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Abstract: Software Product Lines (SPLs) have been used to provide support to the development of context-aware ap-
plications, which use context information to perform customized services aiming to satisfy users needs or
environment restrictions. In this scenario, feature models have been also used to guide product adaptation
process and to enable systematic reuse. However, a side effect of using those models is the accidental in-
clusion of inconsistencies that may imply in several errors in the adapted products. Moreover, context-aware
applications are exposed to a contextual change flow, which increases the occurrence and effects of such erros.
Therefore, mechanisms to check the inconsistencies are necessary before they become errors in the adapted
product. Nevertheless, a manual checking is highly error prone. In particular, there are inconsistencies that can
be detected only when they arise due to a specific adaptation. For those reasons, it is essencial to identify er-
rors in the context-aware feature model before they yield incorrect adapted products. In this work, we present
an Eclipse-based tool that supports the software engineer in the design of context-aware feature models and
provides a simulation process to allow anticipating inconsistencies related to the adaptations.

1 INTRODUCTION

A Software Product Line (SPL) is a set of software
intensive systems that share a common, managed set
of features satisfying the specific needs of a particular
market segment and that are developed from a com-
mon set of core assets in a prescribed way (Clements
and Northrop, 2001). In a SPL, a software is origi-
nated from a process called product derivation. To be
cost effective, a high amount of possible products is
expected.

A feature model (Kang et al., 1998) is often used
to represent the similarities and variabilities of an
SPL in a tree-like data model (Czarnecki and Eise-
necker, 2000). Moreover, well-formedness and com-
position properties can be defined over these feature
diagrams. When they are specific to certain feature
diagrams, they are called composition properties and
when they are general purpose, they are just called
well-formedness properties. In this work, the combi-
nation of a feature diagram with composition proper-
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ties is called system model.
In that sense, a recurrent problem in SPL is to

ensure that a feature model and their products obey
composition and well-formedness properties (Mar-
inho et al., 2012). On the other hand, the growing
popularity of handheld devices created a new kind of
applications that quickly react to monitored contex-
tual information.

We call those applications context-aware, since
they are aware of their situation in physical, virtual
and user environment, and can self-adapt, benefit-
ing from knowledge of the situation (Poslad, 2009).
Those self-adaptations are called automatic contex-
tual reconfiguration since they are solely based on ob-
servation of the environment context and do not re-
quire user attention (Schilit et al., 1994).

An SPL provides a reference architecture for the
application and can support the definition of con-
straints that outline the application’s structure, there-
fore, it can be used to support adaptation of context-
aware applications. The development of context-
aware applications using SPL has been corroborated
by the literature (Hallsteinsen et al., 2008; Lee and
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Kang, 2006; Marinho et al., 2013; Acher et al., 2009).
In this case, SPL are called CASPL (Fernandes

and Werner, 2008). A CASPL defines a data model
for the context environment, called context diagram,
and context properties to establish when and which
adaptations will be performed in the context-aware
application. Similarly, well-formedness properties
are also defined for context models. When manu-
ally configured, a product of an SPL can contain er-
rors that go unnoticed by the software engineer. In
context-aware applications an augmentation of prod-
uct adaptations occurs. Therefore, in the domain
of CASPL, checking if every possible product is in
agreement with the product line feature model must
be ensured.

In order to achieve effiency and to prevent er-
rors, the accordance between feature model and prod-
uct must be performed following a process. In that
sense, a process is proposed in (Marinho et al., 2011)
that comprises verification and validation techniques
in five levels: feature diagram verification, composi-
tion properties verification, context diagram verifica-
tion and, finally, product verification. As said before,
from a single set of feature and context diagrams and
composition and context properties, it is possible to
configure several products. Since, this process per-
forms validation at product level, an initial idea could
be checking every possible derivate product using the
process as a guide. However, executing this process
manually is tiresome. Futhermore, due to the number
of possible derivate products (O(2n)), this individual
checking is impracticable.

Considering this scenario, the major contribution
of this paper is to check context-aware feature mod-
els and respective products correctness automatically.
We call this feature model CAFM. CASPL are en-
hanced with a context model that comprises a context
diagram, well-formedness properties for this diagram
and context properties.

