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Abstract: Approaches based on inverted indexes, such as Frag-Cubing, are considered efficient in terms of runtime 
and main memory usage for high dimension cube computation and query. These approaches do not compute 
all aggregations a priori. They index information about occurrences of attributes in a manner that it is time 
efficient to answer multidimensional queries. As any other main memory based cube solution, Frag-Cubing 
is limited to main memory available, thus if the size of the cube exceeds main memory capacity, external 
memory is required. The challenge of using external memory is to define criteria to select which fragments 
of the cube should be in main memory. In this paper, we implement and test an approach that is an 
extension of Frag-Cubing, named H-Frag, which selects fragments of the cube, according to attribute 
frequencies and dimension cardinalities, to be stored in main memory. In our experiment, H-Frag 
outperforms Frag-Cubing in both query response time and main memory usage. A massive cube with 60 
dimensions and 109 tuples was computed by H-Frag sequentially using 110 GB of RAM and 286 GB of 
external memory, taking 64 hours. This data cube answers complex queries in less than 40 seconds. Frag-
Cubing could not compute such a cube in the same machine.   

1 INTRODUCTION 

The data cube relational operator (Gray et al., 1997) 
pre-computes and stores multidimensional 
aggregations, enabling users to perform 
multidimensional analysis on the fly. A data cube 
has exponential storage and runtime complexity 
according to a linear dimension increase. It is a 
generalization of the group-by relational operator 
over all possible combinations of dimensions with 
various granularity aggregates (Han, 2011). Each 
group-by, called a cuboid or view, corresponds to a 
set of cells described as tuples over the cuboid 
dimensions. 

There are two types of cells in data cubes: base 
and aggregate cells. Suppose there is data cube with 
3 dimensions. Let us consider a tuple t1=(A1,	B1,	C1,	
m) of a relation, where A1,	B1	and	C1 are dimension 
attributes, and m is a numerical value representing a 
measure of t1. Given t1, in our example, a data cube 
has seven tuples representing all possible t1 

aggregations, and they are: t2=(	A1,	B1,	*,	m),	t2=(	A1,	
*,	C1,	m),	t4=(*,	B1,	C1,	m),	t5=(	A1,	*,	*,	m),	t6=(*,	B1,	*,	

m),	 t7=(*,	 *,	 C1,	m),	 t8=(*,	 *,	 *,	m), where “*” is a 
wildcard representing all values of a cube 
dimension. Generally speaking, a cube, computed 
from relation ABC with cardinalities CA, CB and CC, 
can have 23 or (CA	+1)x(CB	+1)x(CC	+1) tuples. Our 
cube has three dimensions with equal cardinality CA	
=	CB	=	CC	=1.  

The dimension increase also makes cube 
combinatorial problem harder. If instead of relation	
ABC, we consider relation ABCD and CA	=	CB	=	CC	=	
CD	 =	 2, we can have 16 tuples of type ABCD, 81 
tuples in a full data cube. Most of cube approaches 
are not designed for high dimension data cubes. 
Frag-Cubing (Li et al., 2004) is the first efficient 
high dimension data cube solution. Frag-Cubing 
implements an inverted index of tuples, i.e., each 
attribute value of a tuple may be associated with n 
tuples identifiers. Point queries with two or more 
attributes are answered by intersecting tuple 
identifiers from attribute values. Frag-Cubing only 
implements Equal and Sub-cube query operators. 
Frag-Cubing is a main memory based approach, so 
huge high dimension data cubes, which require more 
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main memory than it is available in the machine, 
cannot be addressed efficiently. The usage of virtual 
memory is managed by the operating system, which 
does not take into account all data cube properties. 
The result after operating system intervention is an 
unacceptable runtime, as our experiments 
demonstrate.   

In this paper, we implement and test an approach 
that is an extension of Frag-Cubing, named H-Frag, 
which implements indexing strategies for high 
dimension data cubes using a hybrid memory 
system. The H-Frag approach selects fragments of 
the cube to be stored in main memory and fragments 
to be in external memory. The frequencies of 
attributes and cardinalities of dimensions are used to 
select the memory type for each attribute of a base 
relation. Most frequent attributes are stored in main 
memory and attribute values with low frequencies 
are stored in external memories. Furthermore, H-
Frag avoids operating system interventions - no 
operating system swaps are required during H-Frag 
cube computation and updates. H-Frag implements 
its own swap strategy to load as few information as 
possible.  

H-Frag enables indexing and querying high 
dimension data cubes with billions of tuples. H-Frag 
outperforms Frag-Cubing in both query response 
time and main memory usage. H-Frag is also a range 
cube approach, where query operators greater than, 
less than, between, similar, some, distinct, and 
different are implemented. 

