
Consistency and Availability of Data in Replicated NoSQL Databases

Tadeusz Pankowski
Institute of Control and Information Engineering, Poznań University of Technology, Poznań, Poland

Keywords: Replicated Data Repositories, Strong Consistency, Eventual Consistency, Consensus Quorum Algorithms.

Abstract: Highly distributed NoSQL key-value databases have been designed to meet the needs of various applications
in the field of social networks, Web search and e-commerce. High availability, fault tolerance and scalability
(i.e. Quality of Service, QoS) of such systems is in conflict with the strong consistency (Quality of Data,
QoD). Thus, a new functionality of services, balancing QoS and QoD, is needed. This functionality is referred
as Service Level Agreements, SLA) (Terry et al., 2013). We present a system Lorq as a proposal of a solution
to this problem. Lorq is a consensus quorum based algorithm for NoSQL data replication. In this paper, we
discuss how different consistency levels are guaranteed by Lorq.

1 INTRODUCTION

Recently, we observe a rapid development of mod-
ern storage systems based on Internet services and
cloud computing technologies (Terry et al., 2013).
Examples of this kind of applications range from
social networks (Lakshman and Malik, 2010), Web
search (Corbett et al., 2013; Cooper et al., 2008) to
e-commerce systems (DeCandia et al., 2007). Data
management in such systems is expected to support
needs of a broad class of applications concerning dif-
ferent performance, consistency, fault tolerance, and
scalability (Abadi, 2012). Development of this new
class of systems, referred to as NoSQL systems, dif-
fers from conventional relational SQL systems in the
following aspects: (a) the data model is usually based
on a NoSQL key-value model; (b) data management
is focus on intensive simple write/read operations in-
stead of ACID transactions processing; (c) NoSQL
system architecture is a multi-server data replication
architecture, which is necessary to meet needs con-
cerning the performance, scalability and partition tol-
erance; (d) a various kinds of consistencies is of-
fered, from the strong consistency to weak consisten-
cies (eventual consistency).

In replicated systems, the following three features
influence the design, deployment and usage of the
system: consistency (C), availability (A), and parti-
tion tolerance (P). Partition happens when in result
of a crash, a part of the network is separated from
the rest. According to the CAP theorem (Gilbert and
Lynch, 2012), all of them cannot be achieved. Be-

cause the partition tolerance is the necessary con-
dition expected by the users, the crucial issue is
then the trade-off between consistency and availabil-
ity/latency.

Applications in such systems are often interested
in possibility to declare their consistency and latency
priorities (Terry et al., 2013). In general, except from
strong consistency, a user may expect a weaker kind
of consistencies, which are referred to as eventual
consistencies. This is similar to declaring isolation
levels in conventional SQL databases. In some com-
panies, the price that clients pay for accessing data
repositories depends both on the amount of data and
on its freshness (consistency). For example, Amazon
charges twice as much for strongly consistent reads as
for eventually consistent reads in DynamoDB (Ama-
zon DynamoDB Pricing, 2014). According to (Terry
et al., 2013), applications ”should request consistency
and latency that provides suitable service to their cus-
tomers and for which they will pay”. For example,
Pileus system (Terry et al., 2013) allows applications
to declare their consistency and latency priorities.

Novelties of this paper are as follows.

1. We propose and discuss a method and an algo-
rithm for replicating NoSQL data. The algo-
rithm is called Lorq (LOg Replication based on
consensus Quorum). The main features of Lorq
are the following: (a) data replication is real-
ized by means of replicating logs storing update
operations (treated as a single-operation transac-
tions); (b) the processing and replication strate-
gies guarantees that eventually all operations in

102 Pankowski T..
Consistency and Availability of Data in Replicated NoSQL Databases.
DOI: 10.5220/0005368101020109
In Proceedings of the 10th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2015), pages 102-109
ISBN: 978-989-758-100-7
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)



each replica are executed in the same order and
no operation is lost.

2. A special attention is paid to different kinds of
consistency, which can be guaranteed by the sys-
tem.

3. In comparison to Raft (Ongaro and Ousterhout,
2014), we propose a different way for choosing
a leader in Lorq. In particular, the procedure is
based on timestamps and servers priorities. It sim-
plifies the election procedure significantly.

In design and implementation of Lorq system, we
have used modern software engineering methods and
tools oriented to asynchronous and parallel program-
ing (Asynchronous Programming with Async and
Await, 2014).