In this sense, we propose Fixture, a tool which
corresponds to the implementation of a process pre-
viously conceived in (Marinho et al., 2011). This
five-level process checks models, properties and re-
configurations of a CAFM. Additionally, the original
mechanism proposes a simulation process to detect
potential inconsistencies that may go unnoticed even
after the three initial stages. In order to detect these
errors at development time, Fixture implements this
simulation process based on product states.

This paper is organized as follows. Section 2 ex-
amines the meta-models created to represent the sys-
tem and context-aware parts of a context-aware appli-
cation. Section 3 and Section 4 deals with the life-
cycle of CASPL and how to use an automaton to per-

form it. Section 5 shows how we performed a case
study in order to test the feasibility of the approach.
Section 6 brings some related work and compares it
with our approach. At last, Section 7 summarizes the
paper and suggests probable future work.

2 META-MODELS FOR CASPL

Context-aware system models define how to represent
contexts and how to support an operational life-cycle
using context-aware systems (Poslad, 2009). The way
the models are designed enables software engineers to
conceive specific-domain properties.

In our work, context-aware applications are com-
posed by a context model and a system model. Each
of them comprises a diagram and properties (without
loss of sense, properties can be seen as rules). Fur-
thermore, diagrams and properties have a graphical
representation in a tree-like structure (see Fig. 1 -
Fig. 7). Associated to each of diagram and proper-
ties, there is a meta-model that represents system and
context parts.

Figure 1: Meta-model: system diagram.

In Fig. 1, some elements from the system meta-
model are depicted. This model is sufficiently ex-
pansible for defining a feature diagram as defined in
(Czarnecki and Eisenecker, 2000). It’s worth noting
that our meta-model supports feature attributes that
enables the software engineer to write specific prop-
erties involving the attributes.

The Feature meta-class is used to represent fea-
tures in the system model design. Mandatory Feature,
Root Feature, Optional Feature and Variation Feature
meta-classes inherit from Feature meta-class. Feature
meta-class has an self-relationship, representing that
a feature can be associated with another feature. Fea-
ture also has a relationship with attribute that indi-
cates that a feature can have zero or more attributes.

By analyzing the relationships, it becomes clear
that it is possible to create several relationships be-
tween instances of these meta-classes. For example,
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it is possible to create a relationship where an instance
of Optional Feature meta-class is child of an instance
of a Mandatory Feature meta-class.

In other hand, it is possible to create some un-
desired relationships too. For instance, a relation-
ship between instances of Mandatory Feature and Op-
tional Feature meta-classes where Mandatory Feature
instance is child of Optional Feature instance is not
appropriate. Since an instance of Optional Feature
meta-class can not be present in a derivate product,
its Mandatory Feature instance child would not be
present either. An instance of a Mandatory Feature
meta-class being not present in a derivate product is
a clear violation of the Mandatory feature definition
(which claims mandatory features are present in ev-
ery derivate product).

In this scenario, we define well-formedness prop-
erties as conditions that must be satisfied by instances
of meta-models presented in this work. In the pre-
vious paragraph, it is possible to enounce an well-
formedness property: “A mandatory feature can not
be child of an feature that is optional or a feature
that is child of an optional feature”. This well-
formedness property example is checked against sys-
tem model, but other well-formedness properties are
checked against the context model, composition prop-
erties and context properties. Regardless the rela-
tioships the meta-models define, the well-formedness
must be obeyed. It is possible to claim these well-
formedness properties are domain-free. This work
uses (Marinho et al., 2011) as a guide to define well-
formedness properties.

The tree structure representing context diagram
has three levels: context root, context entity, and con-
text information, regardless the context domain to be
modeled (see Fig. 2).

Figure 2: Meta-model: context diagram.

System models have composition properties (or
composition rules) and context models have context
properties. In the former, composition properties de-
fine constraints about the system model and the prod-
uct reconfiguration that must be respected. In the lat-

ter, they are responsible for guiding the application
adaptation when context changes take place.