The rest of the paper is organized as follows: 
Section 2 details Frag-Cubing, as well as some 
promising range query approaches, pointing out their 
benefits and limitations. Section 3 details H-Frag 
approach, i.e., its architecture and algorithms. 
Section 4 describes the H-Frag experiments and 
results. Finally, in Section 5, we conclude our work 
and point out future improvements of H-Frag. 

2 RELATED WORK 

There are several cube approaches, but only three of 
them implement a sequential high dimension data 
cube solution. Frag-Cubing (Li et al., 2004), qCube 
(Silva et al. 2013) and Fangling et al(2006) 
implement a partial cube approach using inverted 
index and bitmap index. There is a clear saturation 
curve when full, iceberg, dwarf, multidimensional 
cyclic graph (MCG), closed, or quotient approaches 
(Brahmi et al., 2012; Ruggieri et al., 2010; Lima and 
Hirata, 2011; Xin et al., 2006; Sismanis et al., 2002) 
are used for cubes with high number of dimensions. 

A high dimension data cube can have 20, 100 or 
1000 dimensions and each dimension several 
attributes organized as several hierarchies. 

Frag-cubing implements the inverted tuple 
concept. Each tuple iT has an attribute value, a TID 
list, and a corresponding set of measures. For 
instance, we consider four tuples: t1 = (tid1, a1, b2, c2, 
m1), t2 = (tid2, a1, b3, c3, m2), t3 = (tid3, a1, b4, c4, m3), 
and t4 = (tid4, a1, b4, c1, m4). These four tuples 
produce eight inverted tuples: iTa1, iTb2, iTb3, iTb4, 
iTc1, iTc2, iTc3, and iTc4. For each attribute value, we 
build an occurrences list; i.e., for a1 we have iTa1 = 
(a1, tid1, tid2, tid3, tid4, m1, m2, m3, m4), where the 
attribute value a1 is associated with tuple identifiers 
tid1, tid2, tid3, and tid4. Tuple identifier tid1 has 
measure value m1, tid2 has measure value m2, tid3 has 
measure value m3, and tid4 has measure value m4. 
Query q = (a1, b4, COUNT) can be answered by 
iTa1∩iTb4 = (a1b4, tid3, tid4, COUNT(m3, m4)). In q, 
iTa1∩iTb4 denotes the common tuple identifiers in 
iTa1 and iTb4. 

The intersection complexity is proportional to the 
number of occurrences of an attribute value; more 
precisely, it is equal to the size of the smallest list. In 
our example, iTb4 with two tuple identifiers is the 
smallest list; therefore, iTb4∩iTa1 is more efficient 
than iTa1∩iTb4. The number of tuple identifiers 
associated with each attribute value can be large; 
therefore, relations with low cardinality dimensions 
and a high number of tuples require high processing 
capacity. As TID lists become smaller, the frag-
cubing query becomes faster; consequently, relations 
with low skew and both high cardinalities and 
dimensions are more suitable to frag-cubing 
computation. 

qCube (Silva et al., 2013) uses inverted indices 
to address a solution to range queries over high 
dimension data cubes. Range queries include greater 
than, less than, between, similar, some, distinct, and 
different query operators to collect several 
aggregations and not only a point-unique 
summarized result from the data cube. qCube is 
main memory based, so some cubes cannot fit in 
main memory, requiring operating system swaps that 
are always inefficient. In general, as the number of 
high dimension tuples becomes higher, hybrid 
memory based solutions are required. 

3 H-Frag APPROACH 

Data input for cube computation in the H-Frag 
approach is d-dimensional relation R with n tuples, 
where n	 ⊂ ሾ1,∞ሿ. Formally, R is a set of tuples, 
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where each tuple t is defined as t	=	 (tid,	D1,	D2,	 ...,	
Dz). In t, tid attribute is a unique identifier therefore, 
in a relation there are no equal tuples, as proposed 
by Codd (1972). The number of dimensions is 
represented by z, D is a specific dimension, defined 
as Di =	 (att1	 ,	att2	 ,	…	 ,	attn) and att is a possible 
attribute value of dimension Di. 

H-Frag architecture has three main components: 
computation, query and measure computation.  

First, the computation component scans R 
completely in order to obtain the frequency of each 
attribute value of each R dimension.   

Then, the average frequency is calculated, and 
the attribute values with frequencies lower than the 
average are marked in order to be stored in the 
external memory. 

R is scanned by the computation component a 
second time to select the attribute values to be stored 
in external memory. Each attribute value and its list 
of tuple identifiers (tids) are stored in external 
memory, i.e., a single attribute value can have 
several complementary tid‐list in external memory, 
since RAM can get full. To avoid that, H-Frag 
partitions R into complementary portions defined by 
the user, with several tuples each portion.  

Each portion can be stored fully in the main 
memory. However, in order to avoid attribute values 
in the external memory with low number of tids, H-
Frag defines an occurrence percentage for each 
attribute value inside a portion. Each attribute value 
has to be associated to, at least, 50% of the number 
of the tuples in a portion to be stored. When the 
frequency of each attribute value reaches the 50% of 
the number of the tuples in a portion, the tid‐list of 
attribute value is stored in external memory.  

