impact, may 
eventually disrupt the natural way of building new 
features according to the user’s real needs using 
already existing resources, which we believe that can 
bring increased efficiency out of minor investment in 
an acceptable and adequate Return of Investment 
(ROI) according to the organization's dimension, if 
not avoiding financially catastrophic situations 
(Morgenshtern, 2007), when compared to solutions 
that comprise framework changes. 

According to recent studies in effort estimation, 
decisions to enhance or change software framework 

388 Valente P., Aveiro D. and Nunes N..
Improving Software Design Decisions towards Enhanced Return of Investment.
DOI: 10.5220/0005383803880394
In Proceedings of the 17th International Conference on Enterprise Information Systems (ICEIS-2015), pages 388-394
ISBN: 978-989-758-097-0
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)



are believe to add up to 75% of development effort, 
whereas preventive maintenance can decrease  
development effort in 25%, considering the same 
features (Alves et al., 2013). Moreover, there is the 
common knowledge that a high percentage of 
software projects still fail despite the continuous SPI 
efforts and the availability of new information 
technology (IT) tools (Unterkalmsteiner, 2011, The 
Standish Group, 2013). Another reason found in the 
literature for project failure, identifies imposition, 
regardless of practitioners and users will, as a reason 
to unsuccessful results, and in the opposite direction, 
points out addressing human factors as a solution to 
reach success (Ferreira and Wazlawick, 2011). 

Besides SE, BPI is also an issue in Enterprise 
Engineering (EE), as the need for change to enhance 
efficiency has long been recognized as a challenge 
(Dietz, 2006). Although organizations are seen in a 
completely different way from SE, as the focus is on 
the organization's architecture, i.e. the coordination 
and the production acts combined in organizational 
transactions (as considered in the DEMO approach), 
the BPI problem is precisely the same, as a SE project 
is expected to solve the enhancement need. The EE 
perspective inherently focuses much more on human 
aspects, as the software system is seen as an added 
value to the enterprise, and not as an axiom of the 
problem, as organizations, earlier, already had their 
information systems (mostly in paper). Therefore, we 
believe that a cooperation between SE and EE is 
needed in order to achieve a higher level of BPI, since 
the more holistic perspective of EE about the 
organization can be and added value to SE. 

Both SE and EE recognize the necessity to elicit 
requirements in such a way that they are useful for 
BPI, and Use Cases seem to be the obvious solution, 
as it is a concept already recognized in both domains 
(Constantine and Lockwood, 2000, Dietz, 2003). In 
fact, similar approaches that design BPs with Use 
Cases already exist, such as Process Use Cases 
(Valente and Sampaio, 2007) from SE and the 
Systematic Approach (Cruz et al., 2014) from EE. 

We wish to take the already existing communion 
between SE and EE further, as our approach is based 
on the idea that if system design is carried out based 
on the analysis of the proper metrics, more adequate 
solutions will be produced, avoiding waste and 
promoting efficiency and effectiveness, to overcome 
third-party solutions in terms of ROI, and give 
managers and practitioners a better decision support 
as they will be able to better envision cost-benefit 
implications, and decide whether to use more or less 
resources according to the organization's capabilities, 

and therefore achieve the meaningful task, for both 
domains, of, increasing project success rates. 

This paper is structured in the following way. 
Section 2 considers the relevant techniques for the 
development of our solution from both EE and SE 
domains, Section 3 presents our solution approach, 
Section 4 presents literature’s related work, Section 5 
in-depths relevant considerations regarding our future 
work, and Section 6 presents our conclusions. 

2 BASE TECHNIQUES 

The following techniques are the theoretical basis of 
our proposal, which goal is to allow organizations to 
continuously be aware of the financial impact of their 
decisions, especially regarding BPI, the problem that 
we address in this paper. 

Regarding the elaboration of our contribution for 
SPI, we focused on existing methods, from EE for 
organization management and design, and from SE 
for software development methods, as the basis to 
understand the organization i.e. the problem that leads 
to BPI needs, and the process that should follow i.e. 
the software solution for that BPI. Concerning the 
specificities of our SPI proposal, we then consider 
two software design use case-driven solutions that 
elicit the benefits of the new enhancement, and then 
consider two distinct approaches for software effort 
estimation that can be distinctly used to calculate the 
software cost. We then focus on the financial 
perspective, in terms of ROI to consider the previous 
cost-benefit variables. 

2.1 SPI from the EE Perspective 

EE looks at organizations as systems, and from this 
perspective, financial aspects are an axiom of the 
approach. We now consider two distinct approaches 
that define strategic and structural techniques to be 
used in order to design the organization. 