An important meta-model requirement is the rep-
resentation of composition properties and context
properties. Both type of properties are modeled as
logical implications (if: : :then). Their representations
can be seen in Fig. 3 and in Fig. 4. In Fig. 3, the
Context Property meta-class has a relationship to
the Event meta-class, which represents the event that
may cause a product adaptation, and a relationship to
the Action meta-class, which represents the action
that must be executed when the event is evaluated to
true. In context properties, the antecedent is com-
prised of conjunctions or disjunctions over the con-
text information values. The consequent is comprised
of conjunctions dealing with the presence or absence
of optional features and the features attributes. In this
way, the antecedent works as an event condition and
the consequent as the action to be executed if the event
is triggered. In the literature, this kind of property is
called ECA (event-condition-action) rule.

In Fig. 4, the Composition Property meta-
class has two relationships to the Antecedent
meta-class, which represent the antecedent and the
consequent expressions of a composition property.
Antecedent meta-class also is related to the Logical
Expression meta-class, representing the left and
right arguments of a composition property.

The meta-models in Fig. 1, Fig. 2, Fig. 3 and Fig.
4 are improvements of the meta-model presented in
(Marinho et al., 2011) since they offer more flexibility
in feature diagrams and properties creation.

Fig. 5 presents an example of a system model and
Fig. 6 presents an example of context model. In Fig.
5, the system model is composed by a root feature,
which comprises four features: o2, Variation v1 (OR),
m1 (mandatory), and o1. Variation v1 has four variant
features (o3, o4, o5, and o6). Feature m1 is mandatory
and is implemented by the Attribute attr2 and feature
m2 has the attribute feature Attribute attr1. Finally,
feature o1 is composed by feature o7 and feature o8
and feature o7 is implemented by feature o9. In Fig.
6, the context model is composed by a Context root,
which has four context entities: Context Entity ent1,
Context Entity ent2, Context Entity ent3, and Context
Entity ent4, and each context entity has one context
information. Additionally, Fig. 7 and Fig. 8 shows
examples of composition and context properties, re-
spectively.

These four meta-models are connected by the fol-
lowing way: composition properties are logical impli-
cations defined over elements from the system model.
Fig. 7 says if optional feature o4 is absent and op-
tional feature o6 is present, then attr2 attribute’s value
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Figure 3: Meta-model: context properties.

Figure 4: Meta-model: composition properties.

must be greater than 25 and less than 50. Moreover,
context properties connect system and context model.
Context properties specify that if a specific combi-
nation of values of the context elements (defined in
context model) are achieved, then the derivate prod-
uct (the instance of system model) should be changed
in accordance to what the context properties triggered
define. This interconnection between the models are
taken into account specially in the simulation phase
as it will be depicted in Section4.5.

3 LIFE-CYCLE OF
CONTEXT-AWARE SYSTEMS

The life-cycle of context-aware systems shows a con-
stant change in their structure. These changes are
caused by certain changes in context information.
While in real scenarios, these contexts changes are
created measuring sensors, in our work, in order to
simulate these changes, we use a simulation process
to create scenarios. A scenario consists of the actions
that are executed. Since more than one context prop-
erty can be triggered at any time, we need to know all
possible combinations of triggering.

In a first thought, an idea would be taking ran-
domly a range of values as large as possible and check
them against the context properties in order to observe
if they are triggered. However, this kind of approach

Figure 5: System model example.

Figure 6: Context model example.

can be time consuming and inefficient. Then, our ap-
proach focuses on choosing the values that triggers
each context properties. For this, we consider the
atomic formulas displayed in Table 1. We have six
atomic formulas and six values (3, 15, 20, 30, 40,
60). Each value creates a range where each atomic
formula can be evaluated as true or false. So, besides
these original values, new values concerning the gaps
between the original values should be considered. Ac-
cording to Algorithm 1, these new values are: 1, 7, 17,
25, 35, 45, 120.

