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Abstract: Integrated software products are complex in design. They are prone to defects caused by integrated and non-
integrated modules of the entire integrated software suite. In such software products, a small proportion of 
defects are fixed as soon as they are reported. Rest of the defects are targeted for fixes in future product 
release cycles. Among such targeted defects, most of them seem to be insignificant and innocuous in the 
current version but have the potential to become acute in future versions. In this paper, we propose an 
approach to study defect dependency of the reported defect using a dependency metric. Identifying the 
dependency of a defect in an integrated product suite can help the product stake-owners to prioritize them 
and help improve software quality. 

1 INTRODUCTION 

Integration of two or more software products forms 
an integrated software product. Usage of large-scale 
integrated products is increasing in software 
industry. Expanding business operations, desire for 
increasing top-line revenues, increasing 
organizational synergy, providing value-adds to the 
customers, etc. are some of the reasons contributing 
to this increased usage of integrated products. In 
most integrated software products, the entire product 
may not essentially be exposed to all the direct end 
users. Access may be provided to requisite business 
layers (sub-product or a module/sub-module) that 
specific users may use to execute their regular 
business activity.  

Defects are not exceptional to integrated 
software products. If they are sensed, they require a 
good slice of time and effort of developers and 
testers to deal with them. Severe challenges arise for 
industries that are directly dependent on integrated 
software products when they go in for acquisitions 
or mergers. They tend to invest additional resources 
and time on merging existing softwares which are 
used independently. The defects are recorded when 
they go operational with integrated software suites. 
These defects are difficult to address due to higher 
degree of dependency between each other. For 

example, let’s consider an E-Commerce integrated 
software product consisting of the following two 
sub-products: Supply-Chain and Revenue Reporter. 
The major objective of Supply-Chain sub-product is 
to track product billing while the other sub-product’s 
objective is to report revenue. One of the most 
common defects in the integrated product is 
rounding-off of the product price. As an end result 
for the integrated product, revenue reports incorrect 
data. If the results are taken separately, rounding-off 
defect can be insignificant for chain-supply but is 
critical for product billing.  In such scenarios, 
product development team working on the supply 
chain product might decide not log it as a defect or 
even if it’s logged, they may not choose to address 
the defect in the current release or not to address it at 
all.  The same defect is considered as a severe defect 
for revenue reporter and hence needs to be addressed 
at once. In such cases, prioritization of the defect 
becomes important. 

Product developers might not be able to judge 
the criticality of the defect in the integrated product 
until the cause of the issue is identified. Hence, this 
defect becomes more of a concern to the budgeting 
team than product development team. This gap can 
be filled if there exists a criterion to evaluate defect 
dependency in the integrated software products, such 
that the corresponding defects can be prioritized. 
The stakeholders involved may then choose to fix 
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the defect based on the prioritization results. Given 
this context, the major contributions of the paper are:  

 Deduce an approach to study the dependency of 
defects among respective modules or sub-
products in an integrated software product.  

 Introduce methods to measure the defect 
dependency using machine-learning techniques 
like rule-based classification and Generalized 
Dependency degree Γ over a defect dataset. 

 Evaluate the proposed approach over a real time 
defect dataset of an integrated software product. 

The rest of the paper is organized as follows: 
Section 2 provides an overview of the related work 
and Section 3 details the background needed to 
understand our approach. Section 4 talks about the 
proposed approach. Section 5 and 6 discusses 
experimental details and their results. We provide 
some threats to our approach in section 7 and 
suggest possible future work in Section 8. 

2 RELATED WORK 

Clarke formulated the initial work on defect 
dependency by proposing a model over program 
dependencies (Clarke LA, 1990). Generalizations of 
control and data flow dependencies were studied 
from both semantic and syntactic perspective. The 
dependency implications over tester and debuggers 
were recorded. (Laporte, 1998) listed down the 
challenges and laid out processes required for 
developing an efficient integrated software product. 
The study stressed on improving quality from initial 
stages. (Suryn, 2004) proposed a generic life cycle 
model for integrated software with high stress on 
quality during development. (Trinitis, 2004) were 
the first among others to study on dependencies of 
models in integrated softwares. They concentrated 
more on quality of software in integrated mode for 
better implementation and integrity strategies. Their 
work was oriented towards reliability and 
maintainability. Such dependency study is now 
required from design and development perspective. 