DEMO (Dietz, 2006) defines the theoretical 
concepts on how an organization should be 
architected in order to achieve success. The 
teleological perspective explains the purpose of its 
existence, while the ontological perspective looks at 
the BP existence as a need to organize activities for 
production. Although DEMO focuses more on the 
organization’s design than on BPI, relevant and 
complementary work, as the GOD approach (Aveiro, 
2010), elicits the need to control BP metrics in order 
to identify exceptions and to act adequately in order 
to re-establish order. This can be done either by 
simply handling exceptions, i.e. situations in which 

Improving�Software�Design�Decisions�towards�Enhanced�Return�of�Investment

389



minor adjustments are needed, or by engineering 
processes in order to regain control over dysfunctions 
caused by unexpected exceptions. 

The Business Model Canvas (BMC) (Osterwalder 
and Pigneur, 2010), originally coming from the 
service design domain, focuses on the enhancement 
of the organization based on a strong relation with its 
external environment, and looks at organizations in 
terms of systems that should produce revenue as a 
result of the organization's social context. BMC 
claims that the path for success is based on the 
relation between partners and internal resources, and 
sees value propositions, i.e. how BP should be 
enhanced regarding customer’s needs, as the process 
to enhance the organization. These value propositions 
should be elaborated based on existing or new key 
partners, activities and resources, in order to enhance 
customer relationships, product channels and 
customer segments. A cost structure and a related 
revenue stream should be elaborated in order to 
evaluate the cost-benefit of the new proposition. 

2.2 SPI from the SE Perspective 

We now consider a SPI approach from 2011 that 
focuses on the need to manage the change in a holistic 
perspective within the organization. 

The Change Management Practices (Ferreira and 
Wazlawick, 2011), focuses on the need to control 
change within an organization as the way to achieve 
project success and avoid ROI losses. The approach 
emphasizes the need to establish a change vision and 
communicating that vision to reach the needed 
alignment between managers, practitioners and users, 
in order to effectively achieve the change demands. 
The authors propose practices to be carried out in 
three phases: (i) unfreezing, (ii) moving and (iii) 
refreezing; in which they elicit the need to form a 
coalition with the authority to implement change, by 
communicating that need, the associated strategy, and 
reach for short term wins, until the change is fully 
accomplished. Relevant SPI problems are highlighted 
as for example the resistance to change when there is 
not enough evidence of the benefits for the 
stakeholders, eventually resulting in lack of 
commitment in a cumbersome process. The study is 
complemented with a questionnaire, in which it is 
concluded that there is a real need to focus on people 
when there is a need for change. 

2.3 Software Design 

At the moment when enough knowledge is reached 
about the system to be developed, there is the need to 

design it in detail. We consider two distinct, use case-
driven approaches for software design, which can 
provide the needed artefacts, not only for software 
implementation specification, but also for software 
effort estimation. 

Goals (Valente, 2009) is a comprehensive use 
case driven, BP design, requirements elicitation, 
analysis, and system design methodology, that 
promotes traceability between all components of a 
system, in a method that can be applied in order to 
produce the minimal artefacts needed to ensure 
software quality for each project, as follows: 
 Process Use Cases model – BP design; 
 Use cases design – analysis of the user tasks 

and their sequence; 
 Domain model – information structure design; 
 User interface design -  detailed design of the 

user screens; 
 System Architecture – dependency relations 

between relevant system components. 
Goals promotes the simplification of the system 

before it is built, and therefore, it may lead to the 
construction of more light and adequate systems. 

 

Usage-centered design (UCD) (Constantine and 
Lockwood, 2000) is a methodology for user interface 
and interaction design with special concerns in 
usability. It is based on the definition of several 
concepts related to human-computer interaction 
(HCI) such as: (essential) use cases, actors and roles. 
UCD defines four models for requirements definition: 
 Activity map – representation of the activities 

to the design problem; 
 Activity profiles – purpose and performance of 

each activity; 
 Participation map – participants and artefacts 

involved in the activity; 
 Activity-task map – tasks (use cases) and 

actions extraction. 
Following the definition of the tasks, the user 

interface should the designed based on the canonical 
abstract prototypes (CAPs), as enough system 
complexity knowledge already exists. UCD suits our 
approach, as we believe that specific user interface 
design decisions have relevant implications on the 
software development effort. 