The outline of this paper is as follows. The next
sections reviews problems of NoSQL data replica-
tion. The Lorq algorithm is presented in Section 3.
Some methods for achieving strong and eventual con-
sistency in Lorq, are discussed in Section 4. Finally,
Section 5 concludes the paper.

2 REPLICATION OF NoSQL DATA

In modern world-wide data stores, a number of goals
should be met:

� Scalability. The system must be able to take ad-
vantage of newly added servers (nodes) for repli-
cation and redistribution of data. The aim of
adding new hardware is to support large databases
with very high request rates and very low latency.

� Availability. It is guaranteed that each request
eventually receives a response. The case when a
response is too late, is often treated as the lack of
response at all, and the system can be understood
to be unavailable.

� Partitioning Tolerance. Due to communication
failures, the servers in the system can be parti-
tioned into multiple groups that cannot commu-
nicate with one another.

� Consistency. In conventional databases, a consis-
tent database state is a a state satisfying all con-
sistency constraints. In replicated databases, con-
sistency means the equality between answers to
queries issued against different servers in the sys-
tem. In the case of strong consistency all answers
are identical and up-to-date (such as ACID trans-
actions (Bernstein et al., 1987)). In the case of
a weak consistency, some answers can be stale,
however, the staleness of answers should be un-
der control, and in the lack of updates, all answers

converge to be identical. Then we say about even-
tual consistency (Vogels, 2009).

There is a fundamental trade-off between consistency
(Quality of Data), and latency/availability and parti-
tion tolerance (Quality of Service).

2.1 NoSQL Data Model

Modern NoSQL data stores manage various vari-
ants of key-value data models (Cattell, 2010) (e.g.,
PNUTS (Cooper et al., 2008), Dynamo (DeCandia
et al., 2007), Cassandra (Lakshman and Malik, 2010),
and BigTable (Chang et al., 2008).

The main NoSQL data structure is a key-value pair
(x;v), where x is a unique identifier, and v is a value
(Cattell, 2010). The value component could be: struc-
tureless – then the value is a sequence of bytes and
an application is responsible for its interpretation, or
structured – the value is a set of pairs of the form A : v,
where A is an attribute name, and v is a value, in gen-
eral, values can be nested structures. Further on in
this paper, we will assume that values in data objects
are structured.

2.2 Strategies of Data Replication

Data replication can be realized using:

1. State Propagation. The leader (a master server)
propagates its latest state to workers (slaves, fol-
lowers), which replace their current states with the
propagated data.

2. Operation Propagation. The leader propagates
sequences of operations. It must be guaranteed
that these operations will be applied by all work-
ers to their states in the same order.

In both strategies, states of all database replicas will
be eventually consistent. However, the freshness
of these states is different and depends on the time
needed for the propagation. Some serious problems
follow from possible crashes of servers or communi-
cations between the servers. For instance, it may hap-
pen that the leader crashes before propagating the data
or operations. In such cases, there must be means to
prevent losing this data. From the operational point of
view, the replication must take advantages from asyn-
chronous and parallel processing in order to guarantee
the required efficiency.

2.3 Consensus Quorum Algorithms

In a quorum-based data replication, it is required that
an execution of an operation (i.e., a propagation of an
update operation or a read operation) is committed if

Consistency�and�Availability�of�Data�in�Replicated�NoSQL�Databases

103



and only if a sufficiently large number of servers ac-
knowledge a successful termination of this operation
(Gifford, 1979).

In a quorum consensus algorithm, it is assumed
that: N is a number of servers storing copies of data
(replicas), R is an integer called read quorum, mean-
ing that at least R copies were successfully read; W
is an integer called write quorum, meaning that prop-
agations to at least W servers have been successfully
terminated. The following relationships hold between
N, R and W :

W > N=2; (1)
R+W > N: (2)

To commit a read operation, a server must collect the
read quorum, and to commit a write operation must
collect the write quorum. Condition (1) guarantees
that the majority of copies is updated, and (2) that
among read copies at least one is up-to-data.

The aim of consensus algorithms is to allow a col-
lection of servers to process users’ commands (up-
dates and reads) as long as the number of active
servers is not less than maxfW;Rg. It means that
the system is able to survive failures of some of its
servers.