(Schertz, 2005) were the first to study on 
methods to quantify and understand integration 
testing. They proposed a new approach based on 
binary dependency framework that can determine 
control and data dependencies using dependency 
graph. (Nagappan, 2007) have studied relationship 
between software dependencies and churn measures 
to assess failure using statistically methods. (Sallak, 
2014) proposed probability based methods to study 

dependency and independency of modules from a 
reliability perspective. 

Different approaches are currently followed 
by software practitioners for building integrated 
software. Moog Inc. has introduced an integration 
testing tool (Moog, 2014) for software used in the 
manufacturing industry. It studies and evaluates the 
behaviour of workflow in a multi-component 
software product. LDRA is another business leader 
which markets testing solutions to manufacture 
industries (LDRA Inc., 2014); they use integrated 
softwares for detecting the functional and raw-data 
faults. SAP Labs also provide testing solutions (SAP 
Labs, 2011) which studies the integration defects 
using priority & prediction methods with supplied 
pre-input test data. Oracle provides application 
testing tool (Oracle, 2014), which includes analysis 
on studying integral flow on inter-related modules 
with automation in test case generation. Failure 
mode effect analysis & Fault tree analysis (Tague, 
2004) are most widely used methods in current day 
integration testing tools. However, they lack 
methods for assessing the dependencies of a defect 
over entire software product.  

(Gartner, 2014) had released an analyst 
report with Magic Quadrant for Integrated Software 
Quality Suites. They identified market leaders who 
provide tools to industries to test qualitative 
integrated software products. From the report, the 
common theme seems to the focus on automation of 
functional and load testing of the integrated 
softwares. Common deficiencies across all such 
quality suites include integral dependency of defects, 
defect life cycle, etc. 

3 BACKGROUND 

This section provides brief overview of existing 
methods used as part of our approach to study 
dependency among real-time entities. 

3.1 Rule based Classification 

Classification is a data mining technique used to 
understand and extract desired data patterns. Rule 
based classification or classifier is a type of 
classification based on a set of rules/conditions. 
While performing an experiment, it can be difficult 
to operate on the entire dataset. Hence certain rules 
can be applied to extract desired patterns from our 
experiment dataset to perform the experiment. Rule 
base classification works efficiently over larger and 
complex datasets. This is applied using series of 
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conditions for pattern extraction. It is fast and 
efficient in generating accurate patterns for the 
experiment.  

Introduced by (Cohen, 1995), this classifier uses 
IF and THEN conditions to extract desired data 
pattern for evaluating our approach. For example, let 
us consider a dataset C from which we want to 
extract specific data pattern. We need to pre-process 
the dataset first (i.e. prune – choose only required 
data attributes on which we are interested to assess) 
and then apply IF and THEN conditions on pruned 
dataset C to extract the criteria. Tools like WEKA®, 
CART, Apache Mahout and Orange®, etc. - can be 
used to prune the unstructured dataset and apply 
respective method to fetch desired output. In this 
paper, we use this classifier to extract desired data 
pattern from defect dataset to evaluate the proposed 
approach.  

3.2 Generalized Dependency Degree 

Rough set theory is a mathematical approach to 
study sets or entities. Initial developments to rough 
set theory were proposed in (Pawlak, 1999). Specific 
studies on set dependency and dependency over 
equivalent classes were first proposed. (Haixuan, 
2007) later proposed a generalized dependency 
degree Г defined below, which helps to deduce the 
list down the dependencies of two sets over one 
another. 

Г(O, H) =   ଵ
|ୈ|
∑

|୓ሺ୶ሻ	∩		ୌሺ୶ሻ|

|ୌሺ୶ሻ|
  (1)

Here O & H are two equivalent classes that are 
generated over an equivalence relation framed from 
some disjoint sets of universal set D.  

Many researchers have adopted this 
concept to address dependency issues. (Ivo, D, 
2000) implemented this method using statistical 
approach to evaluate dependency. (Shamaei, 2011) 
have practically applied in the field of artificial 
intelligence to study the inter-dependency along 
with probability methods. In this paper we are 
adopting this generalized dependency degree to 
study the defect dependency over defect dataset. 

4 PROPOSED APPROACH 

This section contains details of proposed approach to 
study dependency of a defect among software 
modules or sub-products using a new metric called 
Dependency Metric (denoted by D*).   

 

 
 

Figure 1: Approach to find dependency factor. 