The measure values are grouped by portions: 
each group of measure values is identified by a tid 
interval or range (e.g., in a portion where tuples have 
been processed from 1 to 10 the identification of the 
file will contain 1_10). This way, H-Frag generates 
few files. 

However, if the frequencies of attribute values 
have not reached 50% of the number of the tuples in 
a portion, but if 80% of the available working 
memory is being used, all tid-list of processed 
attribute values and all measure values are stored in 
external memory.  H-Frag eliminates the problem 
when there are many attribute values below 50% of 
a portion, which can happen in relations with high 
cardinality and low skew. At the end of each portion, 
if an attribute value has not reached 50% of the 
current portion and 80% of available working 
memory is being not used, it remains in the main 
memory and a new portion is loaded to be 

processed. Frequent attribute values will demand 
several complementary tid-lists stored in external 
memory and all of them must be swapped into main 
memory to answer a query containing such attribute 
values.     

Finally, R is scanned for a third time, generating 
as an output a map with the top frequent attribute 
values of R	 and	 their	 tid‐list. Such a map is 
maintained in main memory.  

Table 1 illustrates an example where there are 
dimensions A, B and C: dimension A has cardinality 
3 and the values set {a1,	a2,	a3}, the dimension B has 
the cardinality 3 and the values set {b1,	b2,	b3}, and 
the dimension C has cardinality 2 with {c1,	c2} as the 
values set. Table 1 also presents two measures (M1,	
M2). The unique identifiers of each tuple are 
represented by tids. 

Table 1: Input Relation R. 

tid  A  B  C  M1  M2 

1  a1 b1 c1 1.5  1 

2  a2 b2 c2 2.5  1 

3  a2 b2 c2 2  3 

4  a3 b3 c2 78.5  2 

5  a1 b1 c1 100  5 

6  a2 b1 c2 102.5  4 

7  a3 b1 c1 100  2 

8  a1 b3 c2 22.5  3 

9  a1 b3 c2 13.89  8 

First, the frequencies of the attribute values of 
each dimension are computed and the result is: 
fa1=4,	f‐a2=3,	fa3=2,	fb1=4,	fb2=2,	fb3=3,	fc1=3	and	
fc2=6. The attributes to be stored in the external 
memory are with the frequency lower than the 
average of those attribute value frequency of such 
dimension, therefore 3 is the average frequency in 
the dimensions A and B, as both dimensions have 
three attribute values each one and the total of tuples 
in the base is 9. In dimension C, the average 
frequency is 4.5 (let´s consider 4). Herewith, the 
attributes a3,	b2,	b3	and	c1 are marked to be stored in 
the external memory. 

R is scanned for the second time in order to store 
in the external memory the infrequent attribute 
values previously identified. We define R partitioned 
into three portions with three tuples each. When 
each tid‐list reaches 50% of each portion, this list is 
stored in the external memory. After all portions are 
scanned, the remaining infrequent attribute values 
are stored. Table 2 shows the structure of tid‐list 
indexed by its respective attribute values stored in 
the main memory. 
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Table 2: Frequent Attribute Values in Primary Memory. 

Attribute Value  tids 

a1 1,5,8,9 
b1 1,5,6,7 
c2 2,3,4,6,8,9 

Table 3 illustrates the list structure indexed by its 
respective attribute values stored in the external 
memory (each line represents a file stored in 
external memory). Table 4 presents the cube 
measure values with the inverted tuples stored in the 
external memory. For each group of measure, a file 
is created with the value from all the associated 
measures with all the tuples processed in the portion. 

Table 3: Attribute Values in External Memory. 

Attribute Value  Tids 

a2 2, 3 
a2 6 
a3 4, 7 
b2 2, 3 
b3 4, 8 
b3 9 
c1 1, 5, 7 

Table 4: Measure Values Relation in External Memory. 
Assuming that tuples have been processed every three. 

Tids  M1  M2  Group 

1  1.5  1 

1_3 2  2.5  1 

3  2  3 

4  78.5  2 

4_6 5  100  5 

6  102.5  4 

7  100  2 

7_9 8  22.5  3 

9  13.89  8 

When the user executes a query, the query 
component performs intersections and unions with 
tid‐list in the main memory. After obtaining the tid‐
list from the portion of the query that has the 
frequent attribute values, the attribute values from 
the query that are stored in the portions of the 
external memory are processed. The tid‐list obtained 
from the query is used to obtain the numerical 
measure values, thereby enabling statistical 
functions, such as avg, sum, variance and others, to 
be calculated by the measure computation 
component. 

