
Analyzing Distributions of Emails and Commits from OSS Contributors
through Mining Software Repositories

An Exploratory Study

Mário Farias1;2, Renato Novais1;4, Paulo Ortins1, Methanias Colaço3 and Manoel Mendonça1;4

1Federal Institute of Bahia, Salvador, Brazil
2Federal Institute of Sergipe, São Cristóvão, Brazil

3Federal University of Sergipe, São Cristóvão, Brazil
4Fraunhofer Project Center for Software and Systems Engineering, Bahia, Brazil

Keywords: Software Repository Mining, Open Source Contributions, Experimental Software Engineering, Software
Visualization, Preferred Representational Systems.

Abstract: Context: Distributed software development is a modern practice in software industry. This is especially true
in Open Source Software (OSS) community. In this context, developers are normally distributed around the
world. In addition, most of them work for free and without or with low coordinating. Understanding how de-
velopers’ practices are on those projects may guide communities to successfully manage their projects. Goal:
We mined two repositories of the Apache Httpd project in order to gather information about its developers’ be-
havior. Method: We developed an approach to cross data gathered from mail list and source code repository
through mining techniques. The approach uses software visualization to analyze the mined data. We con-
ducted an experimental evaluation of the approach to assess the behavioral patterns from OSS development
community. Results: Our results show Apache developers’ behavior patterns. In addition, we deepen the
analysis of the Preferred Representational System of four top developers presented by Colaço et. al in (Colaço
et al., 2010). Conclusion: The use of data mining and software visualization to analyze data from different
sources can spot important properties of development processes.

1 INTRODUCTION

A challenge for software engineers and programmers
is dealing with complex issues and large software
systems while evolving their projects (Sjoberg et al.,
2013). Large systems are complex and difficult to
understand because of size and complexity that soft-
ware has achieved. Software engineers frequently
face maintenance tasks, which require the understand-
ing of non-familiar software artifacts. Such tasks of-
ten imply problems regarding communication, com-
patibility, and complexity issues (Lanza et al., 2005).
Therefore, ensuring the maintainability of software
systems is a costly task, and improving this process is
a continuous work of research in the software main-
tainability area. One possible way to deal with this
complex scenario is to understand the development
community behavior, through software repositories’
data analysis, improving software development pro-
cesses and practices (Heller et al., 2011).

Software repositories have been used to discover

useful knowledge about the development, mainte-
nance and evolution of software. However, some of
these data sources (e.g. mailing lists) are not built in
a structured and organized way. So, we need a con-
siderable effort to gather evidence from those reposi-
tories. To this end, researchers have been developing
different approaches (Licorish and MacDonell, 2014;
Heller et al., 2011; Novais et al., 2013a; Canfora et al.,
2011; Eyolfson et al., 2011). They use data mining,
software visualization, text mining, and mining soft-
ware repository. Some of them analyze each repos-
itory separately, even that to combine different tech-
niques is a promising approach (Novais et al., 2013b).

Combine approaches from different areas may
lead to great results. For example, enrich those
techniques with information visualization may reveal
valuable hidden software properties. Based on this
premise, this paper presents an exploratory study that
uses data mining and software visualization tech-
niques to analyze open source software (OSS) de-
velopers’ behavior. The study is particularly inter-

303Farias M., Novais R., Ortins P., Colaço . and Mendonça M..
Analyzing Distributions of Emails and Commits from OSS Contributors through Mining Software Repositories - An Exploratory Study.
DOI: 10.5220/0005368603030310
In Proceedings of the 17th International Conference on Enterprise Information Systems (ICEIS-2015), pages 303-310
ISBN: 978-989-758-097-0
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)



ested in analyze discussion mailing lists and source
code repositories through the use of software visu-
alization. It integrated and analyzed data originated
from Apache Httpd mailing list and source code data.

Our approach extends the empirical studies pre-
sented in previous works (Colaço et al., 2012; Farias
et al., 2014). The first work proposed strategies to
mine Apache server mailing lists, aiming to clas-
sify the top Apache Httpd Contributor according to
their Preferred Representational Systems (PRS). Next
work analyzes Apache developers’ behavior, mining
mailing lists and source configuration management
data (SCM Data).