Therefore, after checking the atomic formulas
against those values (both original and new), we have
the combination of atomic formulas that can be seen
in Table 2. In this same table, it is worthy noting that
there are repeated combinations (highlighted tuples)
such that they can be removed in order to avoid unnec-
essary tests. After that, each combination of atomic
formulas is checked against each context property
event and then the relative actions that are triggered
are reported. For instance, for three context proper-
ties events in Fig. 9, it will be known that they were
triggered in the following way: (ARule1, ARule2),
(ARule2, ARule3), (ARule1, ARule2, ARule3) and
(ARule2).

The identified combinations represent the contexts
and they will be used in the life-cycle of context-
aware systems simulation.

The next phase is comprised of starting the simu-
lation process.
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Figure 7: Composition property example. It says if o4 is
absent and o6 is present, then m1:attr2 > 25 and m1:attr2 <
50 should be ensured.

Figure 8: Adaptation rule example. It says if ent1: f1 > 5
and ent2:in f2 == 20 is present, then o3 will be inserted in
the current product while o6 will be removed.

Figure 9: Context properties events.

4 AUTOMATIC
INCONSISTENCIES
DETECTION

4.1 Computable Form

In this work, we use a graphical notation to represent
context and system models. This graphical notation is
a representation of a tree-like data model. This data

model allows the use of OCL-like validation. OCL-
like validation is suitable to check validation condi-
tions on a product at time. But, as aforementioned, a
SPL may generate an amount of products that makes
individual OCL-like validation not doable.

Against this limitation, a more powerful repre-
sentation is needed. In this work, this is achieved
by model transformation. We choose to translate the
meta-models in propositional formulas. Another op-
tions are practicable like translating the meta-models
in a constraint satisfaction problem (CSP) and then
solving it aided by a CSP solver. Given the fact that
our meta-model deals with composition and context
properties, which are logical implications, choosing
translation to propositional formulas appeared to be
more straightforward. Therefore, we can use a BDD
solver to perform computations over the meta-models
once they are translated into proposional formulas.

Firstly, we are able to know if a system model (di-
agram and specific properties) makes it possible to
configure at least one product. Secondly, we are able
to determine if the system model allows the deriva-
tion of unsafe products. Unsafe products are diagram
instances that obey composition properties but do not
obey the well-formedness constraints. At last, we can
identify anomalies as false optional and dead features
described in (Benavides et al., 2010).

The first step is achieved by checking the proposi-
tional formula against a BDD solver. If it provides any
solution to the formula, we can affirm that at least one
product is configurable. The second step is achieved
trying to solve the propositional formula negation. If
the formula negation is satisfiable, we can affirm the
CASPL can generate unsafe products. Consequently,
as the negation is a logical contradiction, the CASPL
does not contain unsafe products.

Additionally, the first-order based model allows
the simplification of the amount of possible products.
This is achieved by using a special boolean value
don’t care bit. This little addition fits the meaning
of partial configuration present in (Benavides et al.,
2010). With this bit, some parts of system diagram
can be momentarily ignored and resolved in a lat-
ter moment. This also allows to virtually reduce the
amount of possible products what it is a great advan-
tage of the tool.

Before using propositional formulas, it is needed
to create boolean variables to use in propositional for-
mulas. After creating these variables, we will be able
to perform computations.
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4.2 Variables

For each optional, variation point and mandatory fea-
ture in the system diagram, we create a boolean vari-
able. This boolean variable represents whether the
feature is present or not (the boolean variable for
mandatory feature has always the value true). More-
over, the same boolean variables are used in well-
formedness constraint.

The creation of boolean variables to represent at-
tributes is complex. Instead of transforming every
attribute, we will transform only the attributes that
are used in composition properties. Since composi-
tion properties must be checked (and obeyed by all
derivate products), the attributes used by them must
be computable. Then, for each atomic formula that
references an attribute, we create a boolean variable.

It is worthy noting that variables creation for fea-
ture nodes ensures that a feature node creates one and
only one boolean variable (thinking in terms of math
functions, it is a injective function). However, the
variables creation for attributes allows the creation of
more than one boolean variable. When multiple vari-
ables are created for the same attribute node, a inter-
dependent constraint problem arise.