4.1 Pre-processing Defect Dataset 

The first step in our approach is to identify and 
capture the required attributes (for example, defect 
reports) of the defect dataset. The input dataset may 
not always be accurate for performing dependency 
study. In practice, the defect dataset may contain lot 
of noise (unrelated data). Presence of noise patterns 
in source defect data can result in incorrect 
observations.  

This noisy data is not relevant for dependency 
evaluation and hence the input defect dataset must 
be pre-processed to remove noise. Stake-owners 
should filter the bug reports and come up with 
required dataset. Machine learning techniques like 
outlier analysis or other anomaly detection methods 
can be performed to remove noise. Noise free 
dataset can be re-used to perform dependency study 
for any number of times. 

4.2 Apply Rule-based Classifier on 
Dataset 

Pre-processed dataset will be passed as an input to 
rule-based classifier. Rules are to be defined by the 
stake-owners on desired attributes. Rules follow IF 
and THEN conditions to formulate input data into 
required buckets. These rules are flexible enough to 
be operated at multi levels i.e. multiple IF and 
THEN conditions. 
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Let us consider an enterprise integrated software 
product L – consisting of p1, p2, p3 ... pn as 
products. These may further contain sub-products or 
modules as given below: 

 

p1 = {m1, m2, m3, m4 … mn} 
p2 = {t1, t2, t3, t4 ... tn} 
p3 = {s1, s2, s3 ... sn} 
... 
pn = {y1, y2, y3 ... yn} 

 

where m, n ... y are modules in the respective 
product pillars. Similarly, m1 as a single module 
might further contain sub-modules resulting into a 
complex software product. For such Enterprise 
products, defects can be substantial, primarily due to 
the multiple levels of integration needed. It is 
difficult to perform an overall dependency study on 
such large dataset. Hence, specific rules are to be 
defined to classify the dataset into buckets and 
extract required defect data. Below can be an 
example for writing a rule R where  
 

   Rule R:  IF P = p2 AND p3 
THEN M = t1,t2,t3,s5,s7 

 

where p2, p3 are products and t1, t2, t3 ϵ p2 
and s5, s7 ϵ p3. These rules can also be applied 
on different versions of similar product to study the 
nature of defects d ϵ D, where D is Universal set of 
defects reported in product L.  

4.3 Construct Attribute Value Table 
for Defect Dataset 

Using d (obtained from rule R), defects should be 
organized either in numeric form or in an attribute 
format for evaluation. To calculate the dependency 
metric, we need to convert the data points in dataset 
into disjoint sets. This is achieved by generating an 
information system that can be represented using 
attribute-value table. The table consists of rows and 
columns, where rows are labelled by objects of the d 
and columns by components in L. d is considered as 
a collection of disjoint sets of modules of product L, 
with attribute in rows against respective defect in 
columns. 

Using rule set R and defect set d, below is 
the sample attribute-value table. 

Table 1: Attribute-value table for H Defect Dataset. 

 
Attribute-value defect table 

p2 p3 

t1 {d1, d2, d3} - 

t2 {d7, d8, d9} - 

 

Table 1: Attribute-value table for H Defect Dataset (cont.). 

 
Attribute-value defect table 

p2 p3 

t3 {d12, d4, d5} - 

s5 - {d8, d1, d7} 

s7 - {d5, d0, d4} 
 

There are many ways to construct attribute value 
tables. We have adopted manual listing of d against 
components of L for sake of simplicity. It’s stake-
owner’s choice to re-structure data by grouping them 
to form disjoint sets and have them recorded so that 
they are readable. Alternatively, the construction of 
attribute value table can be automated. 

At times datasets may or may not be flexible 
enough to be described in a tabular format. In such 
cases defect (d) - component (L) attribute values can 
be visualized using tree based view, tile based view 
matrix based view, etc.  The main reason for 
creating an attribute-value table is to describe the 
disjoint-ness of the defects reported across the 
integrated software within respective products and 
modules. 

4.4 Training and Test Dataset 

It is always recommended to first create a training 
dataset (samples) with defect counts of specific 
modules for sandbox validation. Say M is a module 
with o1, o2, o3... on where ∀on ϵ M as 
defects, a sample out of M can act as a Training 
Dataset. Upon successful validation of the training 
dataset, the metric can be applied over a business 
specific rule to generate the actual experiment’s test 
dataset. The primary purpose of creating a training 
dataset is to estimate time and resource to perform 
the experiment.  

Test dataset is a superset dataset chosen from 
collection of training dataset ϵ D. If the stake-
owners would like to perform the experiment for 
entire suite to compare module level defect 
dependency, the approach can be applied on entire 
defect dataset. 