An algorithm based on quorum consensus works
properly if a majority of servers is accessible and the
most current version of data can be always provided
to a client (i.e., it guarantees the strong consistency).
Note that for N = 3;R = 2;W = 2 the system tolerates
only one failure, and to tolerate at most two failures,
we can assume N = 5;R = 3;W = 3. Let p be the
probability of a server failure, then the probability that
at least n servers will be available is equal to

P(N; p;n) =
n

å
k=0

pk(1� p)N�k;

in particular, P(5;0:02;3) = 0:99992.

3 LOG REPLICATION BASED ON
CONSENSUS QUORUM

During last decade, the research on consensus algo-
rithms is dominated by Paxos algorithms (Gafni and
Lamport, 2000; Lamport, 2006). Lately, a variant of
Paxos, named Raft (Ongaro and Ousterhout, 2014),
was presented as a consensus algorithm for managing
a replicated log. Lorq is based on ideas underlying
Paxos and Raft, and includes such steps as: (1) leader
election; (2) log replication, execution and commit-
ment of update operations; (3) realization of read op-
erations on different consistency levels (Pankowski,
2015).

3.1 Architecture

The architecture of Lorq (Figure 1), like in Raft (On-
garo and Ousterhout, 2014), is organized having in
mind: operations, clients, and servers occurring in the
system managing data replication.

Figure 1: Architecture of Lorq system. There are update
and read operations in queues. Update operations are deliv-
ered (1) by clients from queues to one leader (2). A replica-
tion module delivers them to leader’s log and to logs at all
workers (3). Sequences of operations in all logs tend to be
identical and are applied in the same order to databases (4).
States of all databases also tend to be identical (eventually
consistent). A client may read (5) data from any server.

Operations. We distinguish three update operations:
set, insert, and delete, and one read operation. In or-
der to informally define syntax and semantics of op-
erations, let us assume that there is a NoSQL database
DB = f(x;fA : ag; t)g storing a data object (x;fA :
ag; t), where t is the timestamp of the operation that as
the last has updated the data. Operations are specified
as follows:

� set(dataId;dataVal; t) – the value of an existing
data with identifier dataId is set to dataVal, e.g.,
set(x;fA : bg; t1) and set(x;fB : bg; t2) against DB
changes its state to f(x;fA : bg; t1)g and f(x;fB :
bg; t2)g, respectively.

� ins(dataId;dataVal; t) – data (dataId;dataVal)
is inserted, or the value of the existing data ob-
ject dataId and its timestamp are modified ac-
cordingly, e.g.: successive execution of ins(x;fB :
bg; t1) and ins(y;fC : cg; t2) against DB, changes
its state to DB = f(x;fA : a;B : bg; t1);(y;fC :
cg; t2)g.
� del(dataId;dataVal; t) – the existing data ob-

ject (dataId;dataVal) is deleted, or the value
of the existing data object dataId is modified,
e.g.: successive execution of del(x;fB : bg; t1) and
del(y;fC : cg; t2) against the DB state considered
above, gives DB = f(x;fA : ag; t1)g.
� read(dataId; t) – reads the key-value data with

identifier dataId.

ENASE�2015�-�10th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

104



Queues. Operations from users are serialized and put
in queues. An operation is represented as follows:

� any update operation, opType(dataId;dataVal),
opType 2 fset; ins;delg, is represented as a tuple
(opId;clId;stTime;opType;dataId;dataVal);

� any read operation, read(dataId) – as a tuple
(opId;clId;stTime;dataId),

operation identifier (opId), client identifier (clId),
and start timestamp (stTime) are determined, when
the operation is delivered by a client to the leader.

Clients. Each queue is served by one client.
Servers. A server maintains one replica of a database
along with the log related to this replica, and runs the
software implementing Lorq protocols. One server
plays the role of the leader and the rest roles of work-
ers. The state of each server is characterized by the
server’s log and database. The following variables de-
scribe the state of a server:

� lastIdx – last log index (the highest position stor-
ing an operation),

� lastOpTime – the stTime stored at lastIdx posi-
tion,

� lastCommit – the highest log index storing a com-
mitted operation,

� currentLeader – identifier of the current leader, 0
– the leader is not elected,

� lastActivity – the observed latest activity time of
the leader.

3.2 States and Roles

Lorq system can be in one of the following three states
(Figure 2):

Figure 2: System states, client and server roles in Lorq. A
client can ask about leader, wait for result of election or send
queries (update or read). A server can play undefined role
(unqualified server), take part in leader election (as elector),
or act as leader or worker.