This representational system gives us a preferred
way to use one or more basic systems to communi-
cate and learn. The basic systems usually discussed
in the literature are : (1) Visual, (2) Auditory and (3)
Kinesthetic. For more detail, the reader should read
(Colaço et al., 2012).

In summary, this study deeps one of the research
questions presented by (Colaço et al., 2010), intro-
duces two new research questions and, when possible,
compares the outcomes of both studies.

This paper is organized as follow. Section 2
presents related works. Section 3 describes our ex-
perimental evaluation. Section 4 reports and discusses
our findings. Section 5 discusses some threats to va-
lidity. Finally, Section 6 concludes the paper high-
lighting future works.

2 RELATED WORK

This section discusses some related work concerned
with identifying patterns in OSS development com-
munity through mining software repository or soft-
ware visualization.

Heller et al. (Heller et al., 2011) proposed a strat-
egy that mined a GitHub repository metadata and used
visualization techniques to identify patterns in OSS
development community. The study focused on spe-
cific patterns, such as the effect of geographic dis-
tance on developer relationships, social connectivity
and influence among cities, and variation in project
specific contribution styles. From the standpoint of
behaviour patterns, in (Murgia et al., 2014) the au-
thors have analyzed whether development artifacts
like issue reports carry any emotional information
about software development. The work has analyzed
the Apache Software Foundation issue tracking sys-
tem. The analysis shows that developers do express
emotions (in particular gratitude, joy and sadness).
Based on their findings, issue comments have poten-
tial as data source for emotion mining.

Some works have already considered email spe-
cific analysis to study OSS development process and
behavior of people (Rigby and Hassan, 2007; Gill and
Oberlander, 2003)Rigby and Hassan (Rigby and Has-
san, 2007) have analyzed OSS mailing list content to
find developers personalities and general emotional
content. In (Gill and Oberlander, 2003), the authors
investigated the impact of computer-mediated interac-
tion on person perception. In particular, they studied
how important traits for socialization and collabora-
tion may be detected from the text of an email. To
this end, they analyzed emails from 30 students at the
University of Edinburgh.

Other works are focused on the use of software
visualization to understand the OSS developers be-
haviour. They usually propose new visual metaphors
to analyze OSS developers contribution. In (Licorish
and MacDonell, 2014), the authors used psycholin-
guistics, text mining and visualization to examine
repository data. Besides that, they demonstrated the
utility of combining these approaches to illuminate
details of teams’ behavioral processes evident in their
artifacts. Müller et al. (Müller et al., 2010) presented
a visualisation and statistics system called Subversion
Statistics Sifter. It explores the structure and evolution
of data contained in Subversion repositories. They
use statistical graphics and graph plots to analyze both
developer activity and source code changes.

Two works are closest to the research presented
here. First, Canfora et al. (Canfora et al., 2011) mined
explicitly documented cross-system bug fixings from
versioning repository and data from two project mail-
ing lists. They tried to identify Cross-System-Bug-
Fixings activities between FreeBSD and OpenBSD.
They also investigated the social role of developers
performing such activities by means of social net-
work analysis. We based our cross-system mailing
list in this work. Second, in (Colaço et al., 2010), the
authors introduced a psychometrically-based neuro-
linguistic analysis tool to classify developers through
email mining. They conducted an experiment to as-
sess the Preferred Representational Systems of top de-
velopers at Apache server mailing lists. In our study,
we extended their e-mails and Preferred Representa-
tional System analysis.

3 EXPERIMENTAL EVALUATION

This section describes the planning and the operation
of the experimental evaluation we conducted to vali-
date our approach. The experimental process follows
the Wohlin’s guidelines (Wohlin et al., 2012). The
next section presents the gathered evidence and the

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

304



results.