 

3.1 Computation Algorithm 

The computation algorithm has as input a R with set 
of tuples t is defined as t	=	(tid,	D1,	D2,	 ...,	Dn) and 
as  output an H-Frag data cube. 

Initially, the computation algorithm calculates 
the frequency of all attribute values for each R 
dimension. These frequencies are stored in an 
attsInDisc variable.  

After that, the algorithm calculates the average 
frequency for each dimension and stores the attribute 
values whose frequency is higher than the average in 
a variable attsInDisc. This variable indicates the 
attribute values that are stored in the external 
memory. 

For each portion of R,	 it is verified if each 
attribute value frequency is equal to 50% of the 
portion dimension frequency and if the 80% of 
available working memory is not being used. In this 
case, only the attribute value is stored in the external 
memory with its tid-list. However, if 80% of 
available working memory is being used, all the 
attribute values and the group of measure values are 
stored in the external memory with its tid-list. 

For each portion of R, the attribute values that 
even are not stored and the group of measure values 
are stored in the external memory.  

Finally, we store the set of inverted tuples of the 
attribute values not marked to be stored in the 
external memory in the main memory. 

3.2 Update Algorithm 

The inverted index idea is a convenient strategy for 
updates where a new tuple is added to R, R attribute 
values are merged, new dimensions and new 
measures are added to R and dimension hierarchies 
are rearranged. 

The computation algorithm is used with no 
changes in update of a new tuple is added to R. 

Example 1: We add three new tuples where one 
tuple have new attribute values, a second tuple has 
attribute values that are stored in external memory 
and a third tuple has attribute values stored in main 
memory, as illustrated by Table 5. 

Table 5: Update Relation: New Tuples. 

tid  A  B  C  M1  M2 

10  a4 b4 c4 3  7 

11  a3 b3 c1 4.7  12 

12  a1 b1 c2 5.5  6 

The update relation with three new tuples is 
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scanned. For all attribute value of each tuple, H-Frag 
verifies if it has already been computed. If it was 
computed, it is verified where it is stored: main or 
external memory. In case the attribute value has 
been stored in main memory and there is main 
memory available, the attribute value with tid-list is 
stored in main memory. If there is no main memory 
available, the attribute value with tid-list is stored in 
external memory. In case the attribute value was 
stored in external memory the tid-list is stored in 
external memory. In case there is no working 
memory for update, the attribute values stored in 
main memory are discarded. 

The H- Frag data cube update after insertion of 
three new tuples is illustrated in Tables 5, 6, 7 and 8. 

Table 6: Frequent Attribute Values in Main Memory After 
Example update 1. 

Attribute Value  tids 

a1 1,5,8,9,12 
b1 1,5,6,7,12 
c2 2,3,4,6,8,9,12 

Table 7: Attribute Values in External Memory After 
Example update 1. 

Attribute Value  tids 

a2 2, 3 
a2 6 
a3 4, 7 
a4 10 
a3 11 
b2 2, 3 
b3 4, 8 
b3 9 
b3 11 
b4 10 
c1 1, 5 
c1 11 
C4 10 

Updates where R attributes are merged and these 
attribute values are in external memory, each tid-list 
must be loaded into main memory to be merged. If 
the result generates an attribute more frequent from 
the same dimension, this attribute is stored in main 
memory after the attribute that has the overcome 
frequency be stored in external memory. These 
updates, in general, are trivial and its computational 
cost depends on the frequency of the attribute in R. 

 

 

Table 8: Measure Values Relation in External Memory, 
After Example update 1. 

Tids  M1  M2  Group 

1  1.5  1    

2  2.5  1  1_3 

3  2  3    
4  78.5  2    

5  100  5  4_6 

6  102.5  4    
7  100  2    

8  22.5  3  7_9 

9  13.89  8    
10  3  1 

10_12 11  4.7  12 

12  5.5  6 

Example 2: Suppose that attribute value a2 and a3 
are merged as a9, the attribute value a9 will have the 
highest frequency and will replace a1 attribute value 
in main memory. Therefore the attribute value a1 
will be stored in external memory, as illustrated by 
Tables 9 and 10. 

Table 9: Frequent Attribute Values in Main Memory After 
Example update 2. 

Attribute Value  Tids 

a9 2, 3, 4, 6, 7 
b1 1,5,6,7 
c2 2,3,4,6,8,9 

Table 10: Attribute Values in External Memory After 
Example update 1. 

Attribute Value  Tids 

a1 1,5,8,9 
b2 2, 3 
b3 4,8 
b3 9 
c1 1,5,7 

Approaches that do not inverted indices or any 
other method that fragment the cube to assemble 
them efficiently after requiring a complete 
reconstruction of the data cube, something extremely 
costly in small bases of a midsize, however 
impracticable to massive bases. 

Updates where new dimensions and measures 
can be added to R require the new dimension or 
measure be traversed, so their attribute values are 
associated with tids of the computed cube.  