1. UnknownLeader – no leader is established in the
system (when the system starts and a short time
after a leader failure).

2. LeaderElection – election of a leader is in
progress.

3. KnownLeader – a leader is known in the system.

Actors of the system, i.e., clients and servers, can play
in those states specific roles.

3.2.1 Client in Asking Role

Initially, and when the system is in UnknownLeader
state, a client asynchronously sends the request
GetLeader to all servers. In response, each available
server can return:

� 0 – if a leader can not be elected because the re-
quired quorum cannot be achieved (the system is
unavailable);

� currentLeader – identifier of the leader that is ei-
ther actually known to the server or has been cho-
sen in reaction to the GetLeader request.

3.2.2 Client in Waiting Role

After issuing GetLeader request, the client plays the
Waiting role. Next, depending on the reply, changes
its role to Asking or Querying.

3.2.3 Client in Querying Role

A client reads from a queue the next operation, or
reads again a waiting one if necessary, and proceeds
as follows:

� determines values for opId, clId, and stTime;

� an update operation is sent to the leader using an
U pdate command

U pdate(opId;clId;stTime;
opType;dataId;dataVal); (3)

and the operation is treated as a ”waiting” one;

� a read operation is handled according to the re-
quired consistency type (ConType) (see Section
4), and is sent using a ReadConType command

ReadConType(opId;clId;stTime;dataId): (4)

If the U pdate command replays committed, the corre-
sponding operation is removed out from the queue. If
the timeout for responding elapses, the client changes
its role to Asking (perhaps the leader failed and the
operation will be next reissued to a new leader).

Consistency�and�Availability�of�Data�in�Replicated�NoSQL�Databases

105



3.2.4 Server in Server Role

A server plays the Server role when the system
starts, and when a worker detects that election time-
out elapses without receiving any message from the
leader (that means the leader failure). A server in
Server role starts an election issuing the command
StartElection to all servers. Next, the systems goes to
the LeaderElection state, and all servers change their
roles to Elector.

3.2.5 Server in Elector Role

The community of servers attempt to chose a leader
among them. The leader should be this server that
has the highest value of lastCommit, and by equal
lastCommit, the one with the highest identifier (or sat-
isfying another priority criterion). The election pro-
ceeds as follows:
1. A server collects lastCommit values from all

servers (including itself), and creates a decreas-
ingly ordered list of pairs (lastCommit;srvId).

2. If the list contains answers from majority of
servers, then the srvId from the first pair is cho-
sen as the leader and its value is substituted to
currentLeader.

3. The currentLeader is announced as the leader.
The procedure guarantees that all servers will
choose the same leader.

Next, the system goes to the KnownLeader state, the
server chosen as the leader changes its role to Leader,
and the remainder servers to Worker.

3.2.6 Server in Leader Role

The leader acts as follows:
1. After receiving U pdate command (3), a leader

issues asynchronously to each server (including
itself) the command appending the operation to
server’s log

Append(opId;clId;stTime;opType;dataId;
dataVal; lastIdx; lastOpTime; lastCommit) (5)

The process can return with an exit code indicat-
ing:
� success – the entry was successfully appended

to the server’s log,
� inconsistency – the server’s log is inconsistent

with the leader’s one. Then a procedure recov-
ering consistency is carried out. After this, the
leader retries sending the Append command. It
is guaranteed, that after a finite number of rep-
etition, the command returns with success (un-
less the worker fails).

If the number of servers responding success is
at least equal to the write quorum (W), then the
leader sends asynchronously to all these servers
(also to itself) the request to execute the appended
operation and to commit it. Next, without waiting
for responses, replays committed to the client. If
a worker does not respond to Append (because
of crash, delay, or lost of network packet), the
leader retries Append indefinitely (even after it
has responded to the client). Eventually, all work-
ers store the appended entry or a new election is
started.

2. If the leader activity timeout elapses (given
by ActivityTimeout that must be less than
ElectionTimeout), the leader sends

Append(lastIdx; lastOpTime; lastCommit)

to each worker, i.e., Append command with
empty data-part (so-called heartbeat), to confirm
its role and prevent starting a new election. The
response to this message is the same as to reg-
ular Append. In particular, this is important for
checking log consistency, especially for restarted
workers.