2.4 Software Effort Estimation 

Accurate software effort estimation is a cornerstone 
of our approach as the calculation of the ROI of a SPI 
initiative will only be possible if the cost is measured. 
In a recent study from Alexei Botchkarev it is 
possible to observe that the mean magnitude of 
relative error, i.e. the deviation will rarely be close to 

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

390



zero (0), as, out of 47 projects from 15 studies, 75% 
of the deviations ranged from 20 to 60%, including 
the most relevant methods from the SE industry, 
namely, Use Case Points (UCP), COCOMO and 
Function Point Analysis (FPA) (Botchkarev, 2014). 

We now consider two software effort estimation 
methods. 
Interactive Use Case Points (iUCP) (Alves et al., 
2013) is a development of the original UCP method 
(Karner, 1993), that introduced a human perspective 
to the original method, whereas, the user perspective 
provided by HCI methods adds complexity to the 
original actor weight, to better reflect the difficulty of 
interactive user interfaces development. The original 
use case weight was left unchanged. The authors also 
defend that requirements stability, the option for a 
new software development framework, and the 
project type (maintenance or new development) 
largely impact software development effort. In the 
iUCP proposal, these aspects can add up to 125% of 
the effort to the project, which contrasts with the 
original UCP method where the same aspects could 
only influence the final calculation for no more than 
5%. 

 

Function Point Analysis (FPA) (Albrecht, 1979) 
is an effort estimation method widely used in the 
software industry, which works at the detailed level 
of each function in a system, namely: 
 External inputs - components responsible for 

introducing changes in system's internal data; 
 External outputs - the ways system's internal 

data can be presented; 
 External inquiries - methods for reading 

system's data without modifying it; 
 External interface files - responsible for 

exchanging data with other systems; 
 Internal logical files - files that are being used 

by the system itself. 
The final effort is calculated considering the 

existing environmental and technical factors. 

2.5 Return of Investment 

Accurate return of the investment (ROI) as a result of 
detailed system design is the main objective of our 
approach. It is a simple calculation from the 
economical perspective, nevertheless, its usage is not 
a common practice in SE as stated in a comprehensive 
study from Michael Unterkalmsteiner as out of 148 
analysed SPI initiatives, only 8 contemplated cost-
benefit analysis to measure of the impact of the new 
enhancement (Unterkalmsteiner et al., 2011). 

We believe that the contribution to SE of Solingen 
(Solingen, 2004), specific to SPI in terms of ROI 

calculation, to be a sufficient. In this approach 
estimated development effort and other human 
resources are considered, and, benefits are divided in 
direct benefits, in terms saved effort, and indirect 
benefits, in which case, predictions should be carried 
out by specific area experts. 

The formula for the calculation of the ROI is: 

ROI = (Benefit – Cost) / Cost (1)

3 OUR APPROACH 

We frame our approach in the following perspectives. 

3.1 Business Process Enhancement 

In order to be aware of the cost of each BP 
occurrence, the enhancement of a BP should always 
be done using the following metrics: 
 Average cost for each user intervention; 
 Average cost per occurrence. 

 

And in order to assure the quality of a BP, the 
following metric should also be calculated: 
 Number of failures per number of occurrences. 

 

In order to refine quality levels, the following 
objective should be defined: 
 Acceptable number of failures per number of 

occurrences. 
 

The BP should then be redesigned, using, e.g. the 
DEMO notation (Dietz, 2006), or a simple notation 
like Process Use Cases (Valente and Sampaio, 2007). 

3.2 Software Development Process 

Once the BP is designed, a software development 
process should follow in order to produce the 
following artefacts: 
 Use cases model; 
 Detailed user interface design; 
 And, optionally, Comprehensive software 

architecture. 
 

Once the system is designed, distinct development 
scenarios, should be considered in order to proceed 
with effort estimation. 

3.3 Effort Estimation 

Once the needed information is available, the effort 
estimation should follow to calculate the cost, and the 
project duration considering the number of available 
human resources. 
 

Improving�Software�Design�Decisions�towards�Enhanced�Return�of�Investment

391



3.4 Return of Investment Calculation 

Based on the cost information, it should be possible 
to calculate the ROI as it will be possible to predict 
the benefits based on the following metrics: 
 New average cost for each user intervention; 
 New average cost per occurrence (including 

other operational costs) 
 

Indirect benefits should also be possible to calculate 
based on the following metric (considering an 
improvement at this level): 
 Number of failures per number of occurrences. 

 

The simple ROI calculation would then be 
possible using formula (1), where both Benefit and 
Cost variables should assume the following values: 
 Cost = Cost of the software development effort. 
 Benefit = Direct + Indirect Benefits. 

 

If the ROI is not acceptable, then, design changes 
should be considered in order to fine-tune the effort 
according to the organization's reality. 