3.1 Goal Definition

The main goal of our study is to reveal interesting
behavioral patterns in open source software contribu-
tions, such as the effect of geographic distribution be-
tween e-mails and commits and correlation over time
between emails and commits of OSS project develop-
ers. For reaching this goal, we had to gather infor-
mation through preprocessing and text mining, min-
ing software repository and software visualization to
analyze mailing lists, commits from projects and ge-
ographic location (geo-location) of contributions in
OSS projects.

3.2 Planning

3.2.1 Context Selection

The experiment context was open source project
repositories. These repositories have a large amount
of e-mails and commits. Commonly, the data is not
ready to use. It is necessary to clean the data to
avoid misleading understanding. For that, we de-
veloped powerful computational procedures follow-
ing (Colaço et al., 2010; Colaço et al., 2012). On
top of that, we did a detailed manual analysis of the
committers’ profiles in order to gather geographic in-
formation. The approach of this study followed three
steps: First, we extracted data from: a) Apache’s com-
mits repository; b) Apache developer’s mailing list;
and c) geographic information from geo-location ser-
vices; Second, we crossed the data collected in the
previous step in order to associate the data to the de-
veloper that produced it; and finally, we built interac-
tive visualizations that helped users to discover rele-
vant information. Next, we present each of these steps
in detail.

We developed four modules for this study in or-
der to provide an able environment to integrate and
analyze two repositories from a system. The first is
a module for Extraction, Transformation and Load
(ETL) of emails. The second module is for min-
ing source code repositories. The next, the integrator
module. Finally, the fourth is a visualization mod-
ule. These visualizations are publicly available at
(http://goo.gl/RSs4VR).

3.2.2 Research Questions

This work aims to investigate OSS developers’ behav-
ior. To do this, we mined two software repositories
in order to analyze the research questions addressing

the distribution of email and commits over time in the
project. Our efforts were focused on relation between
the PRS presented by Colaço et al. in (Colaço et al.,
2010) and the contribution made by each developer in
the Apache project in depth (Question ii). Moreover,
we present one question addressing the distribution of
email and commits over time in the project (Questions
i). Our research questions are described as follow:

i. How are commits and emails distributed over
time among the Apache Project community?

ii. Is there a link between OSS developers’
context-specific PRS (Colaço et al., 2010) and con-
tribution made by each developer?

3.2.3 Participant and Artifact Selection

In this study, we used as object of analysis the Apache
Httpd Project (http://httpd.apache.org/). Apache
Httpd is a HTTP server that aims to offer a robust,
efficient and bug free implementation of HTTP ser-
vices. Accordingly to (NETCRAFT, 2013), it is used
for more than 300 million websites that represents al-
most 40% of the world websites. Apache Httpd is
maintained by dozens of developers through Apache
Software Foundation (ASF). This foundation is com-
prised of a community of developers and users that
provides support for more than 100 well-known open
source projects.

Over its 17 years of development, the project re-
ceived more than 60,000 commits, totaling more than
two millions of lines of code written by more than 100
developers around the world. These developers use a
mailing list to communicate with each other. They
send emails to discuss several activities, such as de-
velopment of new features, bug fixes, user problems,
and so on. This data can provides useful information
about the project evolution and developers’ behavior.
Because of that, it may be used for several studies in
mining software repository.

To answer our research questions, we extracted
and analyzed the body of 100,479 email messages
and 33,586 commits from the Apache repositories be-
tween 1995 and 2005. We selected the four devel-
opers who had the greatest number of commits. We
refer to these developers as ”Dev A”, ”Dev B”, ”Dev
C” and ”Dev D”. We also grouped all the other devel-
opers, and refer to them as ”Cluster”, these develop-
ers represent the rest of population. We analyzed the
same developers and same period used in the related
study (Colaço et al., 2010).

3.2.4 Preparation

We prepared a pilot for testing our approach. The pi-
lot study was carried using a small sample of emails

Analyzing�Distributions�of�Emails�and�Commits�from�OSS�Contributors�through�Mining�Software�Repositories�-�An
Exploratory�Study

305



and commits, which was chosen at random. Thus,
the pilot helped us to calibrate some specific char-
acteristics of our modules and to find improvement
point, such as performance of the crossing data and
geographic information.