Example 3: The Tables 11, 12, 13 and 14 
illustrate the result of updates, where new dimension 
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D and new measure M3 are added to R. A complete 
scan of new dimensions and measures are 
mandatory. A dimension D and a new measure M3 
are added to R, but H-Frag does not require 
recalculations. Thus only the new attribute values 
and measure values are inserted with the respective 
tid‐list, according to the Tables 11, 12, 13 and 14.  

Updates whose dimension hierarchies are 
rearranged do not impact the data cube computed by 
H-Frag, since a query can be proceed in any order. 

Table 11: Update Relation: new dimension D and new 
measure M3. 

tid  A  B  C  D  M1  M2  M3 

1  a1 b1 c1 d1 1.5  1  6 

2  a2 b2 c2 d1 2.5  1  5.66 

3  a2 b2 c2 d1 2  3  78.98 

4  a3 b3 c2 d1 78.5  2  2.98 

5  a1 b1 c1 d3 100  5  1.65 

6  a2 b1 c2 d2 102.5  4  2.69 

7  a3 b1 c1 d1 100  2  6.87 

8  a1 b3 c2 d3 22.5  3  98.999

9  a1 b3 c2 d2 13.89  8  78.995

Table 12: Attribute Values in External Memory After 
Example update 3. 

Attribute Value  tids 
a2 2, 3 
a2 6 
a3 4, 7 
b2 2, 3 
b3 4, 8 
b3 9 
c1 1, 5, 7 
d2 6,9 
d3 5,8 

Table 13: Measure Values Relation in External Memory: 
After Example update 3. 

tids  M1  M2  M3 

1  1.5  1  6 

2  2.5  1  5.66 

3  2  3  78.98 

4  78.5  2  2.98 

5  100  5  1.65 

6  102.5  4  2.69 

7  100  2  6.87 

8  22.5  3  98.999 

9  13.89  8  78.995 
 

Table 14: Frequent Attribute Values in Main Memory. 
After Example update 3. 

Attribute Value  tids 

a1 1,5,8,9 
b1 1,5,6,7 
c2 2,3,4,6,8,9 
d1 1,2,3,4,7 

3.3 Query Algorithm 

A Data cube H-Frag can answer queries of type Q, 
generating as output three or more sub-lists of tids, 
derived from two possible sub-types of queries: 
point queries and queries with multiple 
summarizations. A point query is performed when 
using a filter with equality operator, queries that 
have as a result multiple aggregations are those 
where range filters or inquire filters are used. Filters 
with different operators may be used in Q, each filter 
applied to one dimension or measure of R. Thus, 
three possible sub-queries are generated from Q: pQ 
(queries with equality filters), rQ (queries with range 
filters) and iQ (queries with inquire filters). A single 
result Q consolidates the results of the three possible 
sub-queries with an intersection algorithm 
with complexity O(n), where n is the number of 
elements in the set.  

A point query pQ ∈ Q. For pQ	queries we have 
as a result a unique aggregation of a set of attributes 
of R. rQ ∈ Q represents range queries in different 
dimensions. A query rQ may have as result a set of 
summarizations from attributes present in R. An 
inquire sub-query iQ has as a result the combination 
of dimensions cardinalities. iQ ∈ Q, represents 
inquire, where a set of operators iOp (subcube	 +	
distinct) are defined for different dimensions. The 
range operator rQ is defined as rOp=	(greater	than	
+	less	than	+	between	+	some	+	different	+	similar	x	
(v1,	v2,	…,	vn)). The symbol '+' represents the logical 
operator OR and 'x' represents the logical operator 
AND. The values defined by the user for a range 
operator are represented by (v1,	v2,	…,	vn).   

A sub-query inquire iQ has as a result a set of 
combinatory aggregations of different dimensions.  
iQ ∈ Q, represents query inquire where a set of 
operators iOp (subcube	 +	 distinct) are defined to 
different dimensions. A subcube of a dimension is 
composed by every possible aggregations of a 
dimension, including the wildcard all (*). 

When operators rQ or iQ are used as filters in a 
dimension, we have a query of a subcube to this 
dimension. The result is composed by every possible 
aggregations of this dimension including *. To each 
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attribute value of dimension i, there is a tid‐list. 
Thus, the tid‐list of (pQ	∩	rQ) are intersected with 
each tid‐list of the dimension i. The result of the 
intersection is the tid‐list obtained from the query. 
There are ∏ ሺCi  1ሻௌ

ୀଵ  results, then Q has SC 
subcube operators, Ci indicates the dimension i 
cardinality and SC is the number of subcube filters. 

The operators subcube and distinct are identical 
to one dimension. For two or more dimensions the 
number of distinct aggregations will be 
∏ ௗ௦݅ܥ
ୀଵ 	intersections with tids of (pQ	∩	rQ), so it is 

also a costly computational processing. In the 
approach H-Frag the sub-query of Q are reorganized 
in order to optimize the processing performance.     