4.5 Dependency Metric 

Say defects reported in product pi are defined as dpi 
such that  

{dp1 ⋃	dp2 ⋃	dp3... ⋃ dpn = D}  (2)

Here dp1, dp2, dp3 ... dpn are disjoint defect 
sets of respective products belongs to defect dataset 
D. Also  
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{dp1 ⋂ dp2 ⋂ dp3 ... ⋂ dpn = ɸ}  (3)

Here dp1, dp2, dp3 ... dpn are disjoint defect 
sets of with no common defects. In practice, such 
defects form disjoints sets and can be further drill 
downed to module or sub-modules of L. 
Equivalence relation (E) can be generated over dpi. 
A new defect set De is constructed which comprises 
equivalent classes of E over D i.e. De is collection of 
sets of equivalent classes of E. 

If De is considered as collection of equivalent 
classes defined over D, using generalized 
dependency degree (1) from rough set theory De is 
be applied in D*, the dependency metric as (using 
(1)) 

D* =   Г(O, H) (4)

Here O & H are two equivalent classes belong to De. 
In case of more than two disjoint sets A1, A2, A3, 
A4…An exists, then the function Γ is operated by 
constructing of distinct equivalent classes of all 
these  disjoint sets. Then the metric D* is defined as 
Γ(A1,A2,……An). 
 

To understand the notion of disjoint sets and to 
study how generalized dependency degree is 
calculated, let’s consider the example of an 
influenza dataset from (Haixuan, 2007). This dataset 
is simple and pruned so that it is feasible to calculate 
Г. It contains 7 user samples (U) of influenza (d) 
affected people with the symptoms Headache (a), 
Muscle pain (b), Body temperature(c). The 
equivalence relation was represented in a tabular 
format. 

During pruning the dataset, decision values are 
defined to construct the dataset in tabular format. 
Headache (a) has a decision values Y for user who 
has headache and N for user who has no headache. 
Muscle pain (b) has decision values Y for user who 
has muscle pain and N for user who  has  no  muscle 

Table 2: An Influenza Dataset. 

 U 
Headache 

(a) 

Muscle 
pain 
(b) 

Body 
temperature 

(c) 

Influenza 
(d) 

e1 Y Y 0 N 

e2 Y Y 1 Y 

e3 Y Y 2 Y 

e4 N Y 0 N 

e5 N N 1 N 

e6 N Y 2 Y 

e7 Y N 1 Y 

pain. In case of body temperature(c) 0 - low, 1 - 
medium and 2 - high. Aggregated to form an 
equivalence relation, influenza (d) takes Y for yes 
and N for no influenza. 

Let A={a,b,c,d} be the corresponding set 
of attributes on whose disjoint subsets the 
dependency degree is calculated, 
U={e1,e2,e3,e4,e4,e5,e6,e7} are the 
user samples. Using Table 1, when created two 
disjoint subsets to operate on O= {a,b,c} & 
H={d} where we will be finding dependency 
degree of H over O. Below are the equivalence 
classes defined for set O and H. 
 

O(e1)={e1}, O(e2)={e2}, O(e3)={e3}, 
O(e4)={e4}, O(e5)={e5}, O(e6)={e6}, 
O(e7)={e7}, 
H(e1)=H{e4}=H{e5}={e1,e4,e5}, 
H{e2}=H{e3}=H{e6}=H{e7}={e2,e3,e6,e
7} 
  

Then we have  
 

 Г(O,H)=ሺ
|ሺୌሺୣଵሻ⋂୓ሺୣଵሻሻ|

|୓ሺୣଵሻ|
൅

|ሺୌሺୣଶሻ⋂୓ሺୣଶሻሻ|

|୓ሺୣଶሻ|
൅

|ሺୌሺୣଷሻ⋂୓ሺୣଷሻሻ|

|୓ሺୣଷሻ|
൅

|ሺୌሺୣସሻ⋂୓ሺୣସሻሻ|

|୓ሺୣସሻ|
൅

|ሺୌሺୣହሻ⋂୓ሺୣହሻሻ|

|୓ሺୣହሻ|
൅

|ሺୌሺୣ଺ሻ⋂୓ሺୣ଺ሻሻ|

|୓ሺୣ଺ሻ|
൅

|ሺୌሺୣ଻ሻ⋂୓ሺୣ଻ሻሻ|

|୓ሺୣ଻ሻ|
ሻ/7 

 

= (1+1+1+1+1+1+1)/7 =1 
 

Therefore the Г(O,H) =1, which is nothing but the 
generalized dependency degree of set H over set O. 
Similarly we can calculate the generalized 
dependency degree over other sets as well. 