3.3 Experiment Execution

To conduct this research, we developed four modules.
The modules were necessary in order to provide an
able environment to integrate and analyze two dif-
ferent source repositories. The first is a module for
Extraction, Transformation and Load (ETL) of the
emails. The second module is for Mining Source
Code Repositories. The third on is the integrator mod-
ule. Finally, the fourth is the visualization module.
They are described as following.

ETL OF THE EMAILS: Our approach uses Text
Mining (TM). Similar to conventional data mining,
text mining consists of phases that are inherent to
knowledge discovery process (Fayyad et al., 1996).
In this sense, we need to pay special attention to pre-
processing, because the used data is unstructured for
computer analysis. This means that before setting the
text data to be mined, it is necessary to convert each
document to a suitable format. A set of emails orga-
nized by month was treated as a text document by our
approach.

We based on (Colaço et al., 2010; Colaço et al.,
2012) processes to mining the email list. Those pro-
cesses consist of various steps. All of the steps have
as final purpose producing data collections with high
semantic content. Next, we briefly present the steps.
For more details on how to do preprocessing and to
clean messages, we suggest to read the used refer-
ences (Rigby and Hassan, 2007; Witte et al., 2008).

Step 1: The original documents are not always
represented in a sole textual format. Due to this rea-
son, it is necessary to convert them to a unique format.
For that, we needed to eliminate any attributes of pre-
sentation formatting, such as footer, signature, source
code and attachments.

Step 2: To change the letter case to upper case
or lower case. This facilitates the matching process.
We changed the letter case to lower case;

Step 3: To separate each email message. The
goal of this step is to recover important properties,
such as ”from”, ”to”, ”subject”, ”date”, ”time of the
day” and ”weekday”. Identifying the start and the end
of each message is a challenge task. In general, there
is no a pattern header 1 throughout the mailing list’s

1A pattern that indicates the start of the emails,
e.g., From owner-new-httpd@hyperreal.com Wed Nov 1
12:13:11 1995, From dev-return-62023-apmail-httpd-dev-

lifecycle. We had to perform a qualitative analysis in
a sample of emails and created a heuristic to detect
the headers. After that, we analyzed the outcomes in
order to validity our heuristic.

Step 4: To group the mined data, summarize and
store it into a database.

We applied all these steps to 100,479 emails sent
between 1995 and 2005.

MINING SOURCE CODE REPOSITORIES:
Apache Httpd uses a SVN repository. We used
computational procedure to extract the data from the
repository. In the studied period, there are 33,586
commits made by 110 different developers. We built
a parser to extract data from commits. From each
commit, we extract the ”author name”, ”date”, ”time
of the day” and ”weekday” that the commit was
made, and the files changed by the commit.

INTEGRATOR MODULE: In order to establish a
link between extracted data from email and commits
we developed a integrator module, for this at least
one property must be shared by both data sources, as
shown in Figure 1. For example, either an ID or an
email in both data sources should be equal. However,
this was not possible, since, in Apache Http project,
the data sources have different users’ profiles. This
was another challenge in our approach. It was nec-
essary to match different kinds of data, e.g. email
address with nickname and name with nickname. In
order to perform this task, we adapted the approach
proposed by (Canfora et al., 2011). Our integrator
module is composed of the following steps:

Figure 1: Module Integrator.

(i) Split Email Sender in Developer Name and
Email Address. Data from email sender is com-
posed of name and email. These properties had to
be split. For example, an entry like ”john lennon
<john@email.com>” would result in ”john lennon”
and ”john@email.com”;

archive=httpd.apache.org@httpd.apache.org Mon Sep 01
06:08:51 2008

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

306



(ii) Adjust Special Characters and Upper Case
Letters. In this step, names are converted to lower
case while special characters were removed. For ex-
ample, an entry like ”Mário L. Castrol” would result
in ”mario l castrol”.