From a cube H-Frag, a filter F is executed in a 
query pQ. Being F defined as F:	{op1	∩	op2	∩	 ...	∩	
opn}, where opi is the operator ith EQUAL of F 
applied to dimension i of H-Frag. In a query rQ from 
a data cube, H-Frag executes a filter F	´.  This way, 
tids of pQ are intersected with tids of rQ. The 
definition of F	´ is given by F	´:	{µ1	∩	µ2	∩	...	∩	µn}, 
where µi is the operator ith RANGE of F	´ applied to 
dimension i of H-Frag. F and F	´ are filters applied to 
different dimensions. Each µi returns a tid‐list for 
the values that meet the criteria defined by an 
operator rOp. Thus, a group of intersection of the 
tid‐list is executed for each possible association 
among attributes instantiated in each sub-query and 
these intersections are always initiated from the 
attributes with the smallest tid‐list. 

Queries iQ are also combinatorial, therefore a 
query iQ inquire receives a data cube H‐Frag, and 
executes a third filter F	 ´´. The tids of iQ are 
intersected with tids resulting from (pQ	∩	rQ). Filter 
F	´´ is defined as F	´´: {Ƭ1 ∩ Ƭ2 ∩ ... ∩ Ƭn}, where Ƭi 
is the operator ith	 INQUIRE of F	 ´´ applied to 
dimension i of H-Frag. F, F	´	e F	´´ are filters applied 
to different dimensions.  

The first sub-queries executed are always the 
point queries. Then, the range and inquire Q queries 
are executed. At each sub-query the tid‐list is 
retrieved. When attributes are in main memory, that 
is, when these are frequent attributes in the 
dimension, this set is retrieved in a single access. 
When the attributes have lower frequency in the 
dimension, their tid‐list are retrieved from external 
memory. In this case, since this set can be 
fragmented into several portions in external 
memory, there are numerous costly readings. To 
reduce the cost of intersections, the last fragment is 
loaded first in main memory, since it may have a 
few tuples, consequently a smaller tid‐list and lower 
cost of intersection with subsequent fragments of a 

certain attribute of R.  
Example 4: Suppose a user submits a query 

q={?,?,c2}. H-Frag first fetches the tid-list of the 
instantiated dimension by looking at cell (c2). This 
returns (c2):{1,5,4,6,8,9}. See that if there 
were no inquired dimensions in the query, we would 
finish the query here and return 6 as the final count. 

Next, H-Frag fetches the tid-lists of the inquired 
dimensions: A and B. These are 
{(a1:{1,5,8,9})},  {(a2:{2,3,6})}, 
{(a3:{4,7})}, {(b1:{1,5,6,7})}, 
{(b2:{2,3})} and {(b3:{4,8,9})}.   

Intersect among them and with the instantiated 
c2 and we get  {(a1c2:{8, 9}), (a2c2:{2, 
3,6}), (a3c2:{4}), (b1c2:{6}), 
(b2c2:{2,3}) and (b3c2:{4,8,9})}. This 
corresponds to a base cuboid of six tuples: {(a1, 
b1, c2), (a2, b1, c2) , (a1, b2, c2) , (a1, 
b2, c2) , (a1, b3, c2) and (a3, b3, c2)}. 

Suppose that at some decision-making process it 
is necessary do a filter with a range operator. 

Example 5: If user submits a query q={a2, 
>b1, c2}. 

H-Frag first fetches the tid-list of the instantiated 
dimensions by looking at cell (a2, c2). This 
returns (a2, c2):{2,3,6}.  

Next, H-Frag fetches the tid-lists of the range 
dimension: A. These are {(b2:{2,3})} and 
{(a3:{4,8,9})}.  Intersect them with the 
instantiated base and we get {(b2:{2, 3})}. 
This corresponds to a base cuboid of one tuple: 
{(a2, b2, c2)}. 

The algorithm for point, range and inquire 
queries works as follow: initially, for each sub-
query, the tids	 (lines 4 and 6) associated with the 
attributes instantiated in each dimension are 
retrieved. In case the attribute value is in external 
memory, it is retrieved a fragment at a time starting 
with the last one. After the intersection, the lists are 
merged (line 5) until intersections with all tids	occur 
in external memory. Next, the intersections occur 
among tid‐list of attributes for each possible 
summarization. The intersection always starts from 
lists with fewer tids (lines 7-12). Finally, all 
measures defined in Q are calculated (line 13). 