4.6 Metric for Software Quality 

We propose this Generalized Dependency degree Γ 
as a Dependency metric (D*) so as to calculate 
dependency of a defect over chosen entities. (D*)  
can be calculated by framing a equivalence relation 
of defect dataset, subsequently framing it’s 
equivalent classes on disjoint defect sets over a D 
will generate a justifiable value to judge what and 
when to prioritize. De – the set of defect equivalence 
classes, should be first deduced from training dataset 
as a preliminary sample test. Later the approach 
should be applied over test dataset.  

The scope of evaluating this metric study is up to 
the evaluation requirement of the stake-owners who 
are performing the action. If they would like to study 
the scope of dependency of a defect set over entire 
product, the classification step can be ignored and 
the entire integrated product suite becomes a test 
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dataset.  Currently there is no generic scale defined 
for metric D*, but the results mostly range between 
0 and 10. Practitioners should be able to create a 
scale as per results obtained via training dataset. 
Scale might differ while calculating this metric from 
product to product and between one input dataset to 
another with in similar product. Subsequently, the 
scale can be mapped to test dataset. 
 

Below is an algorithmically approach to evaluate 
a dependency metric over a defect dataset. 
 

Algorithm DEPENDMETRIC(D,P,M,ER,EC) 
 

begin 
for i=1 to n do  
 read Pi ϵ D  //read products 
for j=1 to m do 
 read Mj ϵ Pi  //read modules 
  
get rule:R    //getrule 
for k=1 to z do 
 read dpk  //read defects 
for l=1 to z 
 D = ER(dpk,R); 
for l=1 to z 
 De = EC(ER(dpk,R)); 
for l=1 to z  
 D*= Γ(ECl,D); 
print D*    
end 
 

The algorithm is primarily meant to evaluate the 
dependency metric and doesn’t focus on the time 
complexity of the actual computation itself. 
Improving the efficiency of the algorithm from a 
performance perspective is beyond the scope of this 
paper and shall be explored in future. 

5 EXPERIMENT 

A real time dataset was obtained from an 
Information Technology product firm to perform an 
experimental evaluation of our approach. Due non-
disclosure clause, we are unable to list the exact 
name of the organization that provided the dataset. 
Defect dataset “H” was extracted from an enterprise 
bug-tracking tool called JIRA™. The “H” dataset 
contains defects registered for HRMS (Human 
Resource Management System) integrated software 
product which has 3 products under one master 
pillar (Learning Management System - LMS, Talent 
Management System - TM & Payroll - WFM). The 
3 products consisted of 7 integrated sub-modules 
{(LMS – Administration, Manager and Reporting), 
(TM – Succession, Compensation and Talent Book), 
(WFM – Workforce and Pay book)}. The defect 
dataset “H” contains the list of defects that were 
considered insignificant in current version and hence 

were targeted to be addressed in future versions. 
Below is an attribute value table for “H” with 
respective defect count against respective modules 
and products targeted for fixes in future release.  

Table 3: Attribute-value table for “H” Dataset. 

 
Attribute-value defect table 

P1 P2 P3 

M1 24 - - 

M2 56 - - 

M3 4 - - 

S1 - 9 - 

S2 - 7 - 

T1 - - 43 

T2 - - 24 

As listed above - P1, P2 & P3 are 3 products that 
are integrated as single pillar. Product - Module 
relation is defined as follows {M1, M2, M3 ϵ P1}, 
{S1, S2 ϵ P2} and {T1, T2 ϵ P3}. The figure 
shows the number of defects targeted for future 
versions under each product – module relation. For 
example, table 3 shows that 24 defects are targeted 
to be fixed for Product P1 – module M1 and 7 are 
targeted to be fixed for Product P2 – module S2. 

Using “H”, rule based classifier was applied to 
perform the study of dependency of defects in a 
given module with another within chosen products. 
Below are the three rules extracted and applied to 
study the dependency with in each rule using the 
DEPENDMETRIC algorithm mentioned in the 
previous section: 

 

Rule 1:   IF Product = P1 & P2 
  THEN Module = M1 & S1 

 Rule 2:   IF Product = P1 & P3 
   THEN Module = M2 & T2 

 Rule 3:  IF Product = P2  
   THEN Module = S1 & S2 

 

For each rule, Equivalence relation was 
programmatically calculated. For example, in case 
of rule 1, 33 defects (24 + 9) are used to frame the 
equivalence relation. Later, its equivalence classes 
are generated and applied over Dependency metric 
D* to calculate how each chosen module is 
dependent on each other. 