(iii) Match Emails and Commits Identifiers. To
perform this task, we used the Levenshtein Distance2

to verify the similarity between them. We performed
several tests and after it we assumed the heuristics:
(1) there is a low possibility that an email sender and
a repository committer being the same person if the
Levenstein distance is equal or less than 0.7; (2) there
is a large possibility that an email sender and a repos-
itory committer being the same person if the Leven-
stein distance is equal or above than 0.9. For the ones
in the interval ]0.7..0.9[, we considered the following
steps.

a) Abbreviation of middle name is ignored. For
the developers and committers with two or more
words in the name, we consider only the first and the
last ones. If, after that, there is a match between them,
then, we considered the same person, unless if there
is another developer with the same first and last name.
For example, the entries ”mario l castrol” and ”mario
t. castrol” are considered as the same person, if there
is not another ”mario castrol” in one of the reposito-
ries.

b) First name abbreviated. When there is a name
composed of an abbreviated first name plus a last
name (e.g. ”j. lennon”), we considered it equals to
another name composed of the same last name and a
first name that starts with the abbreviated letter. As in
the previous step, it only happens when there is not
another developer with the same characteristics;

c) Only last name. If there is only the last name
and in the collection data there is one, and only one,
last name equals to it, we considered them as the
same person. For example, the entries ”gonzalez” and
”johnson gonzalez” are considered the same person, if
there is not another person with the last name ”gonza-
lez”.

d) Only initials. If only initial letters composes
the name and match another name, we considered
them as the same person. For example, the entries
”mwvd” and ”michael-willy van dick” are considered
the same person. The exception here happens when
exist another developer with the same initial letter,
e.g., ”michel-willy victor dagg”.

(iv) Match Email Address. Finally, we compared
the nickname in the email address (which comes be-
fore the ’@’ symbol) with the committer’s name. If
they match we considered as the same person. For ex-
ample, the entries ”jonnylennon@software.net” can

2http://lucene.apache.org

be matched to ”Jonny Lennon”.
Even considering all crossing data process, it was

not possible to find a match between some emails and
commits. In those cases, the data was ignored and
corresponded to 29,698 emails. Thus, we considered
in our analysis only 70,781 emails.

INTERACTIVE VISUALIZATIONS: Our approach
uses six visualizations to help to analyze the extracted
data. The first two are heat maps showing the com-
mits and emails distribution around the world (Fig-
ure 3). In these heat maps, commits and emails con-
centration are represented by a gradient composed by
11 colors varying from green (small amount) to yel-
low (medium amount) and from yellow to red (large
amount), each color is used accordingly to a dynamic
scale varying from zero until the greatest concen-
tration of points. In Figure 3, one can easily spot
the places with more commits. There are also three
charts, showing the commits and emails distribution
over the years. Figure 2 displays all the commits and
email for the whole period. It shows them consider-
ing over time, the hour of the day and the days of the
week. The Figures 4 and 5 are a bubble chart visual-
izations. We used it to represent file types that were
more modified over time. The larger the bubble size,
larger is the number of modifications made in a spe-
cific file type.

Besides the graphics, the tool also provides some
interaction mechanisms that allow us to filter data.
The first interaction is a range slider3 that is used to
filter data by a specific period. The second is a list
where we can choose to filter data by a specific de-
veloper. There also the maps built-in interactions like
zooming and dragging.

After that, we retrieved the geographic informa-
tion (latitude/longitude and the time offset) for each
committer aiming to know the origin of commits and
emails. Apache Httpd project does not have this data
for all developers. They provide this information only
for the core committers (the ones who contributes
more to the project).

In these cases, Apache Httpd project provides a
page with complementary information about them.
Unfortunately, core committers represent only 63
from the total developers (110). For the others, we
needed to perform a manual task to retrieve their ge-
ographic information. They also have different time
offsets. This brings out another issue, since it is nec-
essary to consider the time zone when collecting the
weekday and time for each commit. In this case, we
needed to get each developer’s time zone and adjust
the times for the Apache server time.