3. When a new leader starts, then:
� There can be some uncommitted entries in the

top of the leader’s log, i.e., after the lastCommit
entry, (lastCommit < lastIdx). These entries
must be propagated to workers by Append
command in increasing order. If a delivered log
entry is already present in worker’s log, it is ig-
nored.

� Some ”waiting” operations in a queue, i.e., de-
noted as already sent to a leader, could not oc-
cur in the leader’s log (the reason is that they
have been sent to a previous leader and that
leader crashed before reaching the write quo-
rum). Then these operations must be again
sent by the client from the queue to the newly
elected leader.

� After the aforementioned two operations have
been done, the client starts delivering the next
update operation from the queue.

A server plays the Leader role until it fails. After re-
covery, it plays a role of a Worker.

3.2.7 Server in Worker Role

Let a worker receive an Append command (possibly
with empty data-part) of the form (5), where leader’s
parameters are denoted as: lastIdxL, lastOpTimeL,
lastCommitL. Then:

ENASE�2015�-�10th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

106



1. If lastIdx = lastIdxL and lastOpTime =
lastOpTimeL, then: if the data-part is not empty,
then append the new entry; execute and commit
all uncommitted entries at positions less than or
equal to lastCommitL in increasing order; reply
success.

2. If lastIdx < lastIdxL, then reply inconsistency.
The worker expects that the leader will decide to
send all missing entries.

3. If lastIdx = lastIdxL and lastOpTime <
lastOpTimeL, then delete lastIdx entry and reply
inconsistency.

4. If lastIdx > lastIdxL then delete entries at posi-
tions greater than or equal to lastIdxL and reply
inconsistency.

A server plays the Worker role until its failure or fail-
ure of the leader – then it returns to the Server role.

3.3 Example

Let us assume that there are five servers in the sys-
tem (N = 5) (Figure 3), and the write quorum is three
(W = 3). By ”+” we denote committed entries, and by
”?” the waiting ones (i.e., a client waits for commit-
ting the sent operation). Let us consider three steps in
the process of replication presented in Figure 3.

Step 1. Operations a and b are already commit-
ted, bat c and d are waiting, i.e., their execution in the
system is not completed. S1 is the leader that propa-
gated c and d to S3, and after this failed. We assume
that also S5 failed. There are two uncommitted oper-
ations, c and d, in the top of S3, these operations are
also denoted as waiting in the queue.

Step 2. In the next election, S3 has been elected
the leader. The client receives information about the
new leader and sends the waiting operations c and d
to him. Since c and d are already in the S3’s log, the
sending is ignored. S3 propagates c and d to available
workers S2, and S4. The write quorum is reached, so
they are executed and committed. Next, S3 receives
from a client the operation e, and fails.

Step 3. Now, all servers are active and S4 is elected
the leader. The client receives information about the
new leader and sends the waiting operation e to S4.
Next, the leader propagates e as follows:

� Propagation to S1: e is appended at fifth position.
Since leader’s lastCommit is 4, thus c and d are
executed in the S1’s database and committed.

� Propagation to S2: e is successfully appended at
fifth position.

� The leader (S4) recognizes that the write quorum
is already reached. Thus: asynchronously sends

to S1, S2 and to itself the command to execute and
commit e; replies committed to the client; con-
tinue propagations of e to S3 and S5.

� Propagation to S3: e is already in S3’s log, so the
append is ignored. Along with e, the lastCommit
equal to 5 is sent to S3. Because of this, e can be
executed and committed.

� Propagation to S5: there is an inconsistency be-
tween logs in S4 and S5. We are decreasing
lastIdx in S4, lastIdx := lastIdx� 1, as long as
the coherence between both logs is observed. This
happens for lastIdx = 2. Now, all entries at posi-
tions 3;4 and 5 are propagated to S5. Moreover,
operations c;d and e are executed in S5’s database
and committed.

In the result, all logs will be eventually identical.

4 CONSISTENCY MODELS FOR
REPLICATED DATA

Some database systems provide strong consistency,
while others have chosen eventual consistency in or-
der to obtain better performance and availability. In
this section, we discuss how these two paradigms can
be achieved in a data replication system based on Lorq
model.

4.1 Strong Consistency

Strong consistency guarantees that a read operation
returns the value that was last written for a given data
object. In other words, a read observes the effects of
all previously completed updates (Terry, 2013; Terry
et al., 2013). Since Lorq system is based on a consen-
sus quorum algorithm, it is guaranteed that a majority
of servers has successfully accomplished execution of
all committed update operations in their databases. To
guarantee strong consistency, the number of servers
we should read from is at least equal to the read quo-
rum (R). Next, from the set of read data values we
chose the value with the latest timestamp.