To exemplify the boolean variables creation pro-
cess, consider the instances system model and compo-
sition properties in Fig. 5 and in Fig. 7 respectively.
In Fig. 5, for each feature node (m1, m2, v1, o1,o2,
: : :, o9) we create a boolean variable (we adopt the
following notation N:node where node is the name of
feature node). For instance, the o1 feature node cre-
ates the boolean variable N:o1 and so on. In Fig. 7,
we create two boolean variables: a f1:m1:attr2 > 25
and a f2:m1:attr2 < 50. Now, we are ready to show
how to compute over these variables.

4.3 Computation and Model
Abstraction

(Benavides et al., 2010) has provided a compilation
of the computations to ensure the well-formedness
properties. However, none of them addresses compu-
tations over attributes of a feature. Since our meta-
model provides features attributes, additional treat-
ment must be addressed in order to deal with it.
This additional treatment deals with the range con-
straint between the boolean variables created to fea-
ture nodes.

In Fig. 7, we see two atomic formulas that deals
with attribute attr2: which we call a f1 and a f2 to
avoid repetitions. a f1 says attr2 must be less than
fifty and a f2, greater than twenty-five. It is easy to
see that it is not possible a f1 and a f2 be false simul-

Table 1: Atomic formulas that deal with the attribute attr1.

a f1 attr1 > 20
a f2 attr1 = 40
a f3 attr1 < 30
a f4 attr1 < 60
a f5 attr1 < 15
a f6 attr1 � 3

Table 2: Atomic formulas that deal with the attribute attr1.

attr1 a f1 a f2 a f3 a f4 a f5 a f6
1 false false true true true false
3 false false true true true true
9 false false true true true true
15 false false true true false true
17 false false true true false true
20 false false true true false true
25 true false true true false true
30 true false false true false true
35 true false false true false true
40 true true false true false true
50 true false false true false true
60 true false false false false true
120 true false false false false true

taneously. While it is easy to identify violated restric-
tions involving only two atomic formulas referring to
the same attribute feature node, the same could not be
said when several atomic formulas are taken into ac-
count. For that reason, we show an algorithm to solve
this problem.

For this, let’s consider a more complex example
in Table 1. The algorithm consists of creating new
values and then check each atomic formula against
each value. Table 2 depicts this process (highlighted
tuples are repeated tuples). The Table 1 contains the
intuitive idea that it is not possible both a f1 and a f3
be false and it also calculates the other restrictions that
are hard to see.

The process of creating these new values is shown
in Algorithm 1, as follows.

Algorithm 1: Creates new values to be checked.

Inputs: ordered values V
newValues
newValues first value from V divided by 2
for all value f in V do

newValues value
newValues (value + next value)/2

end for
newValues (last value) � 2
return newValues

With the values from Table 2, we create the propo-
sitional formulas displayed in Table 3. They are put
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Table 3: Propositional formula for attributes.

attr1 proposition formula
1 :a f1 ^ :a f2 ^ a f3 ^ a f4 ^ a f5 ^ :a f6
3 :a f1 ^ :a f2 ^ a f3 ^ a f4 ^ a f5 ^ a f6
25 a f1 ^ :a f2 ^ a f3 ^ a f4 ^ :a f5 ^ a f6
30 a f1 ^ :a f2 ^ :a f3 ^ a f4 ^ :a f5 ^ a f6
40 a f1 ^ a f2 ^ :a f3 ^ a f4 ^ :a f5 ^ a f6
50 a f1 ^ :a f2 ^ :a f3 ^ a f4 ^ :a f5 ^ a f6
60 a f1 ^ :a f2 ^ :a f3 ^ :a f4 ^ :a f5 ^ :a f6

together using the XOR operator indicating only one
propositional formula must be true at the same time.

Finally, the propositional formula representing
the feature diagram and composition properties is
checked against a BDD. It is worthy to mention that
a BDD solver uses a “do not care” bit when it is not
needed to take into account a variable value to solve a
propositional formula. This representation is respon-
sible to enable less bits to represent a bigger set of
possible products.