After retrieving geographic information, we found

3http://jqueryui.com/slider

Analyzing�Distributions�of�Emails�and�Commits�from�OSS�Contributors�through�Mining�Software�Repositories�-�An
Exploratory�Study

307



Figure 2: Interactions over time between emails and com-
mits of developer population.

27 more profiles, totaling 90 from the 110 available
developers. We decided to remove the commits from
those developers, which we could not find geographic
information. So, we reduced the amount of analyzed
commits from 33,586 to 31,611.

4 RESULTS AND DATA ANALYSIS

The collected data built a rich set of information.
Nonetheless, in general, data extracted from software
repositories are too difficult to be analyzed in the
same state that they were stored (Mazza, 2009). Thus,
we decide to use visualizations to reorganize them
in such manner that users can easily understand the
whole database. We discuss now the results of this
study. To answer the research questions, we analyzed
the data taking into consideration (i) the relation be-
tween emails and commits of the Apache Project de-
velopers and (ii) The beginning of Apache Project.
(iii) OSS developers’ contribution and Preferred Rep-
resentational Systems.

i. Relation between Emails and Commits of the
Apache Project Community: Through the interaction
with the period filter to generate heat maps over the
time, we perceive that the heat zones (regions where
contributions were made) used to appear first in the
emails’ map and after in the commits’ map, it’s ev-
idence that in this project developers first interact in
the email list and after commit code to the repository.

We could confirm these behaviors in the Apache
Httpd Web Site. According to the site, changes to
the code are proposed and voted on the mailing list
and only after they are approved, they are committed
in the repository. On top of that, we could also iden-
tify that the regions that have more participation in the
emails list are also the regions with more participation
in the code repository (see Figure 3). An exception is
the Japanese developers’ behavior. In this case, there
is a considerable amount of commits (bottom of Fig-

Figure 3: Heat maps showing amount of (a) emails and (b)
commits.

ure 3) but a low participation in the discussion mailing
list (top of Figure 3 ). It may suggest an introverted
behavior due to cultural factors.

We also perceived that there is a correlation be-
tween emails and commits timestamps. Developers
normally commit code and discuss in the list in the
same time as well in the same weekday. Figure 2
shows the interactions over time between emails and
commits of the Apache Project developers.

ii. The Apache Project Beginning: Analyzing
carefully the data evolution in Figure 2, we can see
that the discussion in the email list started a year be-
fore the first commits. This is an interesting behav-
ior, since they had time to discuss before to start the
implementation. However, it is common to observe
OSS projects starting on the other way around. First,
a project is created with few developers. They start to
commit and create the first release. After that, users
start to use it. Using the software, bug fix and request
for new features will rise. So, users use a bug track-
ing system to report the issues. At the end, the devel-
opers start the discussions in the email list. We de-
cided to investigate why the Apache httpd evolved in
this way. We looked the website and discovered that
the Apache Httpd was a continuation of NCSA Httpd,
which stopped to be developed when Rob McCool left
NCSA in 1994. A group of webmasters then started to
develop their own extensions and bug fixes, in 1995,
they solved to join all this features and bug fixes in
a unique distribution and then the Apache Group was
created.

iii. OSS Developers’ Contribution and Preferred
Representational Systems: The PRS is the one that
the person tends to use more than the others to create
his/her internal representation (Colaço et al., 2010).
In this respect, we accept as true that developers with
a kinesthetic profile have more contributions related

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

308



to code files (emotions and physical experience, hold-
ing and doing practical hands-on experiences), while
developers with an auditory and visual profile have
more contributions related to documentation and ar-
chitecture (creation of internal images/sound and the
use of seen or observed things, including diagrams,
demonstrations, flip-charts, sounds reminders, etc.).
To confirm or refuse the findings presented by Colaço
et al. in (Colaço et al., 2010), we proceed with analy-
sis for each developer as follows.