6 RESULTS 

Dependency metric D* was calculated using 
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equation (1). The results for respective rules (Rule 1, 
Rule 2, and Rule 3) are shown in table 4, 5 and 6.  

Table 4: D* for Rule 1. 

D* P1 P2 

M1 0.76 0.59 

S1 0.21 1.04 

Table 5: D* for Rule 2. 

D* P1 P3 

M2 0.89 0.23 

T2 0.14 0.97 

Table 6: D* for Rule 3. 

D* P2 

S1 0.47 

S2 0.31 

By summarizing above results for Rule 1, 
dependency metric for modules M1 & S1 within 
products P1 and P2 can be deduced. In this case, M1 
module is more dependent (D* value is 1.35) when 
compared with module S1 (D* value is 1.25) over 
products P1 & P2. The stakeholders can use this 
value to place M1 module with high priority than 
fixing S1 module. 

In case of Rule 2, module M2 appears to be more 
dependent when compared with module T2 over 
products P1 & P3. If defects arising from P1 and P3 
are to be fixed, module M2 should be given more 
priority than T2. Similarly, for Rule 3, defects related 
to module S1 should be prioritized compared to S2. 

The above given metric values provide us a 
quantitative basis for addressing defects pertaining 
to specific components with in integrated software 
product. Based on the defect dependency metric 
value, we were able to list down most critical 
modules or sub-product that needs to be prioritized 
to improve the quality of integrated software 
product. 

7 THREATS TO VALIDITY 

The defect dependency metric provides a 
quantitative number for assessing the importance of 
fixing defects in a particular product or module or 
sub-module in the context of an integrated product. 
The technique can be used to drill down to a assess 
defect dependency on specific defects. However the 

validity of the results are still to be assessed. 
Currently we have been able to monitor the results 
for only one release of the integrated product. The 
employees of the product firm followed the normal 
defect-fix cycle and fixed defects without taking 
defect dependency into consideration. We used our 
approach to compute the defect dependency value. 
However, to appropriately know the impact on our 
approach compared to the previous approach we 
need multiple releases of the integrated product and 
the corresponding defect datasets. 

Rough set theory forms the basis for our 
approach. One of the fundamental concepts of rough 
set theory is the notion of disjoint sets. In other 
words, our work assumes that the defects are disjoint 
from each other in the defect dataset. We have not 
considered cases where in the defect has been 
double counted or the same defect has been logged 
in semantically different manner  

Another threat to our study is the interpretation 
of the defect dependency value. It needs to be noted 
that ultimately the stake-owners have to make a 
decision on prioritization of defects in a specific 
order by taking into account factors like business 
strategy, competition, time to market, etc. in real 
world. In our work, we have not considered these 
factors and have just compared it based on a high-
low basis. 

8 CONCLUSION AND FUTURE 
WORK 

In this paper, we proposed an approach to help the 
stake-owners prioritize defects with in modules with 
higher dependency degree. This in turn leads to 
better defect resolution cycle. If the approach is 
practised in every future release cycle it can lead to 
significant improvement in the quality of the 
integrated product. This also avoids surprise 
functional breakdown of the entire suite in future 
versions.  

There are few shortcomings with our approach 
that we plan to address as part of our future work.  
 

 Dependency metric is an initial attempt to study 
the dependency of a defect over a software 
product and is not the only solution to the 
reported problem. Other methods are yet to be 
formulated to justify and address the real time 
issues.  

 While extracting the rules from defect dataset, 
we need to take care while pruning the dataset. 
We need to ensure that the defects are genuine 
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and they belong to respective modules in the 
integrated software product. Also it must be 
ensured that the defect reports have relevant 
relation with master product and are targeted for 
future release.  
 

Below are the open challenges that require 
further study: 
 Improve time-complexity of proposed approach 

and automate the calculation of the dependency 
metric. 

 Current approach should be scaled downed from 
module level to the level of single defect for 
more significant results 

 Proposed dependency metric is only generalized 
for targeted defects. Further study is required to 
analyse the defect behaviour among modules 
that are shared among multiple product. 
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