4.4 Automaton for Simulation

To perform the simulation, a NFA is depicted. As can
be seen in (Sipser, 2006), an automaton is a 5-tuple
M:

M =
�
Q;Sx;d;q0;F

�
(1)

where Q represents the finite set of states, Sx repre-
sents the finite set of input symbols plus the empty
string x, the transition function d, the initial state q0,
and the finite set of final states F .

To use an NFA in the simulation process, we must
adapt it. The finite set of states are represented by
the products of a CASPL. The initial state is a given
product meanwhile the finite set of final states is com-
prised by unsafe products. A product said to be in-
consistent when it does not obey any well-formedness
property.

In a SPL with n optional nodes, the total of
derivate products to be examined is O(2n) which,
clearly, impedes the checking of each possible prod-
uct. For this same reason, in this adapted automaton
the whole finite set of states is not known in advance.
Although the exact finite set of states is not known,
we can say the finite set of final states is comprised
of inconsistent derivate products. As a matter of fact,
once a product is recognised as unsafe, no more adap-
tations will be performed on this product. As a conse-
quence, any inconsistent product is regarded as a final
state.

The transition function d has as input a subset r
where r 2 P�1(R). Differently from classical automa-
ton, the transition function in our automaton does not

consider the current state. Actually, the transition can
occur in any product.

The output of the transition function d is com-
posed by actions of each rule inputed in the transition.

The whole function d is depicted as follows:

d : ss 2 P�1(R) ss:actions (2)

When a transition takes place, the actions must be
performed on the current product adapting it.

4.5 Simulation Algorithm

The simulation objective is to identify the bigger fi-
nite set of final states (as well as, the respective tran-
sitions) as possible. The bigger is this set, more errors
and more about the life-cycle of the derivate product
can be known.

As said before, the whole set of states is O(2n). To
examine each derivate product is a expensive and time
consuming task. In this sense, an hybrid approach
heuristic could be more suitable and achieve good re-
sults.

This heuristic verifies some conditions that will
break some well-formedness and composition prop-
erties regardless the current product configuration. It
also verifies specific product configurations in pursuit
of specific invalid product configurations.

This heuristic comprises three steps.

1. Determine which context properties can be acti-
vated simultaneously and group them in sets.

2. For each subset detected in step one, verify if any
of them violates any composition property regard-
less the current product configurations.

3. Execute simulation in each subset detected in step
one.

Step one will analyze all the context properties the
user had defined and will group context property’ ac-
tions that are triggered simultaneously. There is a rea-
son to know that: once it is known which actions can
be simultaneously triggered we will use these groups
to stimulate the initial configuration product.

The Algorithm 2 uses a Binary Diagram Decision
(BDD) to achieve the desired output. It creates a
propositional comprised by disjunction of each con-
text property event. Once this great disjunction is
created, the BDD solves this propositional formula.
Next, every solution to this disjunction is checked
against every event. If a solution satisfies two or more
context properties it is safe to say these two or more
context properties are triggered simultaneously. The
output of step one is a dictionary key-value where the
key is a solution found by the BDD solver and the
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value is the set of context properties triggered simul-
taneously. Step two uses the values of this dictionary.

Algorithm 2: Calculate which context properties are acti-
vated simultaneously.

Require: solver BDD, props Property(event, action)
Ensure: y = xn

d = false
for all p cr in props do

d d or _ p.event
end for
m:Map
s = BDD.Solve(d)
for all Solution sol cr in s do

for all prop cr in props do
if sol activates prop.event then

m.get(sol) adds prop
end if

end for
end for

Algorithm 3: Calculate which actions are executed simul-
taneously.

Require: Algorithm one output
sets = Algorithm One Output
m:Map
for all set cr in sets do

for all Context Property cp in set do
m.get(set) adds cp.action

end for
end for
return m.values

Step two verifies if a set of actions breaks any
composition property regardless the current product
configuration. Consider the following composition
property CR: If (Storage is present _ Wifi Connectiv-
ity is absent) then Record Movies is enabled. If a sub-
set ss contains the following actions: Include Storage,
Remove Record Movies, then it is known in advance
that this subset ss will generates an unsafe configura-
tion regardless the product.