Dev A and C had a dominance of the kinesthetic
profile (Colaço et al., 2010). It’s evidence that this
developer should work directly with code. We may
check it in Figure 4 (Dev A and Dev C), the Dev A has
a lot of commits changing files with the extensions
header (.h) and C files (.c). The Dev B was pointed
out as visual profile (Colaço et al., 2010), contributing
more with documentation and architecture. However,
we found out that this developer has had really valu-
able contribution in commits. It is evidence that he
also contributes with source code in project, this fact
is confirmed by second score (kinesthetic) presented
by (Colaço et al., 2010). The developer is the one
from all developers analyzed with most contribution
in code files (see Figure 4 in Dev B).

The Dev D has an auditory profile and also a
strong visual profile. Furthermore, is also, the one
who has the more balanced score between the dif-
ferent profiles. Figure 4 (Dev D) shows the distri-
bution of file performed by this developer. He/she
was the developer who more contributed with differ-
ent files types. In addition, we discovered that this
developer contributes with the project documentation,
translations and so on. It was confirmed through pre-
dominant contributions involving XML files (.xml),
HTML files (.html) and image files (.gif and .png).
In Colaço et al. in (Colaço et al., 2010), they also
created a Cluster that is composed of all developers
except the top committers (Dev A, B, C and D). In his
study, the cluster has a kinesthetic profile, which was
also confirmed by our study (Figure 5), there are a lot
of commits made by these developers related to code
files (.h and .c).

5 THREATS TO VALIDITY

Apache Http is one of the most mature and large OSS
project. As showed in Section 3, we experienced sev-
eral challenge on the process used to analyse its data.
We tried to overcome the issues following approaches
found in the literature. However, there are still threats
to validity.

We did not consider the number of developers ana-

Figure 4: Bubble chart: Apache project’s contributions.

lyzed enough to generalize these results for other OSS
projects. So, our approach needs further investigation
to assure the external validity.

We obtained the geographic locations through
public profiles. These data may not represent the ac-
tual residence of each developer in the moment they
contribute to the project. So, we assumed that com-
mits and emails were sent from the developers’ place
to reduce the threats to internal validity. To this end,
we tried to gather data from a questionnaire sent via
email to some developers in order to provide us addi-
tional information but, unfortunately, we did not re-
ceive many replies.

Figure 5: Bubble Chart: Clusters’ Contributions.

After retrieval geographic information and data
processing, some commits and e-mails were disre-
garded, totaling 18,8% of developers, 5.88% of com-
mits and 29.55% of e-mails analyzed. Aiming to re-
duce this threat, we performed a deep qualitative anal-
ysis to uncover geographic information. At the end,
the data discarded represent small percentage of our
sample, which does not compromise our analysis.

Analyzing�Distributions�of�Emails�and�Commits�from�OSS�Contributors�through�Mining�Software�Repositories�-�An
Exploratory�Study

309



6 CONCLUSION AND FURTHER
WORK

In this paper, we presented an useful and innovative
approach that extracts information from two impor-
tant software project data sources. We mined and
tried to match emails list and source code repository
data. This approach can be used to discover hidden
behavioral patterns in unstructured data from software
repositories. We also believe that OSS leaders can use
our approach to increase developers’ contributions or
to keep contributors in their projects. OSS managers
can also use our approach to split tasks according to
each developers’ profile or to tracking team’s contri-
butions over time considering weekdays and day pe-
riods.

We have evidences that discussion lists and repos-
itories can be used to measure project activity or to
predict each other. We now draw answers to our re-
search questions stated in the section 3. Regarding
RQ1, we may confirm that commits and emails fol-
low the same pattern distribution in the Apache evo-
lution. In respect to RQ2, our analysis confirmed the
findings discussed by (Colaço et al., 2010) for devel-
opers A, C, D, Cluster and refused the developer B.
However, we found out that this developer has had re-
ally valuable contribution in commits, this setting was
also dealt by (Colaço et al., 2010).

Our future work will address three key issues:
(1) improve our approach by extracting other rele-
vant data from other OSS. This work is in process;
(2) extend this study to mine data from PostgreSQL,
emails and commits, aiming to compare to findings
performed by (Colaço et al., 2012); and (3) develop
new interactive visualizations.