However, reading from many servers is costly,
thus, to improve performance, w can restrict ourselves
to reading from one server only. So, if we need to
have high availability, we can chose so-called even-
tual consistency.

4.2 Eventual Consistency

Eventual consistency is a theoretical guarantee that,
”if no new updates are made to the object, eventually

Consistency�and�Availability�of�Data�in�Replicated�NoSQL�Databases

107



Figure 3: Illustration to a scenario of managing data replication in Lorq.

all accesses will return the last updated value” (Vo-
gels, 2009). In this kind of consistency, reads return
the values of data objects that were previously writ-
ten, though not necessarily latest values. An even-
tual consistency guarantee can be requested by each
read operation (or by a session), thereby choosing be-
tween availability, costs and data freshness. Next, we
will discuss realization of some eventual consistency
in Lorq system. We will consider four classes of even-
tual consistency: consistent prefix, bounded staleness,
monotonic reads, and read-my-writes (Terry, 2013).

4.2.1 Consistent Prefix

A reader is guaranteed to see a state of data that ex-
isted at some time in the past, but not necessarily the
latest state. This is similar to so-called snapshot isola-
tion offered by database management systems (Terry,
2013).

In Lorq, this consistency is realized by reading
from any server. It is guaranteed that databases in
all servers store past or current states, and that these
states were up-to-date sometime in the past. In gen-
eral, the level of staleness is not known, since the read
may be done from a server which is separated from
others by communication failure.

4.2.2 Bounded Staleness

A reader is guaranteed that read results are not too
out-of-data. We distinguish version-based staleness
and time-based staleness (Golab et al., 2014).

In Lorq, the staleness of a read data x can be de-
termine as follows. We read x from an active server’s
(worker or leader) database. Let read(x) = (x;v; tdb),

where tdb is the timestamp of the last operation that
updated x. Next, we find in the log the set of opera-
tions, which are intended to update x and have times-
tamps greater than tdb. Let O be the set of such oper-
ations, and

� tlastop = maxfto j o 2 Og, i.e., tlastop is the largest
timestamp of operations in O; if O is empty, we
assume tlastop = tdb;

� k = count(O), i.e., k denotes cardinality of O.

Then the operation read(x) has the version-based
staleness equal to k, and time-based staleness equal
to D = tlastop� tdb.

In this way, we can assess whether the required
freshness is fulfilled. If not, we apply to the auxil-
iary database AuxDB = f(x;v; tdb)g as many opera-
tions as needed from O, in increasing order, to guar-
antee the acceptable staleness. Finally, we perform
read(x) against the final state of AuxDB.

4.2.3 Monotonic Read

A reader is guaranteed to see data states that is the
same or increasingly up-to-date over time (Terry,
2013). Assume that a client reads a data object x,
read(x) = (x;v; t). Then the client updates x with
(x;v0; t 0), where t 0 > t. If next the user issues another
read to this data object, then the result will be: either
(x;v; t) or (x;v0; t 0), but never a state (x;v00; t 00), where
t 00 < t.

In Lorq, the monotonic read is guaranteed by so-
called session guarantee meaning that all read oper-
ations of a client are always addressed to the same
worker. Then, the session terminates when the worker

ENASE�2015�-�10th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

108



fails. Note, that if we would read from different work-
ers, we could be unlucky and read from a delayed or
from a server belonging to a separated partition.

4.2.4 Read-my-writes

It is guaranteed that effects of all updates performed
by the client, are visible to the client’s subsequent
reads. If a client updates data and then reads this data,
then the read will return the result of this update (or
an update that was done later) (Terry, 2013).

In Lorq, the read-my-writes consistency is guaran-
teed in the way similar to that of bounded staleness.

� let read(x) be a read operation issued by a client
with identifier clId, and let read(x) = (x;v; t) in
an arbitrarily chosen server;

� let OclId be the set of operations stored on server’s
log, and issued by clId;

� if OclId is empty, then read(x) is the result;

� otherwise, apply all operations from OclId , in in-
creasing order, to the auxiliary database AuxDB =
f(x;v; t)g; next, perform read(x) against the final
state of AuxDB.