4 RELATED WORK 

Although there are several approaches from both 
domains of SE and EE that focus on the value of 
software development within organizations, we have 
identified none that inspects ROI as the result of the 
specific design of the solution. The approaches that 
we select as related work, are however, significant 
work under progress in this direction, i.e. the need to 
understand the value that is directly derived from new 
software development efforts. We now present two 
approaches, one from SE and one from EE which 
reflect the concerns related to revenue from software 
development projects. 

GQM+ Strategies for Business Value Analysis 
(Mandić, 2010) is a value based software engineering 
(SBVE) derived method that has it focus on the usage 
of goal question metrics (GQM) approach combined 
with business goals to understand business value, i.e. 
the importance of each project within the 
organization. The method then focus on the ROI of 
each project, and also considers risk factors for each 
case. 

Value-oriented Solution Development Process 
(Pombinho, 2013) is a value-aware DEMO-based 
system development process, which defines a value 
model based on the investors needs in order to 
identify solutions (scenarios) for the problem, and 
select the most profitable implementation, and also 
define that the new enhancement should be evaluated 
in order to make sure that the objectives are attained. 

The following formula, which reflects specific 
operationalization costs, where OPEX stands for 
operational expenditure, is considered as an 
equivalent method for ROI calculation reflecting the 
dividends from a new investment: 

dividend = business OPEX – IT OPEX - 
investment 

(2)

5 DISCUSSION 

Our approach motivation is based on the idea that 
relevant advances can be achieved in SPI if closer 
attention is taken to detail, especially on the user 
perspective, as we believe that following BP 
enhancement, the investment effort can be fine-tuned 
based on its relation to design, as it will be possible to 
better predict costs and benefits using a ROI analysis. 

The main problem regarding our approach will be 
reaching the needed accuracy for effort estimation. 
According to the state of the art to this specific topic, 
we understand that there is still a long way until 
consistent accuracy, around 10% deviation, is 
reached, and that this will only be possible if a stable 
development environment exists. Nevertheless, by 
the identification of design and consequent software 
effort development patterns, it might be possible to 
reach, if not the accuracy, at least the awareness that 
design decisions directly affect the cost of a project, 
as e.g., the development of a new framework, or not, 
to solve specific SPI problem, will always be more 
costly than a simple integration enhancement 
between two existing systems (Alves et al., 2013). 
Hence, we believe that, if this complete analysis is 
made, previous to any software development, major 
mistakes will be less probable, since the organization 
itself, will have a more consistent SPI method. 

We believe that another crucial aspect of our 
approach will be the development of patterns that will 
allow both managers and SE practitioners to first 
easily identify BP enhancement needs, and then 
identify a patterned design solution for that 
enhancement, and following that, in reduced time, 
understand how much they can benefit from a new BP 
enhancement in terms of ROI and also other added 
qualitative values for the organization, as we believe 
that if detailed attention is paid to user performance, 
discontentment will decrease resulting in intangible 
benefits for the organization. 

Concerning the usage of our method for both SE 
end EE domains, one relevant problem might be 
related to finding the adequate use case definition, 
something that has been under discussion for several 

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

392



years, mainly in SE (Cox, 2002). We consider 
however that essential use cases (Constantine and 
Lockwood, 2000) support both domain concerns in 
terms of task completion and definition. 

Our main objective will be reaching evidence that 
our approach is valid to produce reliable results 
within a stable software environment, for a precision 
around 10% for effort estimation and around 20% for 
ROI accuracy. In order to achieve this objective, we 
believe that our method must be applied in several 
organizations and that discussion with researchers 
can accelerate the elaboration process. 

6 CONCLUSIONS 

Our approach aims at enhancing decisions related to 
the software development, and specifically for BPI. 
We believe that a systematic process that leads to an 
implementation logic derived from the “big picture” 
of the organization down to the detailed design of 
software and including all relevant implications in 
terms of ROI, brings us to a new paradigm to give a 
new “life” to those who struggle to efficiently manage 
and further enhance their software patrimony and 
consequently attain their full organization potential. 
We also believe that this step towards complete 
software development and management awareness, 
once achieved, might be the missing step to increase 
software project success worldwide. 

The more relevant aspects of software 
development within an organization, which are 
reflected in our approach, in our opinion, are: 
 BP enhancement design; 
 Software design;  
 Effort Estimation; and, 
 ROI analysis. 

 

As an extra outcome of a more consistent and 
coherent software development method, other 
outstanding problems can be diminished, such as: 
 The difficulty to highlight change benefits; 
 The difficulty to align managers, practitioners 

and users wills into change. 
 