Additionally, consider another subset of actions,
ss0 = fIncludeStorageg. Concerning the composition
property just mentioned, to determine if ss0 breaks the
rule it is necessary to check it against the current prod-
uct configuration. For instance, if the current product
configuration cur does not contain the feature Record
Movies then ss0 breaks the composition property, oth-
erwise, the actions in ss0 when applied over the con-
figuration cur do not generate an unsafe transition.

While the first type of actions is known to break a
specific composition property, the second type makes
the application break a composition property just in
specific cases. So, the simulation process is needed

to detect this kind of situations since they can not be
predicted.

Algorithms 2, 3, 4 are used in Step two.

Algorithm 4 : Calculate which context properties break
well-formedness rules regardless product configuration.

sets = Algorithm One Output
unsafeSets
for all set s in sets do

Certificate C = actions2Certificate(set)
for all Composition Property cp in CR do

r = BDD.Solve(cp, C)
if r = false then

unsafeSets adds set
end if

end for
end for
return unsafeSets

Finally, step three starts the simulation. As afore-
mentioned, some scenarios that break any composi-
tion properties or well-formedness rules can be pre-
dicted. However, another scenarios can not be pre-
dicted since they depend on the current product con-
figuration. The existence of these another scenarios
demand an approach that can detect them. In this
work, we propose the use of a simulation process
aided by an enhanced automaton.

In this work, we propose two behaviors to the au-
tomaton. The first behavior is depicted in Algorithm
5 and the second one in 6

Algorithm 5: Simulates contextual adaptations in a SPL.

Require: transition function delta, intial State p0, max-
imum amount of transitions MAX
q 0
lastSafeState p0
while q�MAX do

transition  randomly choose an transition from
delta
newState apply the actions over lastSafeState
if transition break any rule then

report transition, lastSa f eState, newState as un-
safe

else
report transition, lastSa f eState, newState as
safe
lastSa f eState newState

end if
q q + 1

end while
return unsafeSets

The Algorithms 5 and 6 outputs are respectively
depicted in Figs. 10 and 11. In both Figures, incon-
sistent derivate products are red marked.
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Figure 11: Mobiline Product life-cycle generated by algorithm 6.

Figure 10: Mobiline Product life-cycle generated by algo-
rithm 5.

Algorithm 6: Algorithm for the second behavior.

Require: automaton A, initial product P0, maximum
amount of transition qtd, maximum amount of safe
transition qtdS, actions that are triggered simultane-
ously RA
transitions t 0
derivable products dP 0
safe transitions st 0
dP.add(P0)
while t < qtd OU sT < qtdS do

for all product p in dP do
for all ra � P�1(RA) do

p0  ra applied over p
if p0 is valid then

P.add(p0)
transition fp ! p0, rag is reported as safe
transition.
t t + 1
tS tS + 1

else
transition fp ! p0, rag is reported as un-
safe transition.
t t + 1

end if
end for

end for
end while

5 EVALUATION

To evaluate our tool, we perform it over a context-
aware feature model from Mobiline, a SPL for Mo-
bile and Context-Aware Visit Guide applications, pro-
posed in (Marinho et al., 2010; Marinho et al., 2013).
In a broader sense, it is an improved and indoor ver-
sion of (Abowd et al., 1997). A fragment of system
and context model are presented in Figs. 12 and 13.

Figure 12: Part of the System Model for Mobile and
Context-Aware Visit Guides (Marinho et al., 2010).

Figure 13: Part of the context model for Mobile and
Context-Aware Visit Guides (Marinho et al., 2010).

Initially, Fixture checks the data model against the
well-formedness properties defined in OCL. Once it is
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recognized as a model that obeys all of these proper-
ties, the diagram is translated into propositional for-
mulas following the process described in (Benavides
et al., 2010). Then, every composition property is
grouped by the conjunction operator. Finally, the re-
striction about boolean attributes described in Sec-
tion 4.3 are also grouped by the conjunction opera-
tor. Having these three propositional formulas, we
can evaluate them grouped and isolated. If we ana-
lyze them in a isolate way, we can obtain an answer
to specific questions. For instance, if we analyze the
propositional formula created in step two, we can de-
termine if the composition properties are satisfiable
or not. If we analyze the one created in step one, we
determine if the feature diagram in itself yields any
product.