5 CONCLUSIONS AND FUTURE
WORK

We proposed a new algorithm, called Lorq, for man-
aging replicated data based on the consensus quo-
rum approach. Lorq, like another consensus quorum
algorithms, is devoted for data-centric applications,
where the trade-off between consistency, availability
and partition tolerance must be taken into account.
The implementation of Lorq make advantages of the
modern software engineering methods and tools ori-
ented to asynchronous and parallel programing. In
future work, we plan to extend the Lorq algorithm
to take advantages of so-called replicated data types
(Burckhardt et al., 2014; Shapiro et al., 2011). We
plan also to prepare and conduct some real-system ex-
periments. This research has been supported by Pol-
ish Ministry of Science and Higher Education under
grant 04/45/DSPB/0136.

REFERENCES

Abadi, D. (2012). Consistency tradeoffs in modern dis-
tributed database system design. IEEE Computer,
45(2):37–42.

Amazon DynamoDB Pricing (2014). http://aws.amazon.
com/dynamodb/pricing.

Asynchronous Programming with Async and Await
(2014). http://msdn.microsoft.com/en-us/library/
hh191443.aspx.

Bernstein, P. A., Hadzilacos, V., and Goodman, N. (1987).
Concurrency Control and Recovery in Database Sys-
tems. Addison Wesley Publishing Company.

Burckhardt, S., Gotsman, A., Yang, H., and Zawirski, M.
(2014). Replicated data types: specification, verifi-
cation, optimality. In ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages,
POPL’14, pages 271–284.

Cattell, R. (2010). Scalable SQL and NoSQL data stores.
SIGMOD Record, 39(4):12–27.

Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., and et
al. (2008). Bigtable: A distributed storage system for
structured data. ACM Trans. Comput. Syst., 26(2).

Cooper, B. F., Ramakrishnan, R., Srivastava, U., Silber-
stein, A., and et al. (2008). PNUTS: Yahoo!’s hosted
data serving platform. PVLDB, 1(2):1277–1288.

Corbett, J. C., Dean, J., Epstein, M., and et al. (2013). Span-
ner: Google’s globally distributed database. ACM
Trans. Comput. Syst., 31(3):8.

DeCandia, G., Hastorun, D., Jampani, M., and et al. (2007).
Dynamo: Amazon’s highly available key-value store.
SIGOPS Oper. Syst. Rev., 41(6):205–220.

Gafni, E. and Lamport, L. (2000). Disk Paxos. In Dis-
tributed Computing, DISC 2000, LNCS 1914, pages
330–344. Springer.

Gifford, D. K. (1979). Weighted Voting for Replicated Data.
In ACM SIGOPS 7th Sym. on Op. Systems Principles,
SOSP’79, pages 150–162.

Gilbert, S. and Lynch, N. A. (2012). Perspectives on the
CAP Theorem. IEEE Computer, 45(2):30–36.

Golab, W., Rahman, M. R., AuYoung, A., Keeton, K., and
Li, X. S. (2014). Eventually consistent: Not what you
were expecting? Commun. ACM, 57(3):38–44.

Lakshman, A. and Malik, P. (2010). Cassandra: A de-
centralized structured storage system. SIGOPS Oper.
Syst. Rev., 44(2):35–40.

Lamport, L. (2006). Fast Paxos. Distributed Computing,
19(2):79–103.

Ongaro, D. and Ousterhout, J. (2014). In Search of an Un-
derstandable Consensus Algorithm. In USENIX An-
nual Technical Conference, pages 305–319.

Pankowski, T. (2015). A consensus quorum algorithm for
replicated NoSQL data. In BDAS 2015, Communi-
cations in Computer and Information Science, pages
1–10. Springer.

Shapiro, M., Preguiça, N. M., Baquero, C., and Zawirski,
M. (2011). Conflict-free replicated data types. Lecture
Notes in Computer Science 6976, pages 386–400.

Terry, D. (2013). Replicated data consistency explained
through baseball. Commun. ACM, 56(12):82–89.

Terry, D. B., Prabhakaran, V., Kotla, R., Balakrishnan,
M., and et al. (2013). Consistency-based service
level agreements for cloud storage. In ACM SIGOPS,
SOSP’13, pages 309–324.

Vogels, W. (2009). Eventually consistent. Commun. ACM,
52(1):40–44.

Consistency�and�Availability�of�Data�in�Replicated�NoSQL�Databases

109