Algorithm 1 (Query) performing point, range, 
and inquire queries;  

Input: (1) H-Frag data cube and (2) user query 
Q;  

Output: H-Frag_R, which includes aggregations 
processed by the computation algorithm and 
completed by the query algorithm. 
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Method: 
 

1. for each sub-query in Q{ //pQ, rQ or iQ 
2. for each attribute in Di{ 
3. if attsInDisk contains attribute{ 
4. attribute.tids recover disk  
5. tids ← tids U attribute.tids 

}else{ 
6. tids ← attribute.tids 

} 
7. for each tidi in tids { 
8. if tidi ∩ [att1, …, attn]{  
9. RQi ← tidi  ∩ [att1, …, attn]  

} 
10. if tidi ∩ [att1, att2, …, attn]{  
11. IQi ← tidi  ∩ [att1, …, attn]  

} 
} 
} 

12. hFqR ← RQi ∩ IQi;  
 } 

13. hFqR ← calcMeasures(hFqR,Q,hFragDiM); 

4 EXPERIMENTS 

Aiming to verify efficiency and scalability of the 
proposed approach, a thorough study was conducted. 
Experiments with H-Frag and Frag-Cubing  
approaches, testing computation algorithms and 
queries provided by both approaches, were 
conducted. H-Frag algorithms were coded in Java 64 
bits (version 8.0). Frag-Cubing is a C++ 
implementation provided by authors and compiled 
for 64 bits (http://illimine.cs.uiuc.edu/). H-Frag	
approach has two versions: main memory version 
and hybrid version.  The hybrid uses both memories. 
The main-memory H-Frag version just maintain all 
data in main memory, so no conceptual changes 
were introduced to implement H-Frag only in RAM. 
Query response times using hybrid H-Frag	approach 
considers both external and main memories accesses 
times. None of the experiments using H-Frag 
exceeded the physical limit of the machine main 
memory, so approaches did not require Operating 
Systems swaps.  

The algorithms are sequential versions. The use 
of multiprocessor architecture is still useful, since 
there is implicit parallelism. We ran the algorithms 
on two processors: six-core Intel Xeon with 2,4 GHz 
each core, cache of 12 MB and 128 GB of RAM 
DDR3 1333MHz. The disk is SAS 15k rpm with 
64MB of cache. The operating system is Windows 
HPC (High Performance Computing) Server 2008 
version of 64 bits. All experiments were executed 
five times and we removed the longest and shortest 

runtimes, calculating the average of the three 
remaining runtimes. 

4.1 Computing Different Numbers of 
Tuples 

The tests varying the amount of tuples had linearly 
stable behaviour in both approaches. We used 
relations with T=1M, 25M, 50M, 75M and 100M, D 
= 15, C=104 e S=0. In general, H-Frag approach had 
memory consumption 20 to 35% lower than Frag-
Cubing approach when working only in main 
memory, while the hybrid H-Frag consumed 45% to 
65% less memory than Frag-Cubing, as Figure 1 
illustrates.   

 

Figure 1: H-Frag, H-Frag only main memory and Frag-
Cubing memory consumptions with different tuples: 
D=15, S=0, C=104. 

The cubes runtimes for the respective relations were 
also linear, as it can be observed in Figure 2. In the 
worst scenario, H-Frag was three to four times 
slower than Frag-cubing when computing a partial 
cube; however, this is a reasonable result if we 
consider that H-Frag uses external storage. 

 

Figure 2: H-Frag, H-Frag only main memory and Frag-
Cubing runtimes with different tuples: D=15, S=0, C=104. 
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4.2 Computing Different Numbers of 
Dimensions 

The results of experiments in which the number of 
data cube dimensions varied are presented in Figure 
3. For these experiments, relations with D = 30, 60, 
90, 120, 150, 180 and 240, T = 10 M, and C = 104 

were used. The memory consumption was linear for 
both approaches; however, Frag-Cubing required 
35% to 47% more memory. 

 

Figure 3: H-Frag, H-Frag only main memory and Frag-
Cubing memory consumptions with different dimensions: 
T = 107, S = 0, and C = 104. 

 

Figure 4: H-Frag, H-Frag only main memory and Frag-
Cubing runtimes with different dimensions: T = 107, S = 
0, and C = 104. 

The runtimes were also linear, as it can be observed 
in Figure 4. In general, H-Frag was between 3.5 and 
5 times slower than the Frag-Cubing. 

4.3 Computing Skewed Relations 

We evaluated data cube computations using base 
relations with different skews: S = 0, 0.5, 1, 1.5, 2, 
and 2.5, D = 15, T = 107, and C = 104.  

Figure 5 and 6 illustrate memory consumption 
and runtime results. In the figure, H-Frag and Frag-
Cubing approaches show the same behavior; i.e., as 
skew increased, runtime decreased. However, H-

Frag took 1.6 to 1.3 more times than Frag-Cubing 
using only main memory. Skewed base relations are 
very common in real scenarios, where few attribute 
values are present in almost all tuples. H-Frag stores 
frequent attribute values in main memory and 
skewed base relations has more frequent attributes 
than uniform ones; consequently, H-Frag use more 
working memory to compute such relations and 
became faster. 