This propositional formula covers features option-
ality and obligatoriness, the cardinality of OR and
XOR feature groups, the composition properties and
restrictions between attributes used in composition
properties.

Fixture checks if the CAFM contains false op-
tional and dead features. The answer to false optional
is achieved asking the BDD solver to solve the propo-
sitional formula applying the boolean value false to
each optional feature at a time. If the propositional
formula is not satisfiable, so this optional feature is a
false optional feature. To check dead features, we do
the opposite process: we apply the boolean value true
to each optional feature at a time and call the BDD
solver. If the propositional formula is not satisfiable
with those values means that the model has dead fea-
tures.

Once the CAFM does not contain dead or false
optional features, the user is requested to configure
a product. Once the configuration process is over,
Fixture checks whether this configuration is safe or
not. This is achieved by transforming the configura-
tion into a string of boolean values. These boolean
values represent each the value of each variable cre-
ated in the aforementioned processes. So, it is submit-
ted to BDD solver that will inform the user about the
safety of the product. If the current product configu-
ration is said to be safe, we proceed to the simulation
phase.

6 RELATED WORK

Benavides et al. (Benavides et al., 2005) stressed the
use of automated method to reason over SPL. They
used Constraint Satisfaction Problem and their work
can be considered an evolution of (Van Deursen and
Klint, 2004) and (Mannion, 2002). However, context-

awareness is not even mentioned.
Fernandes et al. (Fernandes et al., 2011) pro-

posed the UbiFex notation and UbiFex Simulation
Process. The notation models variability with fea-
tures but does not consider attributes for them which
strongly ease the treatments. Moreover, in the simula-
tion process, simultaneous context properties trigger-
ing are not considered. Finally, the simulation pro-
cess is one-step process and because of this, it does
not provided a vision of the system evolution.

Rincón el al. (Rincón et al., 2014) proposed an
ontological rule-based approach to identify dead and
false optional features, identify certain causes of these
defects and explain these causes in natural language,
but they did not regard context-awareness.

Hartmann and Trew (Hartmann and Trew, 2008)
deal with context-awareness but in static way. Al-
though it is focused on multiple product line and
concerns the constrains between context and system
model.

Wagelaar (Wagelaar, 2005) used ontologies to rep-
resent contextual informations. In this way, he was
able to perform computations over the feature dia-
grams. However, part of these computations are lim-
ited by its own model representation.

Some gaps found in those works are: context-
awareness (Benavides et al., 2005; Rincón et al.,
2014), data models (Hartmann and Trew, 2008), sepa-
ration between system and context models (Benavides
et al., 2005; Rincón et al., 2014), detection of anoma-
lies (Wagelaar, 2005; Hartmann and Trew, 2008), au-
tomatic reasoning hartmann and simulation (Fernan-
des et al., 2011). We claim that our work deals with
these requirements even partially.

7 CONCLUSION AND FUTURE
WORK

This work has provided a more rich data model to rep-
resent context and system parts of context-aware ap-
plications. Additionally, it contributes to expand the
set of possible computations over context-aware ap-
plications.

Given the lack of automated tools, this work
created a prototype tool that offers a graphical in-
terface to make easier the development of context-
aware applications. At the same time, we also fo-
cused on algorithms and formal methods (the well-
formedness properties are specified in a OCL-like lan-
guage) which clearly provides less errors in CAFM.

As future work, other verification and validation
methods could be added to the tool for example to
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make possible the comparison and selection of differ-
ent methods. In order to provide additional real simu-
lations, the adaptations could be enhanced with prob-
abilities of how many times they could occur. Further-
more, we intend to implement an enrichment seman-
tic (Filho et al., 2012) process enabling to associate
feature model with business assets.
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