REFERENCES

Canfora, G., Cerulo, L., Cimitile, M., and Di Penta, M.
(2011). Social interactions around cross-system bug
fixings: The case of freebsd and openbsd. In MSR,
pages 143–152.

Colaço, M., Mendonça, M., @and Paulo Henrique, M. F.,
and Corumba, D. (2012). A neurolinguistic method
for identifying oss developers’ context-specific pre-
ferred representational systems. page 112 to 121.

Colaço, M., Mendonca, M., Farias, M., and Henrique, P.
(2010). Oss developers context-specific preferred rep-
resentational systems: A initial neurolinguistic text
analysis of the apache mailing list. MSR, pages 126–
129.

D’Ambros, M., Lanza, M., and Robbes, R. (2010). Commit
2.0. In WW2SE, pages 14–19. ACM.

Eyolfson, J., Tan, L., and Lam, P. (2011). Do time of day
and developer experience affect commit bugginess?

In Proceedings of the 8th Working Conference on Min-
ing Software Repositories, MSR, pages 153–162.

Farias, M. A. F., Ortins, P., Novais, R., Colaço, M. J., and
Mendonca, M. (2014). Recovering valuable informa-
tion behaviour from oss contributors: An exploratory
study. In SEKE, pages 474–478.

Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P. (1996).
The kdd process for extracting useful knowledge from
volumes of data. Commun. ACM, 39(11):27–34.

Gill, A. J. and Oberlander, J. (2003). Perception of e-mail
personality at zero-acquaintance: Extraversion takes
care of itself; neuroticism is a worry.

Heller, B., Marschner, E., Rosenfeld, E., and Heer, J.
(2011). Visualizing collaboration and influence in
the open-source software community. In MSR, pages
223–226.

Lanza, M. and Ducasse, S. (2003). Polymetric views-a
lightweight visual approach to reverse engineering.
IEEE TSE, 29(9):782–795.

Lanza, M., Marinescu, R., and Ducasse, S. (2005). Object-
Oriented Metrics in Practice.

Licorish, S. A. and MacDonell, S. G. (2014). Combin-
ing text mining and visualization techniques to study
teams’ behavioral processes. In MUD, pages 16–20.

Mazza, R. (2009). Introduction to Information Visualiza-
tion.

Müller, C., Reina, G., Burch, M., and Weiskopf, D. (2010).
Subversion statistics sifter. In ICAVC, pages 447–457.
Springer-Verlag.

Murgia, A., Tourani, P., Adams, B., and Ortu, M. (2014).
Do developers feel emotions? an exploratory analysis
of emotions in software artifacts. In MSR, pages 262–
271. ACM.

NETCRAFT (2013). Web Server Survey. NetCraft Web-
site. http://news.netcraft.com/archives/2013/06/06/
june-2013-web-server-survey-3.html/.

Novais, R., Nunes, C., Garcia, A., and Mendonca, M.
(2013a). Sourceminer evolution: A tool for support-
ing feature evolution comprehension. In ICSM, pages
508–511.

Novais, R. L., Torres, A., Mendes, T. S., Mendonça, M., and
Zazworka, N. (2013b). Software evolution visualiza-
tion: A systematic mapping study. IST, 55(11):1860 –
1883.

Pattison, D. S., Bird, C. A., and Devanbu, P. T. (2008). Talk
and work: A preliminary report. In MSR, pages 113–
116. ACM.

Rigby, P. C. and Hassan, A. E. (2007). What can oss mailing
lists tell us? a preliminary psychometric text analysis
of the apache developer mailing list. In MSR. IEEE
Computer Society.

Sjoberg, D., Yamashita, A., Anda, B., Mockus, A., and
Dyba, T. (2013). Quantifying the effect of code smells
on maintenance effort. TSE, 39(8):1144–1156.

Witte, R., Li, Q., Zhang, Y., and Rilling, J. (2008). Text
mining and software engineering: an integrated source
code and document analysis approach. Soft. IET,
2(1):3–16.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Reg-
nell, B., and Wesslén, A. (2012). Experimentation in
Software Engineering: An Introduction. Springer.

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

310