 

Figure 5: H-Frag and Frag-Cubing memory consumptions 
with different skews: D = 15, T = 107 and C = 104. 

 

Figure 6: H-Frag and Frag-Cubing runtimes with different 
skews: D = 15, T = 107 and C = 104. 

In all scenarios, H-Frag significantly reduced 
memory usage in representing a partial cube. It is 
evident from the results that Frag-Cubing consumed 
23% more main memory than the H-Frag approach 
when the base relation was uniform (S = 0); 
however, the difference increased as skew increased. 

Frag-cubing memory consumption was 50% 
higher than that of main memory in base relations 
with S = 2.5. In relations skewed, approximately half 
of the attribute values were stored in main memory 
and half were propagated to external memory. The 
significant decrease in memory consumption was 
justified by the irregular frequency of attribute 
values; therefore, the critical cumulative frequency 
could be found in all attribute values. Thus, all tid‐
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lists were propagated in external memory; only the 
references for each tid‐list are stored in main 
memory. 

4.4 Query Response Time 

Frag-Cubing response times are slower than H-Frag 
(about 2-5 times), even in scenarios where there are 
many attribute values stored in external memory. 
Figure 7 illustrates experiments using the relation R 
with T = 107; C = 104; D = 30, S = 0. 

Queries with more than two sub-cube operators 
cannot be answered by Frag-Cubing, since there is 
not enough continuous memory in 128GB of RAM 
to allocate many big size arrays with many empty 
cells. Frag-Cubing duplicates an array size when it 
reaches its limit.  In contrast, the number of small 
complementary arrays enables H-Frag to produce 
huge amount of summarized results. Dimension 
rearrangements based on cardinalities also reduce 
inquire query response times drastically. 

 

Figure 7: Query Response time with inquire operators: T = 
107; C = 104; D = 30, S = 0. 

Figure 8 depicts results of experiments with queries 
using attribute values higher than the critical 
frequency.  

 

Figure 8: Query response time with point operators, using 
attribute values higher than the critical frequency: T = 107, 
C = 104, D = 30, and S = 0.  

Figure 9 illustrates results of experiments with 
queries using attribute values lower than the critical 
frequency. 

 

Figure 9: Query response time with point operators, using 
attribute values lower than the critical frequency: T = 107, 
C = 104, D = 30, and S = 0. 

4.5 Massive Data Cube 

A relation with T = 109 tuples was computed by the 
H-Frag approach. This experiment took 64 hours 
and consumed 126 GB of RAM. The results show 
that it is possible to compute massive cubes using 
the H-Frag approach with no operating system 
swaps, thereby enabling both updates and queries. 

Queries with five range operators, ten point 
operators, and one inquire operator were answered 
in less than 35 seconds. To the best of our 
knowledge, there is no other sequential cube 
approach that efficiently answers high-dimensional 
range queries from relations with T = 109 tuples. 

Data cubes with a high number of tuples could 
not be computed by the Frag-Cubing approach using 
just main memory. This was demonstrated by trying 
to compute a base relation with 200 million tuples 
and 60 dimensions. 

5 CONCLUSIONS 

To enable the computation of massive data cubes 
with massive amount of tuples, we implemented and 
tested an approach named H-Frag. This approach is 
an extension of Frag-Cubing approach, enabling 
hybrid memory capabilities, so data cubes with 109 
tuples can be indexed. H-Frag uses the following 
strategy: attribute values with high frequencies are 
stored in main memory and attribute values with low 
frequencies are stored in external memory. 

The experiments show that H-Frag is an effective 
solution for data cubes with high number of tuples. 
The results show that H-Frag has linear runtime and 
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memory consumption when the number of tuples 
increases. Memory consumption of the hybrid 
version H-Frag is always lower than Frag-Cubing 
approach. When compared with Frag-Cubing, H-
Frag has similar performance in point queries, but 
H-Frag approach outperforms Frag-Cubing in 
inquire queries, producing answers 9 times faster 
than Frag-Cubing approach. H-Frag is designed for 
queries types proposed in qCube (Silva et al., 2013), 
so H-Frag is also a range cube approach. In the 
experiments, we had scenarios where Frag-Cubing 
approach failed to index the data cube caused by 
lack of main memory. The H-Frag hybrid memory 
approach is, on average, 3 times slower than Frag-
Cubing in indexing a cube, which can be also 
considered a promising result, since H-Frag uses 
external memories to support huge data cubes. A 
massive test with 60 dimensions and 109 tuples was 
conducted to prove that H-Frag is robust and can be 
used in extreme scenarios.  

There are some improvements to H-Frag 
approach. Among them, we can mention computing 
and updating experiments for holistic measures, 
which are extremely costly and important for 
decision making. Top-k multidimensional queries is 
part of our interest, since inverted index is also 
useful for this type of problem.  
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