Finally, we believe, that gathering knowledge 
from the complementary domains of SE an EE, can 
be an added value for both domains, as both science 
domains are closely related by means of the need to 
enhance the productivity and welfare of our 
organizations. 

 
 
 

 

REFERENCES 

Alves, R., Valente, P., Nunes, N. 2013. Improving software 
effort estimation with human-centric models: a 
comparison of UCP and iUCP accuracy. In Proc. of 5th 
ACM SIGCHI Symp. on EICS '13. ACM. pp. 287-296. 

Abreu, J., Ventura, P., Fernandes, S., Zacarias, M. 2013. 
Business Processes Improvement on Maintenance 
Management: A Case Study. In Procedia Technology. 
9: pp. 320–330. 

Albrecht, A. 1979. Measuring Application Development 
Productivity. In Proc. of IBM Application Development 
Symp. IBM Press. pp. 83–92. 

Aveiro, D. 2010. GOD and Control (sub) organizations: a 
DEMO-based approach for continuous real-time 
management of organizational change caused by 
exceptions. PhD Thesis. UTL, Lisboa, Portugal. 

Botchkarev, A. 2014. Estimating the Accuracy of the 
Return on Investment (ROI) Performance Evaluations. 

Constantine, L., Lockwood, L. 2000. Structure and Style in 
Use Cases for User Interface Design. In Object 
Modeling and User Interface Design. Addison Wesley. 

Cox, K. 2002. Heuristics for use case descriptions. PhD 
Thesis. Bournemouth University, Poole, England. 

Dietz, J. 2003. Deriving Use Cases from Business Process 
Models. In Conceptual Modeling - ER 2003, Lecture 
Notes in Computer Science. Springer Berlin. 
Heidelberg. pp. 131–143. 

Dietz, J. 2006. The Deep Structure of Business Processes. 
In Communications of the ACM. 49(5): pp. 58-64. 

Cruz, E., Machado, R., Santos, M. 2014. From Business 
Process Models to Use Case Models: A Systematic 
Approach. In Advances in Enterprise Engineering VIII, 
Lecture Notes in Business Information Processing. 
Springer International Publishing. pp. 167–181.  

Ferreira, M., Wazlawick, R. 2011. Software Process 
Improvement: An organizational change that need to be 
managed and motivated. In World Academy of Science, 
Engineering and Technology. 50: pp. 269-277. 

Karner, G. 1993. Resource Estimation for Objectory 
Projects. Objectory Systems. 

Mandić, V., Basili, V., Oivo, M., Harjumaa, L., Markkula, 
J. 2010. Utilizing GQM+ Strategies for an 
Organization-Wide Earned Value Analysis. In 
Proceedings of the 36th EUROMICRO Conference. 1-
3: pp. 255–258. 

Morgenshtern, O., Raz, T., Dvir, D. 2007. Factors Affecting 
Duration and Effort Estimation Errors in Software 
Development Projects. In Information and Software 
Technology. 49(8): pp. 827–837. 

Osterwalder, A., and Pigneur, Y. 2010. Business Model 
Generation: A Handbook for Visionaries, Game 
Changers, and Challengers. 1st edition. John Wiley 
and Sons. ISBN: 978-0470876411. 

Pombinho, J., Aveiro, D., Tribolet, J. 2013. Value-Oriented 
Solution Development Process: Uncovering the 
Rationale behind Organization Components. In 
Advances in EE VII. Springer Berlin. pp. 1-16. 

Improving�Software�Design�Decisions�towards�Enhanced�Return�of�Investment

393



Fox, S., Johnson, C., Follette, D. 2013. Beginning 
SharePoint 2013 Development. Wiley. ISBN: 978-
1118654873. 

Solingen, R. 2004. Measuring the ROI of Software Process 
Improvement. IEEE Software. 21(3): pp. 32–38. 

Skalle and Hann. 2013. Applying Lean, Six Sigma, BPM, 
and SOA to Drive Business Results. In TechRepublic. 
IBM RedBooks. 

The Standish Group, 2013. Chaos Report 2013. 
Unterkalmsteiner, M. et al. 2012. Evaluation and 

Measurement of Software Process Improvement - A 
Systematic Literature Review. In IEEE Transactions on 
Software Engineering. 38(2): pp. 398–424. 

Valente, P., Sampaio, P. 2007. Process Use Cases: Use 
Cases Identification. In Proc. of ICEIS’07. pp. 301–
307. 

Valente, P. 2009. Goals Software Construction Process: 
Goal-Oriented Software Development. VDM Verlag 
Dr. Müller. ISBN: 978-3639212426. 

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

394


